5MDOO0O

Assignment Introduction

Luc Waeljen
16-12-2014

Contents
 EEG application

- Background on EEG
- Early Seizure Detection Algorithm
- Implementation Detalls
e Super Scalar Assignment
— Description
- Tooling (simple scalar & wattch)
* Multi Core Assignment

— Description
- Tooling (sniper sim, McPat & OpenMP)

Electroencephalography (EEG)

Lets plug some wires into a brain!!

EEG Signals

v v W \
1I|D .I‘!{:- 3lﬂ 4::} 5[1 ?{] ‘|1|ﬂ 1_2[]
Frames (1 fra me=3 sec-ands}
MM A ¥ M/\/WJ\\/\ Mﬂ A]\'\
AT WAV
1IIZJI JI'ED 3|U -fllﬂ Elﬂ éﬂ ?IIJH EI-D QIEI 160 H 1%!] 120

Frames (1 frame = 3 seconds)

Uses

» Research

- Determine functionality of brain
— Observe physical reaction to
various stimuli

e Clinical

- Monitoring during operations
- Diagnosis and classification of epilepsy
- Prognosticate coma patients

- Test for brain damage
* Brain computer interface

- Paralyzed people
- Gaming

Uses

» Research

- Determine functionality of brain
— Observe physical reaction to
various stimuli

e Clinical

— Monitoring during operations

- Diagnosis and cIaSS{flcatlon of epllepsy

- Prognosticate cor N
— Test for brain dar Can even

. . . predict seizures
Brain computer Ir before they occur!

- Paralyzed people —

- Gaming

Early Seizure Detection

- -_-m--rm.ta-—w_-nwmﬁ—.hfh—u.m--—-*-—--n*-‘~---f-—~+--‘+--v-——-—--*rﬂﬁ--~1' o]
NP SEE N P | N D A T -
-HJAWVMMH\A, At e . i " P A I
e Pl e - i Pt A L e . i A A i A R g gt [T

A

Time Profile of Characterizing Measure

Characterizing

Meaiura Q ﬁ

.............................. Aeeeenecemcnaldeanncaaaa.. Alarm Threshold

]

: o %
Alarm Seizure s

EEG devices are large and make
you look like something from the
matrix!

EEG devices are large and make
you look like something from the
matrix!

Epilepsy patients cannot walk
the streets like this!

EEG devices are large and make
you look like something from the
matrix!

Social Stigma

10

But we are working on It!

Mobile EEG

We are developing mobile EEG
devices that can be implanted under
the skin of the head.

Result is practically invisible sensors,
but with severe energy constraints!

Early seizure detection has to be

computed on nodes, cannot afford to
transmit all data to off site processing
unit 12

Mobile EEG

We are developing mobile EEG

Early seizure detection has to be
computed on nodes, cannot afford to
transmit all data to off site processing

unit

13

The Algorithm

» Analysis of EEG time signal using discrete wavelet

transform over a time window (convolution of time
series with a wavelet function)

 Mathematically a wavelet will correlate with the
signal if the unknown signal contains information of

similar frequency

» Conceptually similar to a Fourier transform

(actually the Fourier transform |s a speual case of

the wavelet transform)

" P . PR L PR " P n P T —

1 14

Sliding Window
Moving Window ?

- I T T L -L----F--++---*-—-v-——--—----—-~1‘ o
(. e rnu Mﬂﬂwﬂ- w«-—-————-:—-wf\‘
- HJWMHW A g e g HWT\J’PW \
—— MW—\ '—HMW-—.W T g g W T A e Y Ry iy B g wm
A
[
]
i

I
L]
I
]
I
I

Time Profile of Characterizing Measure

Characterizing

[}

[]

! Measure ﬁ
R ¢

.............................. Loeeeeeeeccccacldeeeeceean.. Alarm Threshold

]

* Time

Alarm Seizure

Mother Wavelet

In this algorithm we use the Mexican hat
mother wavelet:

2

| -
)= —(1—1t)e?

Y (1) «/ﬂ()
. \v T

16

Daughter Wavelets and Coefficients

* Mother wavelet is scaled (s) and shifted (tau) to
generate daughter wavelets

o () = % (t : 7)

e Can now calculate wavelet coefficients for
different s and tau by convolution with daughter

wavelet
it
()

Wi(t,s) = fx(t) NG : ,

Normalizing and selecting Max

 Normalized Wavelet Energy

)
e = [T

e Select index of maximum, which is used as
indicator value for a given time window (that
particular scale and shift dominated the

window)
{ = argmax (Z W(z, s))

18

Implementation Trick

 The convolution theorem states that under suitable
conditions the Fourier transform of a convolution is
the pointwise product of Fourier transforms

(http://en.wikipedia.org/wiki/Convolution_theorem)
—1
frg=F {F{f} Flg}}

» Fast Fourier Transform can be implemented pretty
efficiently, let's use that instead of convolution In
time domain!

19

http://en.wikipedia.org/wiki/Convolution_theorem

Discrete Wavelet Transform using
the Fast Fourier Transform (FFT)

Fourier-transformation input signal y(t) with FFT

Generate Daughter Wavelet for chosen scaling factor s

and FFT thi

s wavelet

Multiply FFT'd input and daughter wavelet (Multiplication in

frequency d

omain is convolution in time domain!)

Inverse FF

" (IFFT) gives Wavelet Coefficients for different

shifts (tau) and chosen scaling s

Back to step 2, until all discrete scaling values s are

processed

20

Input data

 EEG signhal sampled at 200 Hz
 Examine windows of 2 seconds
« Shift window with steps of 1 second

e Wavelet transform and measurements taken
from:

Non-parametric early seizure detection in an animal
model of temporal lobe epilepsy - Sachin S. Talathi et
al.

21

Electrically induced seizures In

rats

22

Implementation

You are given pure C-code

Ported from MATLAB code provided with Sachin
S. Talathi paper

Function and variable names are not always
very clear (taken directly from matlab code)

Code Is functional, but not at all optimized!

23

Main

Call Graph

Analysis

(loop over
windows)

- J

4 N
Generate
output graph

TS

p
DatalLoader]—P
_

/

\. J/

Compute
Wavelet

N

>

7

\.

Utilities]

7

cwavelet

\-b{ FET

N\

J

=
>l

\

wavebase

.
/

g FFT

Inverse

24

J
~

Call Graph

N T L g,
DatalLoader Utilities

\ \

g N ([\-b{ FET
4)
=Pl \wavebase
Analysis \)
(loop over Compute 4)
Main windows) - Wavelet =P cwavelet
L Inverse
FFT
_ J _ /L /L J
r N\ \)

Generate] Y 25
P oD Region of Interest

Questions about the application?

26

27

Single Core Assignment

28

Single Core Assignment

* Find the most suited super scalar architectures
for the early seizure detection algorithm in

terms of performance (CPIl) and
energy-delay-product (CPI*Energy/Cycle)*CPI.

f1

EDP
5 0

D,
Pareg:

f2(A) < f2(B) f2
Performance

29

Tools of the Trade

e Simple Scalar

- Super scalar simulator
- Designed for fast DSE at architecture level
- Used in many published papers

e \Wattch

— Architecture level power estimation
- Complementary to simple scalar

30

A Computer Architecture Simulator Primer

» What s an architectural simulator?
— Tool that reproduces the behavior of a computing device

2 N\
: —> System Outputs
System _| Device y P

Inputs Simulator — System Metrics
_ /

+ Why use a simulator?
— Leverage faster, more flexible S/W development cycle
* Permits more design space exploration
+ Facilitates validation before H/W becomes available
« Level of abstraction can be throttled to design task
» Possible to increase/improve system instrumentation

npleScalar
Tutonal

The Zen of Hardware Model Design

Performance
Performance: speeds design cycle
Design Flexibility: maximizes design scope
Space Detail: minimizes risk
Detalil Flexibility

* Infrastructure goals will drive which aspects are optimized
 SimpleScalar favors performance and flexibility

npleScalar
Tutonal

A Taxonomy of Hardware Modeling Tools

Hardware Models

/\

Architectural

Micro-Architectural

/\ /[\

Trace-Driven | | Exec-Driven Scheduler

npleScalar
Tutonal

Cycle Timers | | H/W Monitor

T

Emulation Direct Execution

+ Shaded tools are included in the SimpleScalar tool set

Functional vs. performance simulators

* Functional simulators implement the architecture

- Perform the actual execution
- Implement what programmers see
* Performance (or timing) simulators implement the microarch.
- Model system resources/internals
- Measure time

- Implement what programmers do not see

A Taxonomy of Hardware Modeling Tools

Hardware Models

/\

Architectural

Micro-Architectural

/\ /[\

Trace-Driven | | Exec-Driven Scheduler

npleScalar
Tutonal

Cycle Timers | | H/W Monitor

T

Emulation Direct Execution

+ Shaded tools are included in the SimpleScalar tool set

A Taxonomy of Hardware Modeling Tools

Functional Hardware Models

Micro-Architectural

/[\

Architectural

N\

Trace-Driven | | Exec-Driven

Scheduler | | Cycle Timers | | H/W Monitor

Emulation DirectlExecution

 Shaded tools are included in the SimpleScalar tool set

npleScalar
Tutonal

A Taxonomy of Hardware Modeling Tools

Functional Hardware Models
Micro-Architectural

/[\

Architectural

N\

Trace-Driven | | Exec-Driven

Scheduler | | Cycle Timers | | H/W Monitor

Emulation DirectlExecution

 Shaded tools are included in the SimpleScalar tool set

npleScalar
Tutonal

Execution- vs. Trace-driven Simulation

* trace-based simulation: ; Inst. trace ...-

- reads a “‘trace” of insts saved from previous execution

- easiest to implement, no functional component needed

- no feedback 1nto trace (e.g. mis-speculation)

* execution-driven simulation: program "'“-

- simulator “runs’ the program, generating stream dynamically

- more difficult to implement, many advantages

- direct execution: instrumented program runs on host

38

The Zen of Hardware Model Design

Performance
Performance: speeds design cycle
Design Flexibility: maximizes design scope
Space Detail: minimizes risk
Detalil Flexibility

* Infrastructure goals will drive which aspects are optimized
 SimpleScalar favors performance and flexibility

npleScalar
Tutonal

A Taxonomy of Hardware Modeling Tools

Functional Hardware Models
Micro-Architectural

/[\

Architectural

N\

Trace-Driven | | Exec-Driven Scheduler | | Cycle Timers H/W Monitor

Emulation DirectlExecution

 Shaded tools are included in the SimpleScalar tool set
Fast, but low detalils

npleScalar
Tutonal

Standard Models

- 420 lines - 350 lines - 900 lines -~1000 lines - 3900 lines
- no timing - no timing - no timing - functional - performance
-4+ MIPS - W/ checks -lotof stats - cache stats - Q0O issue
- branch pred.
- mis-spec.
- ALUs
- cache
- TLB
- 150 KIPS

Performance

Detall

npleScalar
Tutonal

QOut-of-Order Issue Simulator

S A
Dispatch Scheduler —>| Exec Writeback

Virtual Memory

npleScalar
Tutonal

How to use?

* To get started, follow the steps on the website:
http://www.es.ele.tue.nl/~mwijtvliiet/5MDO00_SC/

* Once you can run the example, start exploring the
design space!

* You can configure the processor in many ways, take
a look at the tunable parameters at:

http://www.es.ele.tue.nl/~mwijtvliet/'5MD00_SC/?page=parameters

https://courses.cs.washington.edu/courses/cse471/06sp/hw/simpleScalar3.0guide.pdf

43

http://www.es.ele.tue.nl/~mwijtvliet/5MD00_SC/
http://www.es.ele.tue.nl/~mwijtvliet/5MD00_SC/?page=parameters
https://courses.cs.washington.edu/courses/cse471/06sp/hw/simpleScalar3.0guide.pdf

Make sure you understand all the
parameters before tuning

 |f there Is a parameter you don't understand,
check in the cheat-sheet what it stands for. If
you do not know the technique/term, google it!

 There is no point in tuning parameters if you do
not know what they do.

44

Tunable Parameters

Branch Prediction

branch predictor type {nottaken | taken |perfect|bimod |2lev}
-bpred bimod

bimodal predictor config <table size>
-bpred:bimod 2048

2-level predictor config (<l1size> <12size> <hist_size> <xor>)
-bpred:2lev 1102480

return address stack size (0 for no return stack)
-bpred:ras 8

BTB config (<num_sets> <associativity>)
-bpred:btb 512 4

Memory System

11 data cache config, i.e., {<config>|none}
-cache:dll

12 data cache config, i.e., {<config>|none}
-cache:dl2

11 inst cache config, i.e., {<config>|dl1|dl2 |none})
-cache:ill

12 instruction cache config, i.e., {<config>|dl2 |none}
-cache:il2

<name>:<nsets>:<bsize>:<assoc>:<repl>
<name> name of the cache being defined
<nsets> number of sets in the cache
<bsize> block size of the cache
<assoc> associativity of the cache

dl1:128:32:4:1

ul2:1024:64:4:1

111:512:32:1:1

dl2

<repl> block replacement strategy, 'I'-LRU, 'f'-FIFO, 'r'-random

Function Units

total number of integer ALUs available
-res:ialu -

total number of integer multiplier/dividers available
-res:imult 1

total number of floating point ALUs available
-res:fpalu 4

total number of floating point multiplier/dividers available
-res:fpmult 1

b V4

Data Path & Others

instruction fetch queue size (in insts)
-fetch:ifqgsize

instruction decode B/W (insts/cycle)
-decode:width

instruction issue B/W (insts/cycle)
-issue:width

run pipeline with in-order issue
-issue:inorder

issue instructions down wrong execution paths
-issue:wrongpath

instruction commit B/W (insts/cycle)
-commit:width

register update unit (RUU) size
-ruu:size

load/store queue (LSQ) size
-Isq:size

false

true

16

48

Approach

* In your report we want to see why you chose
certain configurations.

- Observe the performance

- ldentify bottlenecks as good as possible

- Try to improve the bottlenecks and document in
your report:
 \What you observed
« \What you tried and why you thought it would help
* The effect of the tuning (did it work? If not, why?)

49

Approach

* In your report we want to see why you chose
certain configurations.

- Observe the performance

S

- Identify bottlenecks as goor ~~

- Try to improve the bottlene For example sim- proflle
your report: e

 \What you observed
« \What you tried and why you thought it would help
* The effect of the tuning (did it work? If not, why?)

50

Sim-Profile: Program Profiling Simulator
» Generates program profiles, by symbol and by address
+ Extra options
~iclass - instruction class profiling (e.g., ALU, branch)
—iprof - instruction profiling (e.g., bnez, addi, etc...)
~brprof - branch class profiling (e.g., direct, calls, cond)
~amprof - address mode profiling (e.g., displaced, R+R)
~segprof - load/store segment profiling (e.g., data, heap)
~tsymprof - execution profile by text symbol (i.e., funcs)
~dsymprof - reference profile by data segment symbol
~taddrprof - execution profile by text address
~all - enable all of the above options
~pcstat <stat> - record statistic <stat> by text address
+ NOTE: “—taddrprof" == “—pcstat sim_num_insn"

npleScalar
Tutonal

Questions regarding the single core
assignment?

52

53

Multi Core Assignment

54

Multi Core Assignment

 Map the early seizure detection onto a multi
core x86 platform

 Minimize Energy-Delay-Area-Product (EDAP)

- Parallelize the code

- Tune the multi core platform (Memory, interconnect,
number of cores)

- Optimize the given c-code (e.g. loop
transformations to increase locality)

- Any other technigue you can think of!

55

Tools of the Trade

e Sniper SiIm

56

Tools of the Trade

e Sniper SiIm

s0, J, mother, order);

(float));

t)order+0.5))/(2.0*M_PI*ret->scale[i]);

LO*M_PI*ret-

), Value, 0, mother, order)

0*M_PI*ret->scale[i]);

rder,2)))/(4.0*M_PI*ret-

Tools of the Trade

e Sniper Sim
- Tool to analyze performance of multicore systems

— Cores themselves are modeled on a functional level

- Interconnect, memory and number of cores (i.e. the system
level) can be configured and has performance models

e McPat

- Integrated Power, Area and Timing modeling framework
- Integrates with Sniper Sim toolflow

e OpenMP
- Framework to parallelize source for multicore platforms

58

The Zen of Hardware Model Design

Performance
Performance: speeds design cycle
Design Flexibility: maximizes design scope
Space Detail: minimizes risk
Detalil Flexibility

* Infrastructure goals will drive which aspects are optimized
 SimpleScalar favors performance and flexibility

npleScalar
Tutonal

| . -
NEEDED DETAIL DEPENDS ON<FOCUS

Single-event Required
Component : & lon
time scale sim time
RTL single clock cycle millions of cycles
000 execution
Core memory ops
L1 cache access
LLC access
W W
Off-socket microseconds seconds

— Too slow

cycle-accurate
models

]

simple core
models

Not accurate
enough

interval
core
model

INTERVAL SIMULATION

* Qut-of-order core performance model
with in-order simulation speed

branch misprediction

I-cache miss j long-latency load miss

effective dispatch rate

A
r
X

] B
L |

interval 1 interval 2 interval 3 time

D. Genbrugge et al., HPCA’10
S. Eyerman et al., ACM TOCS, May 2009
T. Karkhanis and J. E. Smith, ISCA’04, ISCA’O712

~ Xﬂ f'\
" SIMULATION IN SNIPER

A single-process,

Execution-driven simulation multithreaded
workload (v1.06)

— O
processor cores e 8
Multiple, (—— 8
Trace-driven simulation single-threaded

workloads (v2.0)

CYCLE STACKS

CPI

* Where did my cycles go?

* CPI stack: cycles per instruction,
broken up in components

* Normalize by either

— Number of instructions (CPI stack)

— Execution time (time stack)

* Different from miss rates as B 2 cache

cycle stacks directly quantify -cache
B Branch
the effect on performance e

CYCLE STACKS.AND SCALING BEHAVIOR

* Scaling to more cores, larger input set size

* How does execution time scale, and why?

Percent of time

100%

80%

S

40%

20&/0 e e

0%

Rodinia -

8c 8c
large small

SRAD

16¢C 16¢C
large small

I sync-barrier
[sync-crit_sect
BN mem-dram
I mem-off _socket
EE mem-I3

1 mem-12_neighbor
B mem-I12

=3 mem-I1_neighbor
BN mem-l1d

1 ifetch

B branch

1 depend-fp
B depend-int
[/ dispatch_width

14

Energy (J)

140

120

100

80

60

40

20

McPat

Core

LTI

other

13

12

dcache
icache
core-other
core-mem
core-fp
core-ifetch
core-core

How to Use

* Again, check the website to get started:
http://lwww.es.ele.tue.nl/~mwijtvliet/5MD00_MC/?page=
preparation

* N.B. Download the application source again, since the
makefile differs from the previous assignment!

* N.B. Extract the application source in the correct
directory!! Sniper Sim uses relative paths in it's
Makefiles!! (see guidelines page)

* For the tunable parameters, check the sniper-manual
(in particular chapters 5 & 6).

 The website also explains how to extract the energy,
delay and area metrics from the tools 66

http://www.es.ele.tue.nl/~mwijtvliet/5MD00_MC/?page=preparation
http://www.es.ele.tue.nl/~mwijtvliet/5MD00_MC/?page=preparation

Again, make sure you understand
what you tune!

* Read the sniper sim manual to understand the
configuration options. In general the options are
a bit more high level, and probably easier to
understand.

* Procedure (for report):

- Profile the application, identify bottlenecks
— Try to improve the mapping/system

 Document what you tried and what you were expecting

- Show the results. Did your solution work? If not, try
to explain why.

* Try to obtain the minimum EDAP!

67

OpenMP

int main(int argc, char* argv[]) {

const int N = 100000;

int 1, a[N];

#pragma omp parallel for

for %1_= 0; 1 < N; 1++)
afi1] = 2 * 1;

return 0;

68

OpenMP

* N.B. OpenMP does not check (and certainly not
prove) whether the specified parallelization is
correct (or beneficial). When a piece of code is
annotated, the compiler simply assumes that it
IS OK to parallelize it.

Beware of race conditions!

69

Finally

 Please use the forums to ask your questions!!

» Use a topic title that captures your problem as
accurately as possible (i.e. not ‘code not

working').

« Before you ask, ¢
similar issue. Per
guestion Is alreac

heck If someone else had a
naps the answer to your
y there.

« Remember Goog

e Is your friend, it can typically

provide answers much faster than the TAs
* If you want to talk to a TA, send us an email to

make an appointment.

70

Slides In this presentation were
shamelessly copied from:

* http://snipersim.org/documents/2012-06-09%2
0Sniper%20ISCA%20Tutorial.pdf

* https://courses.cs.washington.edu/courses/cse
471/06sp/hw/simpleScalar3.0guide.pdf

e http://www.simplescalar.com/docs/simple_tutori
al_v2.pdf

e http://www.simplescalar.com/docs/simple_tutori
al_v4.pdf

71

http://snipersim.org/documents/2012-06-09%20Sniper%20ISCA%20Tutorial.pdf
http://snipersim.org/documents/2012-06-09%20Sniper%20ISCA%20Tutorial.pdf
https://courses.cs.washington.edu/courses/cse471/06sp/hw/simpleScalar3.0guide.pdf
https://courses.cs.washington.edu/courses/cse471/06sp/hw/simpleScalar3.0guide.pdf
http://www.simplescalar.com/docs/simple_tutorial_v2.pdf
http://www.simplescalar.com/docs/simple_tutorial_v2.pdf
http://www.simplescalar.com/docs/simple_tutorial_v4.pdf
http://www.simplescalar.com/docs/simple_tutorial_v4.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

