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•  Preliminaries  
 
•  Part I: Introduction to CPU+GPU heterogeneous computing  

•  Performance promise vs. challenges  

•  Part II:  Programing models 
•  Part III:  Workload partitioning models 

•  Static vs. Dynamic partitioning  
•  Part IV: Static partitioning and Glinda   
•  Part V: Tools for (programming) heterogeneous systems 

•  Low-level to high-level 

•  Take home message  

Today’s agenda 



Goal 
• Discuss heterogeneous computing as a promising 

solution for efficient resource utilization  
•  And performance!  

•  Introduce methods for efficient heterogeneous computing 
•  Programming 
•  Partitioning 

• Provide comparisons & selection criteria  

• Current challenges and open research questions.  

•  Fair to others, but we advertise our research J 



Heterogeneous platforms 
• Systems combining main processors and accelerators 

•  e.g., CPU + GPU, CPU + Intel MIC, AMD APU, ARM SoC 
•  Everywhere from supercomputers to mobile devices 



Heterogeneous platforms 
• Host-accelerator hardware model  
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Heterogeneous platforms 
•  Top 500 (June 2015) 

Accelerated! 

Accelerated! 

All systems are based on multi-cores. 
90 systems have accelerators (18%). 
Of those, 50% are NVIDIA GPUs, 30% are Intel MICs (Xeon Phi). 

195 cores/node 



Thousands	
  of	
  Cores 

Few	
  
cores 

Our focus today …  
• A heterogeneous platform = CPU + GPU  

•  Most solutions work for other/multiple accelerators  

• An application workload = an application + its input 
dataset 

• Workload partitioning = workload distribution among the 
processing units of a heterogeneous system 



BEFORE WE START …  
Basic knowledge about CPUs and GPUs  



Generic multi-core CPU 
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Hardware threads  
SIMD units (vector lanes) 

L1 and L2 
dedicated  
caches  

Shared L3/L4 cache 
Main memory, I/O 

Peak  
performance 

Bandwidth 



Multi-core CPUs 
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• Architecture  
•  Few large cores 
•  (Integrated GPUs)  
•  Vector units 

•  Streaming SIMD Extensions (SSE) 
•  Advanced Vector Extensions (AVX) 

•  Stand-alone 
• Memory 

•  Shared, multi-layered 
•  Per-core caches + shared caches 

• Programming  
•  Multi-threading 
•  OS Scheduler 



Parallelism 
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• Core-level parallelism ~ task/data parallelism (coarse) 
•  4-12 of powerful cores  

•  Hardware hyperthreading (2x) 
•  Local caches  
•  Symmetrical or asymmetrical threading model  
•  Implemented by programmer   

• SIMD parallelism = data parallelism (fine) 
•  4-SP/2-DP floating point operations per second   

•  256-bit vectors 
•  Run same instruction on different data  
•  Sensitive to divergence  

•  NOT the same instruction => performance loss  
•  Implemented by programmer OR compiler  



Programming models  
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• Pthreads + intrinsics   
•  TBB – Thread building blocks 

•  Threading library  

• OpenCL 
•  To be discussed …  

• OpenMP  
•  Traditional parallel library 
•  High-level, pragma-based 

• Cilk  
•  Simple divide-and-conquer model  Le

ve
l o

f a
bs

tr
ac

tio
n 

in
cr

ea
se

s 



A GPU Architecture 
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Integration into host system 
•  Typically PCI Express 2.0 
•  Theoretical speed 8 GB/s 

•  Effective ≤ 6 GB/s 
•  In reality: 4 – 6 GB/s 

• V3.0 recently available 
•  Double bandwidth 
•  Less protocol overhead 
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(NVIDIA) GPUs 
• Architecture  

•  Many (100s) slim cores 
•  Sets of (32 or 192) cores grouped into “multiprocessors” with 

shared memory  
•  SM(X) = stream multiprocessors  

•  Work as accelerators  
• Memory 

•  Shared L2 cache 
•  Per-core caches + shared caches 
•  Off-chip global memory  

• Programming  
•  Symmetric multi-threading  
•  Hardware scheduler  
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GPU Parallelism  
• Data parallelism (fine-grain)  
• SIMT (Single Instruction Multiple Thread) execution 

•  Many threads execute concurrently 
•  Same instruction 
•  Different data elements 
•  HW automatically handles divergence 

•  Not same as SIMD because of multiple register sets, addresses, 
and flow paths*  

• Hardware multithreading 
•  HW resource allocation & thread scheduling 

•  Excess of threads to hide latency 
•  Context switching is (basically) free 
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*http://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html 



Specific programming model: CUDA 
• CUDA: Compute Unified Device Architecture 

•  C/C++ extensions 
•  Other wrappers exist  

• Straightforward mapping onto hardware 
•  Hierarchy of threads (map to cores)  

•  Configurable at logical level  
•  Various memory spaces (map to physical mem. spaces) 

•  Usable via variable scopes  

• SIMT: single instruction multiple threads  
•  Have 1000s threads running concurrently 
•  Hardware multi-threading  

•  GPU threads are lightweight 
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CUDA: Hierarchy of threads 
• Each thread executes the kernel code  

•  One thread runs on one CUDA core  

•  Threads are logically grouped into thread blocks 
•  Threads in the same block can cooperate 
•  Threads in different blocks cannot cooperate 

• All thread blocks are logically organized in a Grid 
•  1D or 2D or 3D  
•  Threads and blocks have unique IDs 

• A grid specifies in how many instances the kernel is being 
run 



CUDA Model of Parallelism 
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Hierarchy of threads 
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• CUDA virtualizes the physical hardware 
•  A block is a virtualized streaming multiprocessor 

•  threads, shared memory 
•  A thread is a virtualized scalar processor  

•  registers, PC, state 

• Execution model: 
•  Threads execute in warps (32 threads per warp) 

•  Called “wavefronts” by AMD (64 threads) 
•  All threads in a warp execute the same code  

•  On different data  
•  Blocks = multiple warps  

•  Scheduled independently on the same SM  

21 

CUDA Model of Parallelism 



CPU vs. GPU 
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Control 

ALU ALU 

ALU ALU 

Cache 

CPU 
Low latency, high 
flexibility. 
Excellent for irregular 
codes with  
limited parallelism. 

GPU 
High 

throughput.  
Excellent for  

massively  
parallel  

workloads.  



PART I 
Heterogeneous processing: pro’s and con’s  



Hardware Performance metrics 
•  Clock frequency [GHz] = absolute hardware speed 

•  Memories, CPUs, interconnects 

•  Operational speed [GFLOPs] 
•  Instructions per cycle + frequency  

•  Memory bandwidth [GB/s]  
•  differs a lot between different memories on chip 

•  Power [Watt] 

•  Derived metrics 
•  FLOP/Byte, FLOP/Watt 
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Peak = chips * cores * threads/core * vector_lanes * 
   FLOPs/cycle * clockFrequency 

• Some examples: 
•  Intel Core i7 CPU 

2 chips * 4 cores * 4-way vectors * 2 FLOPs/cycle * 2.4 GHz = 154 GFLOPs 
•  NVIDIA GTX 580 GPU 

1 chip * 16 SMs * 32 cores * 2 FLOPs/cycle * 1.544 GhZ = 1581 GFLOPs 
•  ATI HD 6970 

1 chip * 24 SIMD engines * 16 cores * 4-way vectors * 2 FLOPs/cycle 
 * 0.880 GHz = 2703 GFLOPs 
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Theoretical peak performance 

Performance ratio (CPU:GPU): 1:10 !!! 



Bandwidth = memory bus frequency * bits per cycle  
                     * bus width 

•  Memory clock != CPU clock! 
•  In bits, divide by 8 for GB/s 

 
• Some Examples: 

•  Intel Core i7 DDR3:  1.333 * 2 * 64 =     21 GB/s 
•  NVIDIA GTX 580 GDDR5:  1.002 * 4 * 384 = 192 GB/s 
•  ATI HD 6970 GDDR5:  1.375 * 4 * 256 = 176 GB/s 
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DRAM Memory bandwidth 

Performance ratio (CPU:GPU): 1:8 !!! 



• Chip manufactures specify Thermal Design Power (TDP) 
• We can measure dissipated power 

•  Whole system 
•  Typically (much) lower than TDP 

• Power efficiency 
•  FLOPS / Watt 

• Examples (with theoretical peak and TDP) 
•  Intel Core i7:     154 / 160 =   1.0 GFLOPs/W 
•  NVIDIA GTX 580:   1581 / 244 =   6.3 GFLOPs/W 
•  ATI HD 6970:   2703 / 250 = 10.8 GFLOPs/W 
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Power 



Cores Threads/ALUs GFLOPS Bandwidth 
Sun Niagara 2  8 64 11.2 76 
IBM BG/P 4 8 13.6 13.6 
IBM Power 7  8 32 265 68 
Intel Core i7 4 16 85 25.6 
AMD Barcelona  4 8 37 21.4 
AMD Istanbul  6 6 62.4 25.6 
AMD Magny-Cours 12 12 125 25.6 
Cell/B.E.  8 8 205 25.6 
NVIDIA GTX 580 16 512 1581 192 
NVIDIA GTX 680 8 1536 3090 192 
AMD HD 6970 384 1536 2703 176 
AMD HD 7970 32 2048 3789 264 
Intel Xeon Phi 7120 61 240 2417 352 

Summary 



T12 
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Quad 

GPU vs. CPU performance 
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1 GFLOP = 10^9 ops 

These are theoretical numbers! In practice, efficiency is much lower!  



GPU vs. CPU performance  
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1 GB = 8 x10^9 bits 

These are theoretical numbers! In practice, efficiency is much lower!  



Heterogeneity vs. Homogeneity 
•  Increase performance 

•  Both devices work in parallel 
•  Gain is much more than 10%  

•  Decrease data communication  
•  Which is often the bottleneck of the system 

•  Different devices for different roles  

•  Increase flexibility and reliability 
•  Choose one/all *PUs for execution 
•  Fall-back solution when one *PU fails 

•  Increase power efficiency  
• Cheaper per flop 



Example 1: dot product  
• Dot product 

•  Compute the dot product of 2 (1D) arrays 

• Performance  
•  TG = execution time on GPU  
•  TC = execution time on CPU  
•  TD = data transfer time CPU-GPU 

• GPU best or CPU best?  



Example 1: dot product 
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Example 2: separable convolution 
• Separable convolution (CUDA SDK) 

•  Apply a convolution filter (kernel) on a large image. 
•  Separable kernel allows applying 

•  Horizontal first 
•  Vertical second  

• Performance  
•  TG = execution time on GPU  
•  TC = execution time on CPU  
•  TD = data transfer time 

• GPU best or CPU best?  



Example 2: separable convolution 
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Example 3: matrix multiply 
• Matrix multiply  

•  Compute the product of 2 matrices  

• Performance  
•  TG = execution time on GPU  
•  TC = execution time on CPU  
•  TD = data transfer time CPU-GPU 

• GPU best or CPU best?  



Example 3: matrix multiply 
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Example 4: Sound ray tracing 
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Example 4: Sound ray tracing 
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Which hardware?  
• Our application has …  
• Massive data-parallelism … 
• No data dependency between rays …  
• Compute-intensive per ray …  

• … clearly, this is a perfect GPU workload !!! 



Results [1] 
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compared to “Only-GPU” 



• Graph traversal (Breadth First Search, BFS)  
•  Traverses all vertices “in levels”   

 

Example 5: Graph processing (BFS) 



• … Is data-dependent  
• … has poor locality  
• … has low computation-to-memory-ops ratio …  

• CPU or GPU? 

Graph processing  



BFS – normalized  
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Performance depends on the diameter and degree: 
Large diameter => CPU 

High degree => GPU 
 

   Xeon (CPU)             Tesla (GPU)             GTX (GPU)  

Using both will allow the right balance!  



So … 
•  There are very few GPU-only applications  

•  CPU – GPU communication bottleneck.  
•  Increasing performance of CPUs  

• A part of the computation can be done by the CPU. 
•  How to program an application to enable this?  
•  Which part?  

Main challenges: programming and 
workload partitioning!   



PART II 
Challenge 1: Programming 



Programming models (PMs) 
• Heterogeneous computing = a mix of different processors 

on the same platform.  
• Programming 

•  Mix of programming models  
•  One(/several?) for CPUs – OpenMP 
•  One(/several?) for GPUs – CUDA  

•  Single programming model (unified) 
•  OpenCL is a popular choice 
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OmpSs 

4.0 

High level Low level 



OpenCL in a nutshell 
 
• Open standard for portable multi-core programming 
• Architecture independent 

•  Explicit support for multi-/many-cores 

•  Low-level host API 
•  High-level bindings (e.g., Java, Python)  

• Separate kernel language 
• Run-time compilation 
• Supports (some) architecture-dependent optimizations 

•  Explicit & implicit  
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Compute 
kernels 

A host program 

Work-item 

Work-group 

The OpenCL platform model 



The OpenCL memory model 



The OpenCL virtual platform 



Programming in OpenCL  
• Kernels are the main functional units in OpenCL 

•  Kernels are executed by work-items  
•  Work-items are mapped transparently on the hardware platform 

•  Functional portability is guaranteed 
•  Programs run correctly on different families of hardware 
•  Explicit platform-specific optimizations are dangerous 

• Performance portability is NOT guaranteed  
•  Performance portability is NOT guaranteed   

OpenCL is an efficient programming model for 
heterogeneous platforms iff we specialize the code to fit 

different processors. 



•  Functional portability guaranteed by the standard 
• Performance portability is NOT guaranteed   

•  vs. CUDA:  
•  Used to be comparable (2012) 
•  Lagging behind due to lack of support from NVIDIA 

•  vs. OpenMP/other CPU models: 3 challenges  
•  GPU-like programming styles 

•  Memory access patterns, data transfer, (local memory)  => MUST remove  
•  Parallelism granularity  

•  Architectural mismatches with CPUs  => MUST tune 
•  OpenCL compilers/runtime libraries/…  

•  Still under development  => MUST test  

OpenCL for heterogeneous platforms 

OpenCL is an efficient programming model for 
heterogeneous platforms iff we specialize the code to fit 

different processors. 



Heterogeneous Computing PMs 
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High  
level 

Low 
level 

Generic Specific 

 
OpenACC, OpenMP 4.0 
OmpSS, StarPU, … 
HPL 

HyGraph, 
Cashmere, 
GlassWing 

TOTEM 
OpenCL 
OpenMP+CUDA 

Domain and/or 
application specific. 

Focus on: productivity 
and performance 

Domain specific, focus 
on performance. 
More difficult to use. 
Quite rare. 

The most common atm. 
Useful for performance, 
more difficult to use in 
practice 

High productivity; not 
all applications are 
easy to implement. 



Heterogeneous computing PMs 
• CUDA + OpenMP/TBB  

•  Typical combination for NVIDIA GPUs  
•  Individual development per *PU 
•  Glue code can be challenging  

• OpenCL (KHRONOS group)  
•  Functional portability => can be used as a unified model  
•  Performance portability via code specialization 

• HPL (University of A Coruna, Spain) 
•  Library on top of OpenCL, to automate code specialization  



Heterogeneous computing PMs 
• StarPU (INRIA, France) 

•  Special API for coding  
•  Runtime system for scheduling 

• OmpSS (UPC + BSC, Spain)  
•  C + OpenCL/CUDA kernels  
•  Runtime system for scheduling and communication optimization  



Heterogeneous computing PMs 
• Cashmere (VU Amsterdam + NLeSC)  

•  Dedicated to Divide-and-conquer solutions  
•  OpenCL backend.  

• GlassWing (VU Amsterdam)  
•  Dedicated to MapReduce applications  

•  TOTEM (U. of British Columbia, Canada)  
•  Graph processing 
•  CUDA+Multi-threading 

• HyGraph (TUDelft, UTwente, UvA, NL)  
•  Graph processing  
•  Based on CUDA+OpenMP 



• Questions ?  

End of part II  



PART III 
Challenge 2: Workload partitioning 



Workload  
• DAG (directed acyclic graph) of “kernels” 
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Determining the partition 
• Static partitioning (SP) vs. Dynamic partitioning (DP) 
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Static vs. dynamic  
• Static partitioning  

•  + can be computed before runtime => no overhead 
•  + can detect GPU-only/CPU-only cases  
•  + no unnecessary CPU-GPU data transfers  
•  -- does not work for all applications  

• Dynamic partitioning  
•  + responds to runtime performance variability 
•  + works for all applications  
•  -- incurs (high) runtime scheduling overhead  
•  -- might introduce (high) CPU-GPU data-transfer overhead 
•  -- might not work for CPU-only/GPU-only cases  
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Determining the partition 
• Static partitioning (SP) vs. Dynamic partitioning (DP) 
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Thousands	
  of	
  Cores 

Mul3ple	
  
Cores 

Thousands	
  of	
  Cores 

Mul3ple	
  
Cores 

(near-) Optimal  
Low applicability  

Often sub-ptimal  
High applicability  



Heterogeneous Computing today 
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Single  
kernel 

Multi-kernel 
(complex) DAG 

Static Dynamic 

 
Systems/frameworks: 
Qilin, Insieme, SKMD, 
Glinda, ...  
Libraries: HPL, … 

Sporradic attempts  
and light runtime 
systems  

Run-time based systems:  
StarPU 
OmpSS 
… 

Glinda 2.0 

Not interesting, 
given that static & 

run-time based 
systems exist.  

High Applicability, 
high overhead 

Low overhead => high 
performance 
Still limited in applicability.  

Limited applicability. 
Low overhead => high 
performance  



• Questions ?  

End of part II  


