
MULTI-CORE PROGRAMMING

ASSIGNMENT

Dongrui She

December 9, 2010

Goal of the Assignment
1

The purpose of this assignment is to

 Have in-depth understanding of the architectures of

real-world multi-core CPUs

 Learn about how to develop parallel applications

on such architectures, and how to analyze the

performance in a real environment

Outline
2

 Parallelism in Mainstream CPUs

 Exploiting Parallelism in CPUs

 Methods to analyze application performance

 Introduction to VTune

 Example: Matrix Multiplication

Parallelism in Typical Mainstream CPUs

3

 1-12 cores with shared memory

 Large on-chip cache

 Both private and shared cache

 Inside a core:

 ILP: 3-4 issue out-of-order superscalar core

 DLP: 128-bit SIMD instructions (SSE)

 TLP: 2-way SMT (Intel’s hyper-threading)

 Typical core frequency: 2-3 GHz

Core

L2$

L1I$ L1D$

L3$

Core

L2$

L1I$ L1D$...

Ways to Exploit Parallelism
4

 ILP: cannot be controlled directly

 Compiler optimization and proper coding style can help

 TLP and multi-core: multi-threaded programming

 Logically they are the same for the OS

Many programming models available, e.g., OpenMP,

Cilk, pthread.

We will introduce OpenMP in more detail latter

Exploiting DLP
5

 Two ways to do vectorization

 Auto-vectorization by compilers

 The Intel compiler is considered the best

Most compilers are limited to (simple) inner-most loops

 Pragmas can be use to tell compilers more information to
enable more aggressive optimization

 Intrinsics or inline assembly

 Vectorization by programmers, more information about app.

 Examples / Documentation will be on the assignment website

 Two most common obstacle

 Cross-iteration dependency

 Alignment issues

Vectorization Example – FIR
6

 Basic idea to vectorize a loop: unroll and pack

multiple scalar iterations into one vector iteration

 Inner-most loop is an obvious choice, but

 Packing and unpack can be costly, especially if the trip

count is not aligned with the machine vector length

 Inner loops may have low trip count

vc[0:3] = {c[0], c[1],

c[2], c[3]}

for (i=0; i< N; i++){

vs[0:3] = x[i:i+3] * vc

y[i] = sum(vs[0:3])

}

for(i=0; i< N; i++){

s = 0;

for(j=0; j < 4; j ++)

s += x[i+j] * c[j]

y[i] = s

}

Vectorization Example – FIR (2)
7

 Outer-loop vectorization can be more efficient

 However, most compiler cannot do it
for (i=0; i< N; i+=4){

vs[0:3] = {0, 0, 0, 0}

for (j =0; j < 4; j ++) {

vc[0:3] = vsplat(c[j])

vs[0:3] += x[i+j:i+j+3] * vc

}

y[i:i+3] = vs[0:3]

}

for(i=0; i<N; i++){

s = 0;

for(j=0; j<4; j++)

s += x[i+j] * c[j]

y[i] = s

}

Y0

Y1

Y2

Y3

=

X0

X1

X2

X3

C0

C0

C0

C0

x

X1

X2

X3

X4

C1

C1

C1

C1

x

X2

X3

X4

X5

C2

C2

C2

C2

x

X3

X4

X5

X6

C3

C3

C3

C3

x+ + +

Analyzing Application Performance
8

 Understand and optimize application performance

 Is the performance good or bad?

Which part should run in parallel?

Where to optimize?

 Static analysis and execution time measurement are

not enough

 They are not enough to understand the dynamic

behavior of complex applications

We need profiling

Ways to Profile an Application
9

 Emulation/Simulation

 Accurate (if the model is accurate enough) but slow

 Intrusive profilers:

 The profiling codes may change the program (timing)

behavior

 Statistical profilers:

 Periodically halt the program and sample the PC and

other data. Less overhead and better overall accuracy

Most commonly used profilers are based on this

approach, e.g., Intel VTune, AMD CodeAnalyst.

Profiling with Intel VTune
10

 Features

 Based on sampling

 Supports event counters in the PMU (Performance
Monitoring Unit) of Intel CPUs

 Requirements

 Intel CPUs (Core or newer) running Linux or Windows

 Program compiled with debug symbols (-g)

 Alternatives

 For AMD CPUs: AMD CodeAnalyst is similar to VTune

Open source solution for Linux: pfmon

May require some effort to get it running

VTune User Interface
11

 Information of each function
Total number of cycles (for main);

Note: these are statistical values

Cycles per instruction ratio(for main);

Note: these are derived values

Distribution of events over time Choose event to show in the

distribution diagram

VTune Detailed View
12

Shaded lines are corresponding disassembly of the

selected line in the original sourceCounter values

Example: Matrix Multiplication
13

 Straightforward implementation
A = (double *)malloc(N*P*sizeof(double));

B = (double *)malloc(P*M*sizeof(double));

C = (double *)malloc(N*M*sizeof(double));

... // Initialize A, B and C

for (i=0; i < N; i++){

for (j=0; j < M; j++){

for(k=0; k <P; k++){

*(C+(i*N+j))+= *(A+(i*N+k)) * *(B+(k*P+j));

}

}

}

Order 1024 multiplication in 58.7 seconds

Order 1024 multiplication at 36.6 mflops

1024x1024 matrices. Program compiled with optimization off (-O0),

performance on a Core 2 Quad 8300 with 32bit Linux:

Number of

operations is

2*N*N*N

Initial Profiling Result
14

 CPI is very high, and LLC miss is an obvious problem

 The inner-most loop is causing a lot of cache misses

This line is the hotspot

Analyze the Problem
15

 Access pattern of B is the problem

A = (double *)malloc(N*P*sizeof(double));

B = (double *)malloc(P*M*sizeof(double));

C = (double *)malloc(N*M*sizeof(double));

... // Initialize A, B and C

for (i=0; i < N; i++){

for (j=0; j < M; j++){

for(k=0; k <P; k++){

*(C+(i*N+j))+= *(A+(i*N+k)) * *(B+(k*P+j));

}

}

}

Access to B is not contiguous as B is

stored in row-major order

A = (double *)malloc(N*P*sizeof(double));

B = (double *)malloc(P*M*sizeof(double));

C = (double *)malloc(N*M*sizeof(double));

... // Initialize A, B and C

for (i=0; i < N; i++){

for(k=0; k <P; k++){

for (j=0; j < M; j++){

*(C+(i*N+j))+= *(A+(i*N+k)) * *(B+(k*P+j));

}

}

}

Order 1024 multiplication in 10.315131 seconds

Order 1024 multiplication at 208.187717 mflops

~5.7x speed-up by a

minor change !

Just inter-change

the loops

Profiling Result After Optimization
16

In this case, compilers should be able to interchange the loop

automatically (in our experiment, ICC can, but GCC cannot). But

further optimizations like tiling still need to be done by hand.

Order 1024 multiplication in 0.507935 seconds

Order 1024 multiplication at 4227.870591 mflops

Use -fast in ICC

and you get:

Assignment Setup
17

 Platform: a PC with multi-core CPU

 TU/e Notebook 2009 and 2010 are OK

 Software: Intel compiler and VTune Profiler

 Available on both Windows and Linux

 A 30-day evaluation license can be obtained from the

web-site for free

 For linux, a 1-year non-commercial license is available

 Assignment can be done in team of two students

Make sure at least one has the proper platform

Some General Remarks
18

 Both GCC and ICC have options to report whether the

loops are vectorized and if not what’s the reason. It

can be quite helpful

 ICC’s optimization tends to be quite aggressive, but it

doesn’t always payoff. So check the manual and use

the proper flags and pragmas

 Bear in mind that VTune is based on sampling. So the

numbers are NOT exact

