MOBZ ORE PROGRAMMING
- ASSIGNMENT

Dongrui She
December 9, 2010

Goal of the Assignment
S
The purpose of this assignment is to

0 Have in-depth understanding of the architectures of
real-world multi-core CPUs

0 Learn about how to develop parallel applications
on such architectures, and how to analyze the
performance in a real environment

Qutline
B 5

01 Parallelism in Mainstream CPUs

0 Exploiting Parallelism in CPUs

0 Methods to analyze application performance
0 Introduction to VTune

0 Example: Matrix Multiplication

Parallelism in Typical Mainstream CPUs
_3 |

0 1-12 cores with shared memory

O Large on-chip cache
L1$ | L1D$ |,,.| LL$ | L1D$

O Both private and shared cache { = J { Lo% J

3 Inside a core: =

O ILP: 3-4 issue out-of-order superscalar core

O DLP: 128-bit SIMD instructions (SSE)
O TLP: 2-way SMT (Intel’s hyper-threading)

O Typical core frequency: 2-3 GHz

Ways to Exploit Parallelism
N

0 ILP: cannot be controlled directly

O Compiler optimization and proper coding style can help
0 TLP and multi-core: multi-threaded programming

O Logically they are the same for the OS

O Many programming models available, e.g., OpenMP,
Cilk, pthread.

® We will introduce OpenMP in more detail latter

Exploiting DLP

- 4
0 Two ways to do vectorization

O Auto-vectorization by compilers
® The Intel compiler is considered the best
B Most compilers are limited to (simple) inner-most loops

® Pragmas can be use to tell compilers more information to
enable more aggressive optimization

O Intrinsics or inline assembly
® Vectorization by programmers, more information about app.
m Examples / Documentation will be on the assignment website

0 Two most common obstacle

O Cross-iteration dependency

O Alignment issues

Vectorization Example — FIR

0 Basic idea to vectorize a loop: unroll and pack
multiple scalar iterations into one vector iteration

0 Inner-most loop is an obvious choice, but

O Packing and unpack can be costly, especially if the trip
count is not aligned with the machine vector length

O Inner loops may have low trip count

for (1i=0; i< N; i++){ vc[0:3] = {c[0], c[1],
s = 0; cl2], c[31}
for (J=0; 73 < 4; 7 ++) for (i=0; i< N; 1i++) {
s += x[i+3] * c[7] vs[0:3] = x[1:14+3] * wvc
yv[i] = s y[1i] = sum(vs[0:3])
} }

Vectorization Example — FIR (2)

-3

0 Outer-loop vectorization can be more efficient

O However, most compiler cannot do it

for (i=0; i< N; i+=4){
for (i=0; i<N; i++){ vs[0:3] = {0, O, O, O}
s = [for (j =0; jJ < 4; j ++) {
for (§=0; j<4; F++) vc[0:3] = vsplat(c[J])
s += x[1+3] * c[7] vs[0:3] += x[i+]j:i+3+3] * vcC
v[i] = s }
} y[i:i+3] = vs[0:3]
}
X0 Co X1 C1 X2 C2 X3 c3
X1 Co X2 C1 X3 c2 X4 C3
= + X + X
X2 Co X3 C1 X4 C2 X5 C3
X3 Co X4 C1 X5 C2 X6 C3

Analyzing Application Performance
N

0 Understand and optimize application performance
O Is the performance good or bad?
O Which part should run in parallel?
O Where to optimize?

0 Static analysis and execution time measurement are
not enough

O They are not enough to understand the dynamic
behavior of complex applications

O We need profiling

Ways to Profile an Application
N

0 Emulation /Simulation

O Accurate (if the model is accurate enough) but slow

0 Intrusive profilers:

O The profiling codes may change the program (timing)
behavior

0 Statistical profilers:

O Periodically halt the program and sample the PC and
other data. Less overhead and better overall accuracy

O Most commonly used profilers are based on this
approach, e.g., Intel VTune, AMD CodeAnalyst.

Profiling with Intel VTune
o f
0 Features
O Based on sampling

O Supports event counters in the PMU (Performance
Monitoring Unit) of Intel CPUs

0 Requirements
O Intel CPUs (Core or newer) running Linux or Windows
O Program compiled with debug symbols (-g)

0 Alternatives
O For AMD CPUs: AMD CodeAnalyst is similar to VTune
O Open source solution for Linux: pfmon

® May require some effort to get it running

VTune User Interface
S

1 Information of each function

Total number of cycles (for main); Cycles per instruction ratio(for main);
Note: these are statistical values Note: these are derived values

" P = d

roo0ge | ro03ge | ro02ge 0lge s
Bpnera nloratio A rcwWa e 2 % e-AmpliTie @
& Analysis Target f DE % Bottom-up
; (1§ Event Count ; i ; . .
JFunction =] CPI Rat C Miss | Instruction Starvation | Branch Mispredict
CPU_CLK_UNHALTEDN.ORE~ 1ﬁr| INST_RETIRED.ANY
main 26,774,000,000 35,532,000,000 0.754 0.026 0.011 0.001
Selected 1 row(s): 26,774,000,000 35,532,000,000
7 oK O
P = 1s 2s 3s 45 55 Bs Ts Bs gs 10s + |[v] Thread
L - Running
Thread (Oxces) Wuk Hardware E...

Thread

Thread [(Oxcc5) |.
Thread (0xcch)

e Filter: 99.3% is shown RSN l=H 99.3%] matmul - LT IR El TR ERAN S CPU CLK UNHANED.Ct « =

!| [+] Hardware Events
Mk Hardware E...

Distribution of events over time Choose event to show in the

distribution diagram

VTune Detailed View
T

Shaded lines are corresponding disassembly of the

Counter values selected line in the original source

= ~ cl DIOINd D ? - eA P 2 0
T & matmui.c -
W ow oA
[E2] [E] [E] i3] / [E] i3]
Line Source INST RETI... |CPU_CLK_.. |CPU CLK ... |RAT STAL.. Address | Line Assembly NST_RETI %_CLK_... CPU CLK_... |RAT STAL.. |CPU CLK_
ANY THREAD REF ROB_REA... ANY THREAD REF ROB_REA... REF_P
61 //#pragma unroll(16) Oxa39 63 movl 3$0x8, -0x20(%rby)
62 for(k=0;k<Pdim; k++){ 3 3 4 Bxade 63 movl -0x20(%rbp), %ef§x i
63 for (j=0; j<Mdim; j++){ 2,130 1,849 2,571 1 0xa43 63 movl -0x28(%rbp), %efx 1 1 =
64 Jftnp = 0.8; 0xa46 63 cmp %edx, %eax
65 /* C(1,j) = sum{over k) A Oxad8 63 jnl @xa24 <Block 29> H
66 J/tmp += *(A+(i*Ndim+k)) 0xada Block 31: / =
; *(C+(i*Ndim+j)) += *(A+(i{ 18,380 13836 21,110 11 exada 67 movl -0x38(%rbp), %eax 775 657 995
68 } Bxadd 67 imull -8x24(%rbp), %ea 52 38 100
69 Jr*(C+(1*Ndim+])) = tmp; Oxa51 67 addl -0x20(%rbp), %eax 42 42 53 E
70 } 0xa54 67 movsxd %eax, %rax 21 18 30 =
71 } 0xas7 67 imul $6x8, %rax, %rax 938 620 938
72 /* Check the answer =/ Oxash 67 addq -0x88(%rbp), %rax 185 157 216
73 oxasf 67 movl -Ox38(%rbp), %edx 142 104 165 =
74 run_time = omp_get wtime() - start_ti [| 0xa62 67 imull -©x24(%rbp), %ed 4 8 14 J-
75 Bxab6 67 addl -Oxlc(%rbp), %edx 606 597 822
76 printf(" Order %d multiplication in % Bxab9 67 movsxd %edx, %rdx 64 58 90
77 u Bxafc 67 imul $0x8, %rdx, %rdx 134 98 144 =
78 dN = (double)ORDER;] Bxa7e 67 addq -0xa@(%rbp), %rdx 478 351 539
79 mflops = 2.8 * dN * dN = dN/ (100000 0xa77 67 movsdq (%rdx), %xmm@ 701 515 796
80 0xa7b 67 movl -Ox2c(%rbp), %edx 3,489 1,825 2,936
81 printf(" Order %d multiplication at % Bxa7e 67 imull -©xlc(%rbp), %ed 11 21 30
82 Bxa82 67 addl -0x28(%rbp), %edx 6 3 15
83 cval = Pdim * AVAL * BVAL; Bxa8s 67 movsxd %edx, %rdx 160 94 150 I
84 errsq = 0.8; BOxads 67 imul $0x8, %rdx, %rdx 1,037 627 928 i
85 for (i=0; i<Ndim; i++){ I Oxasc 67 addg -0x90(%rbp), %rdx 50 59 74 E
86 for (j=0; j<Mmdim; j++){ 3 2 Bxagd3 67 movsdq (%rdx), S%xmml 46 47 81
- " Selected 1 row(s): 18,380 13,836 21,110 11][-| " 77 77 Highlighted 30 row(s): 18,380 13,836 21,110 1 i
T — O|E O] | oK 0|

No filters are applied. 0 [All] - [All] [All] - CPU_CLK_UNHALTED.Tt w

Example: Matrix Multiplication

0 Straightforward implementation

A = (double *)malloc (N*P*sizeof (double)) ;
B = (double *)malloc (P*M*sizeof (double)) ;
C = (double *)malloc (N*M*sizeof (double)) ;
// Initialize A, B and C
for (i=0; 1 < N; 1i++){
for (3=0; jJ < M; J++){
for (k=0; k <P; k++)
w (G (LENHR)) = 38

A+ (i*N+k)) * * (B+ (k*P+3)) ;
}

1024x1024 matrices. Program compiled with optimization off (-O0),
performance on a Core 2 Quad 8300 with 32bit Linux:

Order 1024 multiplication in 58.7 seconds Number of

Order 1024 multiplication at 36.6 mflops operations is
2*N*N*N

Initial Profiling Result

" General Exploration - Hardware Issues /2 @

" Analysis Type

PMU Event Count

CPIl Rate

fFunction - |

CPU_CLK_UNHALTED.COREw *| INST RETIRED.ANY

¢® Bottom-u

LLC Miss

0 CPl is very high, and LLC miss is an obvious problem

main 159,018,000,000 35,522,000,000 4.477

1.354

0 The inner-most loop is causing a lot of cache misses

Sample Count

w

Ie

Lil

YCLES L... |BR MISSP EX...

MEM_LOAD RETIRED.
L2_LINE_MISS

MEM_LOAD RETIRED.

L2_MISS

66
67
68
69

#(C+(i*Ndim+j)) += *#(A+(i*Ndim+k)) * *(B+(k*Pdim+j)); 333

S/F(C+(1*Ndim+])) = tmp;
}

N

This line is the hotspot]

381

2,153

Analyze the Problem

0 Access pattern of B is the problem

A = (double *)malloc (N*P*sizeof (double)) ;
B = (double *)malloc (P*M*sizeof (double)) ;
C = (double *)malloc (N*M*sizeof (double));

// Initialize A, B and C
for (i=0; i < N; i++){

for (k=0; k <P; k++) { : [Jusi Inier-chqnge]
<:: for (j=0; j < M; J++){ the loops

*(C+(1*N+73))+= * (A+(1*N+k)) * *(B+(k*P+3));

~5.7x speed-up by a

Order 1024 multiplication in 10.315131 seconds . '
minor change !

Order 1024 multiplication at 208.187717 mflops

Profiling Result After Optimization
T

& General Exploration - Hardware Issues /A @

S

i PMU Event Count)
fFunction j CPI Rate | LLC Miss | Inst
CPU_CLK_UNHALTED.CDHEv* INST_RETIRED.ANY
main 26,774,000,000 35,532,000,000 0.754 0.026
W oW D & B
ent Sample Count (=
'
Line N creiesiih N aelajsspl | S HEMLLOAD RETRER: S (MEVALOAD =D,
66 #(C+(1*Ndim+j)) += *(A+(i*Ndim+k)) * *(B+(k*Pdim+j)); 117 344 2 3 6
67 }
68 J/E(C+(i*Ndim+j)) = tmp;
69 }
4)

In this case, compilers should be able to interchange the loop
auvtomatically (in our experiment, ICC can, but GCC cannot). But
further optimizations like tiling still need to be done by hand.

VECIR O R R (9O} Order 1024 multiplication in 0.507935 seconds
and you get: Order 1024 multiplication at 4227.870591 mflops

Assignment Setup

A2
0 Platform: a PC with multi-core CPU
0 TU/e Notebook 2009 and 2010 are OK

0 Software: Intel compiler and VTune Profiler
O Available on both Windows and Linux

O A 30-day evaluation license can be obtained from the
web-site for free

® For linux, a 1-year non-commercial license is available

0 Assignment can be done in team of two students

O Make sure at least one has the proper platform

Some General Remarks

0 Both GCC and ICC have options to report whether the
loops are vectorized and if not what’s the reason. It
can be quite helpful

0 1CC’s optimization tends to be quite aggressive, but it
doesn’t always payoff. So check the manual and use
the proper flags and pragmas

0 Bear in mind that VTune is based on sampling. So the
numbers are NOT exact

