HETEROGENEOUS CPU+GPU COMPUTING

Ana Lucia Varbanescu – University of Amsterdam a.l.varbanescu@uva.nl

Significant contributions by: **Stijn Heldens** (U Twente), **Jie Shen** (NUDT, China), **Basilio Fraguela** (A Coruna University, ESP),

Today's agenda

- Preliminaries
- Part I: Introduction to CPU+GPU heterogeneous computing
 - Performance promise vs. challenges
- Part II: Programing models
- Part III: Workload partitioning models
 - Static vs. Dynamic partitioning
- Part IV: Static partitioning and Glinda
- Part V: Tools for (programming) heterogeneous systems
 - Low-level to high-level
- Take home message

Goal

- Discuss heterogeneous computing as a promising solution for efficient resource utilization
 - And performance!
- Introduce methods for efficient heterogeneous computing
 - Programming
 - Partitioning
- Provide comparisons & selection criteria
- Current challenges and open research questions.
- Fair to others, but we advertise our research ©

Heterogeneous platforms

- Systems combining main processors and accelerators
 - e.g., CPU + GPU, CPU + Intel MIC, AMD APU, ARM SoC
 - Everywhere from supercomputers to mobile devices

Heterogeneous platforms

Host-accelerator hardware model

Heterogeneous platforms

• Top 500 (June 2015)

RANK	SITE	SYSTEM	CORES	RMAX (TFLOP/S)	RPEAK (TFLOP/S)	POWER (KW)				
1	National Super Computer Center in Guangzhou	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000		54,902.4	17,808				
	^{China} 195 cores/node			Accelerated!						
2	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209				
				Accelerated!						
3	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom	1,572,864	17,173.2	20,132.7	7,890				
4	All systems are based on multi-cores. 90 systems have accelerators (18%). Of those, 50% are NVIDIA GPUs, 30% are Intel MICs (Xeon Phi).									
5	United States	1.60GHz, Custom	700,452	0,000.0	10,000.0	5,74 5				

Our focus today ...

- A heterogeneous platform = CPU + GPU
 - Most solutions work for other/multiple accelerators
- An application workload = an application + its input dataset
- Workload partitioning = workload distribution among the processing units of a heterogeneous system

BEFORE WE START ...

Basic knowledge about CPUs and GPUs

Generic multi-core CPU

Multi-core CPUs

- Architecture
 - Few large cores
 - (Integrated GPUs)
 - Vector units
 - Streaming SIMD Extensions (SSE)
 - Advanced Vector Extensions (AVX)
 - Stand-alone
- Memory
 - Shared, multi-layered
 - Per-core caches + shared caches
- Programming
 - Multi-threading
 - OS Scheduler

Sandy Bridge Client

Parallelism

- Core-level parallelism ~ task/data parallelism (coarse)
 - 4-12 of powerful cores
 - Hardware hyperthreading (2x)
 - Local caches
 - Symmetrical or asymmetrical threading model
 - Implemented by programmer
- SIMD parallelism = data parallelism (fine)
 - 4-SP/2-DP floating point operations per second
 - 256-bit vectors
 - Run same instruction on different data
 - Sensitive to divergence
 - NOT the same instruction => performance loss
 - Implemented by programmer OR compiler

Programming models

- Pthreads + intrinsics
- TBB Thread building blocks
 - Threading library
- OpenCL
 - To be discussed ...
- OpenMP
 - Traditional parallel library
 - High-level, pragma-based
- Cilk
 - Simple divide-and-conquer model

A GPU Architecture

Integration into host system

- Typically PCI Express 2.0
- Theoretical speed 8 GB/s
 - Effective ≤ 6 GB/s
 - In reality: 4 6 GB/s
- V3.0 recently available
 - Double bandwidth
 - Less protocol overhead

(NVIDIA) GPUs

- Architecture
 - Many (100s) slim cores
 - Sets of (32 or 192) cores grouped into "multiprocessors" with shared memory
 - SM(X) = stream multiprocessors
 - Work as accelerators
- Memory
 - Shared L2 cache
 - Per-core caches + shared caches
 - Off-chip global memory
- Programming
 - Symmetric multi-threading
 - Hardware scheduler

GPU Parallelism

- Data parallelism (fine-grain)
- SIMT (Single Instruction Multiple Thread) execution
 - Many threads execute concurrently
 - Same instruction
 - Different data elements
 - HW automatically handles divergence
 - Not same as SIMD because of multiple register sets, addresses, and flow paths*
- Hardware multithreading
 - HW resource allocation & thread scheduling
 - Excess of threads to hide latency
 - Context switching is (basically) free

Specific programming model: CUDA

- CUDA: Compute Unified Device Architecture
 - C/C++ extensions
 - Other wrappers exist
- Straightforward mapping onto hardware
 - Hierarchy of threads (map to cores)
 - Configurable at logical level
 - Various memory spaces (map to physical mem. spaces)
 - Usable via variable scopes
- SIMT: single instruction multiple threads
 - Have 1000s threads running concurrently
 - Hardware multi-threading
 - GPU threads are lightweight

CUDA: Hierarchy of threads

- Each thread executes the kernel code
 - One thread runs on one CUDA core
- Threads are logically grouped into thread blocks
 - Threads in the same block can cooperate
 - Threads in different blocks cannot cooperate
- All thread blocks are logically organized in a Grid
 - 1D or 2D or 3D
 - Threads and blocks have unique IDs
- A grid specifies in how many instances the kernel is being run

CUDA Model of Parallelism

Thread Grid

Device

Hierarchy of threads

CUDA Model of Parallelism

- CUDA virtualizes the physical hardware
 - A block is a virtualized streaming multiprocessor
 - threads, shared memory
 - A thread is a virtualized scalar processor
 - registers, PC, state
- Execution model:
 - Threads execute in warps (32 threads per warp)
 - Called "wavefronts" by AMD (64 threads)
 - All threads in a warp execute the same code
 - On different data
 - Blocks = multiple warps
 - Scheduled independently on the same SM

CPU vs. GPU

CPU

Low latency, high flexibility.
Excellent for irregular codes with limited parallelism.

PART I

Heterogeneous processing: pro's and con's

Hardware Performance metrics

- Clock frequency [GHz] = absolute hardware speed
 - Memories, CPUs, interconnects
- Operational speed [GFLOPs]
 - Instructions per cycle + frequency
- Memory bandwidth [GB/s]
 - differs a lot between different memories on chip
- Power [Watt]
- Derived metrics
 - FLOP/Byte, FLOP/Watt

Theoretical peak performance

```
Peak = chips * cores * threads/core * vector_lanes * FLOPs/cycle * clockFrequency
```

- Some examples:
 - Intel Core i7 CPU
 2 chips * 4 cores * 4-way vectors * 2 FLOPs/cycle * 2.4 GHz = 154 GFLOPs
 - NVIDIA GTX 580 GPU
 1 chip * 16 SMs * 32 cores * 2 FLOPs/cvcle * 1.544 GhZ = 1581 GFLOPs

Performance ratio (CPU:GPU): 1:10 !!!

DRAM Memory bandwidth

Bandwidth = memory bus frequency * bits per cycle * bus width

- Memory clock != CPU clock!
- In bits, divide by 8 for GB/s
- Some Examples:
 - Intel Core i7 DDR3:
 1.333 * 2 * 64 = 21 GB/s
 - NVIDIA GTX 580 GDDR5: 1.002 * 4 * 384 = 192 GB/s

Performance ratio (CPU:GPU): 1:8 !!!

Power

- Chip manufactures specify Thermal Design Power (TDP)
- We can measure dissipated power
 - Whole system
 - Typically (much) lower than TDP
- Power efficiency
 - FLOPS / Watt
- Examples (with theoretical peak and TDP)

```
    Intel Core i7:
    154 / 160 = 1.0 GFLOPs/W
```

NVIDIA GTX 580:
 1581 / 244 = 6.3 GFLOPs/W

ATI HD 6970: 2703 / 250 = 10.8 GFLOPs/W

Summary

	Cores	Threads/ALUs	GFLOPS	Bandwidth
Sun Niagara 2	8	64	11.2	76
IBM BG/P	4	8	13.6	13.6
IBM Power 7	8	32	265	68
Intel Core i7	4	16	85	25.6
AMD Barcelona	4	8	37	21.4
AMD Istanbul	6	6	62.4	25.6
AMD Magny-Cours	12	12	125	25.6
Cell/B.E.	8	8	205	25.6
NVIDIA GTX 580	16	512	1581	192
NVIDIA GTX 680	8	1536	3090	192
AMD HD 6970	384	1536	2703	176
AMD HD 7970	32	2048	3789	264
Intel Xeon Phi 7120	61	240	2417	352

GPU vs. CPU performance

1 GFLOP = 10^9 ops

Theoretical GFLOP/s

These are theoretical numbers! In practice, efficiency is much lower!

GPU vs. CPU performance

 $1 \text{ GB} = 8 \times 10^{9} \text{ bits}$

These are theoretical numbers! In practice, efficiency is much lower!

Heterogeneity vs. Homogeneity

- Increase performance
 - Both devices work in parallel
 - Gain is much more than 10%
 - Decrease data communication
 - Which is often the bottleneck of the system
 - Different devices for different roles
- Increase flexibility and reliability
 - Choose one/all *PUs for execution
 - Fall-back solution when one *PU fails
- Increase power efficiency
- Cheaper per flop

Example 1: dot product

- Dot product
 - Compute the dot product of 2 (1D) arrays
- Performance
 - T_G = execution time on GPU
 - T_C = execution time on CPU
 - T_D = data transfer time CPU-GPU
- GPU best or CPU best?

Example 1: dot product

Example 2: separable convolution

- Separable convolution (CUDA SDK)
 - Apply a convolution filter (kernel) on a large image.
 - Separable kernel allows applying
 - Horizontal first
 - Vertical second
- Performance
 - T_G = execution time on GPU
 - T_C = execution time on CPU
 - T_D = data transfer time
- GPU best or CPU best?

Example 2: separable convolution

Example 3: matrix multiply

- Matrix multiply
 - Compute the product of 2 matrices
- Performance
 - T_G = execution time on GPU
 - T_C = execution time on CPU
 - T_D = data transfer time CPU-GPU
- GPU best or CPU best?

Example 3: matrix multiply

Example 4: Sound ray tracing

Example 4: Sound ray tracing

Which hardware?

- Our application has ...
- Massive data-parallelism ...
- No data dependency between rays ...
- Compute-intensive per ray ...
- ... clearly, this is a perfect GPU workload !!!

Results [1]

Only 2.2x performance improvement!
We expected 100x ...

Workload profile

Peak
Processing iterations: ~7000

Bottom Processing iterations: ~500

Results [2]

Example 5: Graph processing (BFS)

- Graph traversal (Breadth First Search, BFS)
 - Traverses all vertices "in levels"

Graph processing

- · ... Is data-dependent
- ... has poor locality
- ... has low computation-to-memory-ops ratio ...

CPU or GPU?

BFS - normalized

So ...

- There are very few GPU-only applications
 - CPU GPU communication bottleneck.
 - Increasing performance of CPUs
- A part of the computation can be done by the CPU.
 - How to program an application to enable this?
 - Which part?

Main challenges: programming and workload partitioning!

PART II

Challenge 1: Programming

Programming models (PMs)

- Heterogeneous computing = a mix of different processors on the same platform.
- Programming
 - Mix of programming models
 - One(/several?) for CPUs OpenMP
 - One(/several?) for GPUs CUDA
 - Single programming model (unified)
 - OpenCL is a popular choice

Low level

OpenCL

High level

Heterogeneous Programming Library

- Open standard for portable multi-core programming
- Architecture independent
 - Explicit support for multi-/many-cores
- Low-level host API
 - High-level bindings (e.g., Java, Python)
- Separate kernel language
- Run-time compilation
- Supports (some) architecture-dependent optimizations
 - Explicit & implicit

The OpenCL platform model

The OpenCL memory model

The OpenCL virtual platform

Programming in OpenCL

- Kernels are the main functional units in OpenCL
 - Kernels are executed by work-items
 - Work-items are mapped transparently on the hardware platform
- Functional portability is guaranteed
 - Programs run correctly on different families of hardware
 - Explicit platform-specific optimizations are dangerous
- Performance portability is NOT guaranteed
 - Performance portability is NOT guaranteed

OpenCL is an efficient programming model for heterogeneous platforms iff we specialize the code to fit different processors.

OpenCL for heterogeneous platforms

- Functional portability guaranteed by the standard
- Performance portability is NOT guaranteed
 - vs. CUDA:
 - Used to be comparable (2012)
 - Lagging behind due to lack of support from NVIDIA
 - vs. OpenMP/other CPU models: 3 challenges
 - GPU-like programming styles

OpenCL is an efficient programming model for heterogeneous platforms iff we specialize the code to fit different processors.

Heterogeneous Computing PMs

High productivity; not all applications are easy to implement.

Generic

OpenACC, OpenMP 4.0 OmpSS, StarPU, ... HPL

High level Domain and/or application specific. Focus on: productivity and performance

HyGraph, Cashmere, GlassWing

Specific

OpenCL OpenMP+CUDA

The most common atm. Useful for performance, more difficult to use in practice

Low level **TOTEM**

Domain specific, focus on performance.

More difficult to use.

Quite rare.

Heterogeneous computing PMs

- CUDA + OpenMP/TBB
 - Typical combination for NVIDIA GPUs
 - Individual development per *PU
 - Glue code can be challenging
- OpenCL (KHRONOS group)
 - Functional portability => can be used as a unified model
 - Performance portability via code specialization
- HPL (University of A Coruna, Spain)
 - Library on top of OpenCL, to automate code specialization

Heterogeneous computing PMs

- StarPU (INRIA, France)
 - Special API for coding
 - Runtime system for scheduling
- OmpSS (UPC + BSC, Spain)
 - C + OpenCL/CUDA kernels
 - Runtime system for scheduling and communication optimization

Heterogeneous computing PMs

- Cashmere (VU Amsterdam + NLeSC)
 - Dedicated to Divide-and-conquer solutions
 - OpenCL backend.
- GlassWing (VU Amsterdam)
 - Dedicated to MapReduce applications
- TOTEM (U. of British Columbia, Canada)
 - Graph processing
 - CUDA+Multi-threading
- HyGraph (TUDelft, UTwente, UvA, NL)
 - Graph processing
 - Based on CUDA+OpenMP

End of part II

Questions?

PART III

Challenge 2: Workload partitioning

Workload

DAG (directed acyclic graph) of "kernels"

Determining the partition

Static partitioning (SP) vs. Dynamic partitioning (DP)

Static vs. dynamic

Static partitioning

- + can be computed before runtime => no overhead
- + can detect GPU-only/CPU-only cases
- + no unnecessary CPU-GPU data transfers
- -- does not work for all applications

Dynamic partitioning

- + responds to runtime performance variability
- + works for all applications
- -- incurs (high) runtime scheduling overhead
- -- might introduce (high) CPU-GPU data-transfer overhead
- -- might not work for CPU-only/GPU-only cases

Determining the partition

Static partitioning (SP) vs. Dynamic partitioning (DP)

Heterogeneous Computing today

Limited applicability. Low overhead => high performance

Systems/frameworks:

Qilin, Insieme, SKMD,

Glinda, ...

Libraries: HPL, ...

Static

Single kernel

Not interesting, given that static & run-time based systems exist.

Sporradic attempts and light runtime systems

Dynamic

Glinda 2.0

Low overhead => high performance Still limited in applicability. **Run-time based systems: StarPU OmpSS**

Multi-kernel (complex) DAG High Applicability, high overhead

End of part II

Questions?