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Today's agenda

- Preliminaries

- Part I: Introduction to CPU+GPU heterogeneous computing
- Performance promise vs. challenges

- Part ll: Programing models

- Part lll: Workload partitioning models
- Static vs. Dynamic partitioning
- Part |V: Static partitioning and Glinda

- Part V: Tools for (programming) heterogeneous systems
- Low-level to high-level

- Take home message



L
Goal

- Discuss heterogeneous computing as a promising
solution for efficient resource utilization

- And performance!

- Introduce methods for efficient heterogeneous computing
- Programming
- Partitioning

- Provide comparisons & selection criteria
- Current challenges and open research questions.

. Fair to others, but we advertise our research ©



Heterogeneous platforms

- Systems combining main processors and accelerators
- e.g., CPU + GPU, CPU + Intel MIC, AMD APU, ARM SoC

- Everywhere from supercomputers to mobile devices




Heterogeneous platforms

- Host-accelerator hardware model
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Heterogeneous platforms

- Top 500 (June 2015)

RMAX RPEAK POWER

RANK SITE SYSTEM CORES (TFLOP/S) (TFLOP/S) (KW)
1 National Super Computer Center in Tianhe-2 (MilkyWay-2) - TH-IVB-FEP 3,120,000 33,862.7 54,9024 17,808
Guangzhou Cluster, Intel Xeon E5-2692 12C 2.200GHz,
China 195 Cores/node TH Express-2, Intel Xeon Phi 31S1P Accelerated|
NUDT )
2 DOE/SC/Oak Ridge National Laboratory Titan - Cray XK7 , Opteron 6274 16C 560,640 17,590.0 27,1125 8,209
United States 2.200GHz, Cray Gemini interconnect,
NVIDIA K20x Accelerated!
Cray Inc.
3 DOE/NNSA/LLNL Sequoia - BlueGene/Q, Power BQC 16C 1,572,864 17,173.2 20,1327 7,890
United States 1.60 GHz, Custom
p All systems are based on multi-cores.
90 systems have accelerators (18%).
1 Of those, 50% are NVIDIA GPUs, 30% are Intel MICs (Xeon Phi).

United States 1.60GHz, Custom
IBM



Our focus today ...

- A heterogeneous platform = CPU + GPU

- Most solutions work for other/multiple accelerators

- An application workload = an application + its input
dataset

- Workload partitioning = workload distribution among the
processing units of a heterogeneous system

Thousands of Cores



BEFORE WE START ...

Basic knowledge about CPUs and GPUs



Generic multi-core CPU

Hardware threads
SIMD units (vector lanes)
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Multi-core CPUs

- Architecture
- Few large cores
- (Integrated GPUs)

- Vector units

« Streaming SIMD Extensions (SSE)
- Advanced Vector Extensions (AVX)

- Stand-alone

- Memory
- Shared, multi-layered
- Per-core caches + shared caches

Sandy Bridge Client
- Programming
- Multi-threading

- OS Scheduler GDR3 Memo

ry
Controllers
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2x8B @ 2.13GT/s (Est) 2x4b @ 2.5GT/s 2x16b @ 5GT/s




Parallelism

- Core-level parallelism ~ task/data parallelism (coarse)
- 4-12 of powerful cores
- Hardware hyperthreading (2x)
- Local caches
- Symmetrical or asymmetrical threading model
- Implemented by programmer

- SIMD parallelism = data parallelism (fine)

- 4-SP/2-DP floating point operations per second
- 256-bit vectors

- Run same instruction on different data
- Sensitive to divergence
- NOT the same instruction => performance loss

- Implemented by programmer OR compiler



Programming models

- Pthreads + intrinsics

- TBB — Thread building blocks
- Threading library

- OpenCL
- To be discussed ...
- OpenMP

- Traditional parallel library
- High-level, pragma-based

- Cilk

- Simple divide-and-conquer model



A GPU Architecture
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Integration into host system

- Typically PCI Express 2.0

- Theoretical speed 8 GB/s
- Effective < 6 GB/s
- In reality: 4 — 6 GB/s

- V3.0 recently available
- Double bandwidth
- Less protocol overhead

//

x16




(NVIDIA) GPUs

- Architecture
- Many (100s) slim cores

- Sets of (32 or 192) cores grouped into “multiprocessors” with
shared memory

- SM(X) = stream multiprocessors Fermi
- Work as accelerators

- Memory
- Shared L2 cache
- Per-core caches + shared caches
- Off-chip global memory

- Programming
- Symmetric multi-threading ‘
GDDRS5 Memory

- Hardware scheduler Controllers

3

YYY YYY 11

6x8B @ est.3.6- 2B @ 4GT/s
40GT/s
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GPU Parallelism

- Data parallelism (fine-grain)
- SIMT (Single Instruction Multiple Thread) execution

- Many threads execute concurrently
- Same instruction
- Different data elements
- HW automatically handles divergence

- Not same as SIMD because of multiple register sets, addresses,
and flow paths™®

- Hardware multithreading

- HW resource allocation & thread scheduling
- Excess of threads to hide latency
- Context switching is (basically) free

*http://lyosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html



Specific programming model: CUDA

- CUDA: Compute Unified Device Architecture

- C/C++ extensions
« Other wrappers exist

- Straightforward mapping onto hardware

- Hierarchy of threads (map to cores)
- Configurable at logical level

- Various memory spaces (map to physical mem. spaces)
- Usable via variable scopes

- SIMT: single instruction multiple threads

- Have 1000s threads running concurrently

- Hardware multi-threading
- GPU threads are lightweight



e
CUDA: Hierarchy of threads

- Each thread executes the kernel code
- One thread runs on one CUDA core

- Threads are logically grouped into thread blocks
- Threads in the same block can cooperate
- Threads in different blocks cannot cooperate

- All thread blocks are logically organized in a Grid

- 1D or 2D or 3D
- Threads and blocks have unique IDs

- A grid specifies in how many instances the kernel is being
run



. N
CUDA Model of Parallelism
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Hierarchy of threads

( ¥ Execution Queue )
Control

i i i i Warp lssoe Dual Warp lssoe Doal Warp I

ﬁ Thread
q )

Specul Swcad Specul Specal Sorcu
Funcrion Fanation Funcrion Faration
Ut v v
Host
W User W U W U
Memory Cache Sefecuable Cache Cache Selecuabie Cache. Cache Selectable

Level 2 Cache

$ 1 1 $ $

e Device Memory

.

©2010 The Portland Group, Inc.

Grid



.
CUDA Model of Parallelism

- CUDA virtualizes the physical hardware

- A block is a virtualized streaming multiprocessor
- threads, shared memory

- Athread is a virtualized scalar processor
- registers, PC, state

- Execution model:

- Threads execute in warps (32 threads per warp)
- Called “wavefronts” by AMD (64 threads)

- All threads in a warp execute the same code
- On different data

- Blocks = multiple warps
- Scheduled independently on the same SM
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PART |

Heterogeneous processing: pro’s and con’s



Hardware Performance metrics

- Clock frequency [GHZz] = absolute hardware speed
- Memories, CPUs, interconnects

- Operational speed [GFLOPs]

- Instructions per cycle + frequency

- Memory bandwidth [GB/s]
- differs a lot between different memories on chip

- Power [Watt]

- Derived metrics
- FLOP/Byte, FLOP/Watt



Theoretical peak performance

Peak = chips * cores * threads/core * vector lanes *
FLOPs/cycle * clockFrequency

- Some examples:
- Intel Core i7 CPU
2 chips * 4 cores * 4-way vectors * 2 FLOPs/cycle * 2.4 GHz = 154 GFLOPs

- NVIDIA GTX 580 GPU
1 chin * 16 SMs * 32 cores * 2 FLOPs/cvcle * 1 544 GhZ = 1581 GFLOPs

Performance ratio (CPU:GPU): 1:10 I!!




I
DRAM Memory bandwidth

Bandwidth = memory bus frequency * bits per cycle
* bus width

- Memory clock != CPU clock!
- In bits, divide by 8 for GB/s

- Some Examples:
- Intel Core i7 DDR3: 1.333*2*64= 21GBIs
- NVIDIA GTX 580 GDDR5: 1.002 * 4 * 384 = 192 GB/s

Performance ratio (CPU:GPU): 1:8 !l




Power

- Chip manufactures specify Thermal Design Power (TDP)

- We can measure dissipated power
- Whole system
- Typically (much) lower than TDP

- Power efficiency

- FLOPS / Watt

- Examples (with theoretical peak and TDP)
- Intel Core i7: 154 /160 = 1.0 GFLOPs/W
- NVIDIA GTX 580: 1581 /244 = 6.3 GFLOPs/W

- ATI HD 6970: 2703 /250 = 10.8 GFLOPs/W



Summary

Sun Niagara 2

IBM BG/P

IBM Power 7

Intel Core i7

AMD Barcelona
AMD Istanbul
AMD Magny-Cours
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NVIDIA GTX 580
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GPU vs. CPU performance |, 4 0p- 105 op

Theoretical GFLOP/s

5750
5500
5250
5000

4750
4500 esp==|ntel CPU Double Precision GeForce GTX-TITAN

GeForce 780 Ti
==p==NVIDIA GPU Single Precision
emp=mNV|DIA GPU Double Precision

4250 exgmm|ntel CPU Single Precision

4000
3750
3500

These are theoretical numbers! In practice, efficiency is much lower!

2000
1750 GeForce GTX 580 Tesla K40
1500 GeForce GTX 480 Tesla K20X
1250 GeForce GTX 280
1000 Tesla M2090
750 GeForce 8800 GTX Testa €2050
500 GeForce 7800-GTX Tesla C1060 _ Ivy Bridge
250 GeForce 6800 Ultra sodcrest Harpertown Sandy Bridge
GeForce FX 5800 >

Pentium 4 Bloomfield Westmere

Apr-01 Sep-02 Jan-04 May-05 Oct-06 Feb-08 Jul-09 Nov-10 Apr-12 Aug-13 Dec-14



GPU vs. CPU performance
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Heterogeneity vs. Homogeneity

- Increase performance

- Both devices work in parallel
« Gain is much more than 10%

- Decrease data communication
- Which is often the bottleneck of the system

- Different devices for different roles

- Increase flexibility and reliability
- Choose one/all *PUs for execution
- Fall-back solution when one *PU fails

- Increase power efficiency
- Cheaper per flop
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Example 1: dot product

- Dot product
- Compute the dot product of 2 (1D) arrays

- Performance

- T = execution time on GPU
- T = execution time on CPU
- T = data transfer time CPU-GPU

- GPU best or CPU best?

123x73 58
4 5 6 9 10
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Example 1: dot product
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Example 2: separable convolution

- Separable convolution (CUDA SDK)

- Apply a convolution filter (kernel) on a large image.

- Separable kernel allows applying
+ Horizontal first
- Vertical second

- Performance

- Tg = execution time on GPU

- T = execution time on CPU

- Tp = data transfer time

I T F 777

- GPU best or CPU best?

/

AVAV AV AVAAY

output

Y v v




Example 2: separable convolution
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Example 3: matrix multiply

- Matrix multiply

- Compute the product of 2 matrices

- Performance

- T = execution time on GPU
- T, = execution time on CPU B
- T = data transfer time CPU-GPU I -1

- GPU best or CPU best?




Example 3: matrix multiply
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Example 4: Sound ray tracing




Example 4: Sound ray tracing
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Which hardware?

- Our application has ...
- Massive data-parallelism ...

- No data dependency between rays ...
- Compute-intensive per ray ...

- ... clearly, this is a perfect GPU workload !!!



Results [1]

= Only GPU

Execution time (s)
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Only 2.2x performance improvement!
We expected 100x ...
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Workload profile
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Results [2]

180

160

140 " Only GPU

120 % Only CPU

100
" CPU+GPU (Predictor)
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Execution time (ms)

40

20 -

o -
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Example 5: Graph processing (BFS)

- Graph traversal (Breadth First Search, BFS)

- Traverses all vertices “in levels”




Graph processing

- ... |Is data-dependent
- ... has poor locality
- ... has low computation-to-memory-ops ratio ...

- CPU or GPU?



BFS — normalized
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So ...

- There are very few GPU-only applications
- CPU — GPU communication bottleneck.
- Increasing performance of CPUs

- A part of the computation can be done by the CPU.

- How to program an application to enable this?
- Which part?

Main challenges: programming and

workload partitioning!




PART Il

Challenge 1: Programming



Programming models (PMs)

- Heterogeneous computing = a mix of different processors
on the same platform.

- Programming
- Mix of programming models
- One(/several?) for CPUs — OpenMP
- One(/several?) for GPUs — CUDA
- Single programming model (unified)
- OpenCL is a popular choice

Low level High level
= OpenACC
s PENALY  GpenMiP4.0 ((@

Heterogeneous Programming Library [ nSs



OpenCL in a nutshell

- Open standard for portable multi-core programming

- Architecture independent
- Explicit support for multi-’/many-cores

- Low-level host API
- High-level bindings (e.g., Java, Python)

- Separate kernel language
- Run-time compilation

- Supports (some) architecture-dependent optimizations
- Explicit & implicit



The OpenCL platform model

Work-item

Compute Unit Compute Dev'c
Compute
Work-group kernels




e
The OpenCL memory model

Private Private Private Private
Memory Memory Memory Memory

Workltem 1 Workltem M Workltem 1 WorkltemM

Compute Unit 1 Compute UnitN

Local Memory ' l Local Memory
Global/ ConstantMemory Data Cache

Compute Device

Global Memory

Compute Device Memory
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The OpenCL virtual platform
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Programming in OpenCL

- Kernels are the main functional units in OpenCL
- Kernels are executed by work-items
- Work-items are mapped transparently on the hardware platform

- Functional portability is guaranteed
- Programs run correctly on different families of hardware
- Explicit platform-specific optimizations are dangerous

- Performance portability is NOT guaranteed

- Performance portability is NOT guaranteed

OpenCL is an efficient programming model for

heterogeneous platforms iff we specialize the code to fit
different processors.




OpenCL for heterogeneous platforms

- Functional portability guaranteed by the standard

- Performance portability is NOT guaranteed

- vs. CUDA:
- Used to be comparable (2012)
- Lagging behind due to lack of support from NVIDIA

- vs. OpenMP/other CPU models: 3 challenges

« GPU-like proarammina stvles

OpenCL is an efficient programming model for

heterogeneous platforms iff we specialize the code to fit
different processors.
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Heterogeneous computing PMs

- CUDA + OpenMP/TBB
- Typical combination for NVIDIA GPUs
- Individual development per *PU
- Glue code can be challenging

- OpenCL (KHRONOS group)

- Functional portability => can be used as a unified model
- Performance portability via code specialization

- HPL (University of A Coruna, Spain)

- Library on top of OpenCL, to automate code specialization



Heterogeneous computing PMs

- StarPU (INRIA, France)
- Special API for coding

- Runtime system for scheduling

- OmpSS (UPC + BSC, Spain)
- C + OpenCL/CUDA kernels
- Runtime system for scheduling and communication optimization



Heterogeneous computing PMs

- Cashmere (VU Amsterdam + NLeSC)

- Dedicated to Divide-and-conquer solutions
- OpenCL backend.

- GlassWing (VU Amsterdam)

- Dedicated to MapReduce applications

- TOTEM (U. of British Columbia, Canada)
- Graph processing
- CUDA+Multi-threading

- HyGraph (TUDelft, UTwente, UVA, NL)

- Graph processing
- Based on CUDA+OpenMP
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End of part |l

- Questions ?



PART Il

Challenge 2: Workload partitioning



Workload

- DAG (directed acyclic graph) of “kernels”
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Determining the partition

- Static partitioning (SP) vs. Dynamic partitioning (DP)

CPU




Static vs. dynamic

- Static partitioning
- + can be computed before runtime => no overhead
- + can detect GPU-only/CPU-only cases
- + no unnecessary CPU-GPU data transfers
- -- does not work for all applications
- Dynamic partitioning
- + responds to runtime performance variability
- + works for all applications
- --incurs (high) runtime scheduling overhead
- -- might introduce (high) CPU-GPU data-transfer overhead
- -- might not work for CPU-only/GPU-only cases



Determining the partition

- Static partitioning (SP) vs. Dynamic partitioning (DP)

@‘I:II@

GPU

Often sub-ptimal

(near-) Optimal

Low applicability High applicability




Heterogeneous Computing today

[Limited applicability. Single Not interesting, |
Low overhead => high kernel given that static &
performagg;gtemslframeworks' run-time based
Qilin, Insieme, SKMD, SyStems exist
Glinda, ... Sporradic attempts
Libraries: HPL, ... and light runtime
Static systems Dynamic

Glinda 2.0 Run-time based systems:

StarPU

l\ OmpSS
[L head => high

ow overhead => hi i i ~ahili
g Multi-kernel H.|gh Applicability,
performance high overhead

\Still limited in applicability.) (complex) DAG
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End of part |l

- Questions ?



