ASCI Spring School on Heterogeneous Computing Systems

Main organizers

Henk Corporaal

Gerard Smit

TU Eindhoven

University of Twente

Spring School Topics

- Heterogeneous Computing Architectures (HCA)
 - Introduction and Motivation, Concepts, Examples
- Accelerator concepts and design
 - GPU / SIMD, CGRA based, Accelerator embedding/comm.
 - Heterogeneous computing with accelerators (e.g. CPUs + GPUs)
- Compilers and Application Mapping to HCA
 - Data Reuse, Polyhedral models, Halide (DSL), OpenMP4, Parallelization and Vectorization
 - OpenCL to FPGA
- Modelling (time, area, energy) and Design Space Exploration of HCAs
- Future architecture directions, like
 - Near Memory Computing
 - Memristor based computing
 - Quantum accelerators
 - Approximate computing
- Heterogeneous Data Centers

Lectures and Special slots

Introduction + 12 Lecture slots (2 hours each)

- Tuesday afternoon
 - 13:00 ... Social event

- Thursday
 - 16:00 ...presentations by students

Slot # (1-8)	Speakers	Tentative Topic			
Monday May 29: Introduction and examples of heterogeneous computing					
2	Gerard Smit (UTwente)	Welcome and introduction			
3	Henk Corporaal (TU/e) +	Introduction to Heterogeneous Computing Systems			
4	Andre Kokkeler (UTwente)				
5	Stephan Wong (TUDelft)	VLIW / Liquid computing			
6	Jan Kuper (QBayLogic)	Clash: From Functional Description to Accelerator			
7	Mark Wijtvliet (TU/e)	CGRA (Coarse Grain Reconfigurable Architectures)			
8	Mark Wijtvliet, Stephan Wong,	Lab introductions + Handout Questions			
	Ana Varbanescu				
Tuesday May 30	: Code generation and advanced	optimizations			
1	Roel Jordans (Radboud Univ)	Introduction to Code generation, Vectorization			
2					
3	Sven Verdoolaege (Leuven)	Advanced Code optimizations, like Loop tiling, Parallelization, and			
4		Loop fusion			
Afternoon: Socia	event, visit of National Military Mu	seum, Soesterberg, at the former NATO airbase			
Wednesday Ma	y 31: GPU, New languages, and A	ccelerators, Future systems			
1	Ana Varbanescu (UvA)	CPU+GPU: architecture, language, code partitioning			
2					
3	Kees van Berkel (TUE)	Exascale Computing for Radio Astronomy: GPU or FPGA?			
4	Rosilde Corvino (Intel)	Halide: the holey grail to computing?			
5	Maurice Peemen (FEI)	Deep Learning: Deep Neural Networks, how do they operate?			
6		Boosting Deep Learning efficiency			
7		Recent developments			
8	Said Hamdioui (TUDelft)	Future architectures: Computing in Memory			
Thursday June 1	: DSE, Accelerators, Future System	ms, and Student pitch			
1	Marco Bekooij (NXP)	Modeling and DSE for heterogeneous systems			
2					
3	Carmina Almudever (TUDelft)	Future architectures: Quantum Computing			
4	Leandro Florin (IBM Research)	Accelerators for the SKA (Square Kilometer Array) Telescope			
5	Akash Kumar (TUDresden)	Approximate Computing, going ultra low power			
6					
7	Students	Pitch presentations one selected topics			
8		Q&A			

Daily schedule:

- 9.00 10.45: slot 1,2
- break
- 11.00 12.45: slot 3,4
- lunch
- 14.00 15.45: slot 5,6
- break
- 16.00 17.45: slot 7,8
- 18.30 dinner

Student labs (40 h of work, including report writing)

- **CGRA lab:** Mark Wijtvliet
- Liquid lab: Stephan Wong
- **GPU lab:** Ana Varbanescu

ASCI credit points

- Students who want to get 4 ASCI credit points
 - Attend the lectures at the spring school
 - Participate in the labs / home assignment
 - Prepare a small paper before June 18
 - Give a short presentation on selected paper topic on Thursday

Why heterogeneous?

David Patterson UC Berkeley in 2008

"Today, we have hit the wall as to the practical limit to the amount of power that a microprocessor chip can dissipate; in the past each generation of chip used more power while getting more performance. We need to invent a new way to get more performance without more power"

• Power has become a critical design parameter: [FLOPS/Watt]

Why heterogeneous?

Heterogeneous extends performance and efficiency

■Multi-core throughput performance extended

■Single core performance flat & power limited

Efficiency of processors vs dedicated HW

Energy costs of an instruction of a CPU in 45 nm technology

Integer		
Add		
8 bit	0.03pJ	
32 bit	0.1pJ	
Mult		
8 bit	0.2pJ	
32 bit	3.1pJ	

FP	
FAdd	
16 bit	0.4pJ
32 bit	0.9pJ
FMult	
16 bit	1.1pJ
32 bit	3.7pJ

Memory	
Cache	(64bit)
8KB	10pJ
32KB	20pJ
1MB	لو100
DRAM	1.3-2.6nJ

Instruction Energy Breakdown

ACSI spring school

The costs of data transport

Operation (8-bit operand)	Energy/Op (45 nm)	Cost (vs. ALU)
ALU operation	0.05 pJ	1 X
Move 10 mm on-chip	2.4 pJ	50X
Load from on-chip SRAM	2.5 pJ	50X
Send to off-chip DRAM	320 pJ	6,400X

^{*} Data from J. Brunhaver, W. Dally, M. Horowitz, Stanford University

ACSI spring school

11

Processing System

Xilinx Zinq Ultra Scale

SD/eMMC

Programmable Logic

GIC

Storage & Signal Processing

Block RAM

UltraRAM

DSP

Challenges of heterogeneous

- Architectures of heterogeneous: efficiency / programmability
 - Ultra-low power: approximate computing
 - Coarse-grain accelerators
 - Computation in memory
- Modelling applications and DSE for heterogeneous
- Code generation / compilers for heterogeneous
- Programming large-scale heterogeneous systems
- Combination CPU + GPU

ASCI spring school

- Lectures of experts on certain topics
 - Ask questions during or after the lectures
- Lab sessions to get hands-on experience
- Discuss your topics with your fellow students; there is plenty of time during coffee/lunch breaks and evenings

Spring school is setup to stimulate interaction and promote lively discussions between participants

Questions?

Have a fruitful 4 days

www.asci.tudelft.nl

ACSI spring school