
HETEROGENEOUS
CPU+GPU
COMPUTING

Ana Lucia Varbanescu – University of Amsterdam
a.l.varbanescu@uva.nl

Significant contributions by: Stijn Heldens (U Twente),
Jie Shen (NUDT, China), Basilio Fraguela (A Coruna

University, ESP),

•  Preliminaries

•  Part I: Introduction to CPU+GPU heterogeneous computing

•  Performance promise vs. challenges

•  Part II: Programing models
•  Part III: Workload partitioning models

•  Static vs. Dynamic partitioning
•  Part IV: Static partitioning and Glinda
•  Part V: Tools for (programming) heterogeneous systems

•  Low-level to high-level

•  Take home message

Today’s agenda

Goal
• Discuss heterogeneous computing as a promising

solution for efficient resource utilization
•  And performance!

•  Introduce methods for efficient heterogeneous computing
•  Programming
•  Partitioning

• Provide comparisons & selection criteria

• Current challenges and open research questions.

•  Fair to others, but we advertise our research J

Heterogeneous platforms
• Systems combining main processors and accelerators

•  e.g., CPU + GPU, CPU + Intel MIC, AMD APU, ARM SoC
•  Everywhere from supercomputers to mobile devices

Heterogeneous platforms
• Host-accelerator hardware model

Accelerator

Accelerator

Accelerator
Host

PCIe / Shared memory
MICs

FPGAs

Accelerator

CPUs

GPUs

...

Heterogeneous platforms
•  Top 500 (June 2015)

Accelerated!

Accelerated!

All systems are based on multi-cores.
90 systems have accelerators (18%).
Of those, 50% are NVIDIA GPUs, 30% are Intel MICs (Xeon Phi).

195 cores/node

Thousands	
 of	
 Cores

Few	

cores

Our focus today …
• A heterogeneous platform = CPU + GPU

•  Most solutions work for other/multiple accelerators

• An application workload = an application + its input
dataset

• Workload partitioning = workload distribution among the
processing units of a heterogeneous system

BEFORE WE START …
Basic knowledge about CPUs and GPUs

Generic multi-core CPU

9

Hardware threads
SIMD units (vector lanes)

L1 and L2
dedicated
caches

Shared L3/L4 cache
Main memory, I/O

Peak
performance

Bandwidth

Multi-core CPUs

10

• Architecture
•  Few large cores
•  (Integrated GPUs)
•  Vector units

•  Streaming SIMD Extensions (SSE)
•  Advanced Vector Extensions (AVX)

•  Stand-alone
• Memory

•  Shared, multi-layered
•  Per-core caches + shared caches

• Programming
•  Multi-threading
•  OS Scheduler

Parallelism

11

• Core-level parallelism ~ task/data parallelism (coarse)
•  4-12 of powerful cores

•  Hardware hyperthreading (2x)
•  Local caches
•  Symmetrical or asymmetrical threading model
•  Implemented by programmer

• SIMD parallelism = data parallelism (fine)
•  4-SP/2-DP floating point operations per second

•  256-bit vectors
•  Run same instruction on different data
•  Sensitive to divergence

•  NOT the same instruction => performance loss
•  Implemented by programmer OR compiler

Programming models

12

• Pthreads + intrinsics
•  TBB – Thread building blocks

•  Threading library

• OpenCL
•  To be discussed …

• OpenMP
•  Traditional parallel library
•  High-level, pragma-based

• Cilk
•  Simple divide-and-conquer model Le

ve
l o

f a
bs

tr
ac

tio
n

in
cr

ea
se

s

A GPU Architecture

13

Integration into host system
•  Typically PCI Express 2.0
•  Theoretical speed 8 GB/s

•  Effective ≤ 6 GB/s
•  In reality: 4 – 6 GB/s

• V3.0 recently available
•  Double bandwidth
•  Less protocol overhead

14

(NVIDIA) GPUs
• Architecture

•  Many (100s) slim cores
•  Sets of (32 or 192) cores grouped into “multiprocessors” with

shared memory
•  SM(X) = stream multiprocessors

•  Work as accelerators
• Memory

•  Shared L2 cache
•  Per-core caches + shared caches
•  Off-chip global memory

• Programming
•  Symmetric multi-threading
•  Hardware scheduler

15

GPU Parallelism
• Data parallelism (fine-grain)
• SIMT (Single Instruction Multiple Thread) execution

•  Many threads execute concurrently
•  Same instruction
•  Different data elements
•  HW automatically handles divergence

•  Not same as SIMD because of multiple register sets, addresses,
and flow paths*

• Hardware multithreading
•  HW resource allocation & thread scheduling

•  Excess of threads to hide latency
•  Context switching is (basically) free

16

*http://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html

Specific programming model: CUDA
• CUDA: Compute Unified Device Architecture

•  C/C++ extensions
•  Other wrappers exist

• Straightforward mapping onto hardware
•  Hierarchy of threads (map to cores)

•  Configurable at logical level
•  Various memory spaces (map to physical mem. spaces)

•  Usable via variable scopes

• SIMT: single instruction multiple threads
•  Have 1000s threads running concurrently
•  Hardware multi-threading

•  GPU threads are lightweight

17

CUDA: Hierarchy of threads
• Each thread executes the kernel code

•  One thread runs on one CUDA core

•  Threads are logically grouped into thread blocks
•  Threads in the same block can cooperate
•  Threads in different blocks cannot cooperate

• All thread blocks are logically organized in a Grid
•  1D or 2D or 3D
•  Threads and blocks have unique IDs

• A grid specifies in how many instances the kernel is being
run

CUDA Model of Parallelism

19

Hierarchy of threads

20

Thread

Block

Grid

• CUDA virtualizes the physical hardware
•  A block is a virtualized streaming multiprocessor

•  threads, shared memory
•  A thread is a virtualized scalar processor

•  registers, PC, state

• Execution model:
•  Threads execute in warps (32 threads per warp)

•  Called “wavefronts” by AMD (64 threads)
•  All threads in a warp execute the same code

•  On different data
•  Blocks = multiple warps

•  Scheduled independently on the same SM

21

CUDA Model of Parallelism

CPU vs. GPU
22

Control

ALU ALU

ALU ALU

Cache

CPU
Low latency, high
flexibility.
Excellent for irregular
codes with
limited parallelism.

GPU
High

throughput.
Excellent for

massively
parallel

workloads.

PART I
Heterogeneous processing: pro’s and con’s

Hardware Performance metrics
•  Clock frequency [GHz] = absolute hardware speed

•  Memories, CPUs, interconnects

•  Operational speed [GFLOPs]
•  Instructions per cycle + frequency

•  Memory bandwidth [GB/s]
•  differs a lot between different memories on chip

•  Power [Watt]

•  Derived metrics
•  FLOP/Byte, FLOP/Watt

24

Peak = chips * cores * threads/core * vector_lanes *
 FLOPs/cycle * clockFrequency

• Some examples:
•  Intel Core i7 CPU

2 chips * 4 cores * 4-way vectors * 2 FLOPs/cycle * 2.4 GHz = 154 GFLOPs
•  NVIDIA GTX 580 GPU

1 chip * 16 SMs * 32 cores * 2 FLOPs/cycle * 1.544 GhZ = 1581 GFLOPs
•  ATI HD 6970

1 chip * 24 SIMD engines * 16 cores * 4-way vectors * 2 FLOPs/cycle
 * 0.880 GHz = 2703 GFLOPs

25

Theoretical peak performance

Performance ratio (CPU:GPU): 1:10 !!!

Bandwidth = memory bus frequency * bits per cycle
 * bus width

•  Memory clock != CPU clock!
•  In bits, divide by 8 for GB/s

• Some Examples:

•  Intel Core i7 DDR3: 1.333 * 2 * 64 = 21 GB/s
•  NVIDIA GTX 580 GDDR5: 1.002 * 4 * 384 = 192 GB/s
•  ATI HD 6970 GDDR5: 1.375 * 4 * 256 = 176 GB/s

26

DRAM Memory bandwidth

Performance ratio (CPU:GPU): 1:8 !!!

• Chip manufactures specify Thermal Design Power (TDP)
• We can measure dissipated power

•  Whole system
•  Typically (much) lower than TDP

• Power efficiency
•  FLOPS / Watt

• Examples (with theoretical peak and TDP)
•  Intel Core i7: 154 / 160 = 1.0 GFLOPs/W
•  NVIDIA GTX 580: 1581 / 244 = 6.3 GFLOPs/W
•  ATI HD 6970: 2703 / 250 = 10.8 GFLOPs/W

27

Power

Cores Threads/ALUs GFLOPS Bandwidth
Sun Niagara 2 8 64 11.2 76
IBM BG/P 4 8 13.6 13.6
IBM Power 7 8 32 265 68
Intel Core i7 4 16 85 25.6
AMD Barcelona 4 8 37 21.4
AMD Istanbul 6 6 62.4 25.6
AMD Magny-Cours 12 12 125 25.6
Cell/B.E. 8 8 205 25.6
NVIDIA GTX 580 16 512 1581 192
NVIDIA GTX 680 8 1536 3090 192
AMD HD 6970 384 1536 2703 176
AMD HD 7970 32 2048 3789 264
Intel Xeon Phi 7120 61 240 2417 352

Summary

T12

NV30 NV40
G70

G80

GT200

3GHz Dual
Core P4

3GHz
Core2 Duo

3GHz Xeon
Quad

GPU vs. CPU performance

29

1 GFLOP = 10^9 ops

These are theoretical numbers! In practice, efficiency is much lower!

GPU vs. CPU performance

30

1 GB = 8 x10^9 bits

These are theoretical numbers! In practice, efficiency is much lower!

Heterogeneity vs. Homogeneity
•  Increase performance

•  Both devices work in parallel
•  Gain is much more than 10%

•  Decrease data communication
•  Which is often the bottleneck of the system

•  Different devices for different roles

•  Increase flexibility and reliability
•  Choose one/all *PUs for execution
•  Fall-back solution when one *PU fails

•  Increase power efficiency
• Cheaper per flop

Example 1: dot product
• Dot product

•  Compute the dot product of 2 (1D) arrays

• Performance
•  TG = execution time on GPU
•  TC = execution time on CPU
•  TD = data transfer time CPU-GPU

• GPU best or CPU best?

Example 1: dot product

0

50

100

150

200

250

Ex
ec
ut
io
n�
tim
e�
(m
s)

TG TD TC TMax

Example 2: separable convolution
• Separable convolution (CUDA SDK)

•  Apply a convolution filter (kernel) on a large image.
•  Separable kernel allows applying

•  Horizontal first
•  Vertical second

• Performance
•  TG = execution time on GPU
•  TC = execution time on CPU
•  TD = data transfer time

• GPU best or CPU best?

Example 2: separable convolution

0

20

40

60

80

100

120

140

160

180

Ex
ec
ut
io
n�
tim
e�
(m
s)

TG TD TC TMax

Example 3: matrix multiply
• Matrix multiply

•  Compute the product of 2 matrices

• Performance
•  TG = execution time on GPU
•  TC = execution time on CPU
•  TD = data transfer time CPU-GPU

• GPU best or CPU best?

Example 3: matrix multiply

0

50

100

150

200

250

300

350

400

450

Ex
ec
ut
io
n�
tim
e�
(m
s)

TG TD TC TMax

Example 4: Sound ray tracing

38

1 2

Example 4: Sound ray tracing

39

Which hardware?
• Our application has …
• Massive data-parallelism …
• No data dependency between rays …
• Compute-intensive per ray …

• … clearly, this is a perfect GPU workload !!!

Results [1]

41

0

20

40

60

80

100

120

140

160

180

W9(1.3GB)

Only GPU

Only CPU

Ex
ec
u3

on
	
 3
m
e	

(s
)	

Only	
 2.2x	
 performance	
 improvement!	
 	

We	
 expected	
 100x	
 …	
 	

330 340 350

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sound speed, m/s

A
lti
tu
de
,k
m

1 2 3 4 5
Relative distance fromsource, km

La
un
ch

A
ng
le
[d
eg
]

−40

−30

−20

−10

0

10

20

30

40

(a) (b)

aircraft

Workload profile

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

 0 1000
 2000

 3000
 4000

 5000
 6000

#S
im

ul
at

io
n

ite
ra

tio
ns

Ray ID

Peak
Processing iterations: ~7000

Bottom
Processing iterations: ~500

Results [2]
Ex
ec
u3

on
	
 3
m
e	

(m

s)
	

62% performance improvement
compared to “Only-GPU”

• Graph traversal (Breadth First Search, BFS)
•  Traverses all vertices “in levels”

Example 5: Graph processing (BFS)

• … Is data-dependent
• … has poor locality
• … has low computation-to-memory-ops ratio …

• CPU or GPU?

Graph processing

BFS – normalized

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

WT CR 1M SW EU CH ST ES 64K WV 4K

Performance depends on the diameter and degree:
Large diameter => CPU

High degree => GPU

 Xeon (CPU) Tesla (GPU) GTX (GPU)

Using both will allow the right balance!

So …
•  There are very few GPU-only applications

•  CPU – GPU communication bottleneck.
•  Increasing performance of CPUs

• A part of the computation can be done by the CPU.
•  How to program an application to enable this?
•  Which part?

Main challenges: programming and
workload partitioning!

PART II
Challenge 1: Programming

Programming models (PMs)
• Heterogeneous computing = a mix of different processors

on the same platform.
• Programming

•  Mix of programming models
•  One(/several?) for CPUs – OpenMP
•  One(/several?) for GPUs – CUDA

•  Single programming model (unified)
•  OpenCL is a popular choice

49

OmpSs

4.0

High level Low level

OpenCL in a nutshell

• Open standard for portable multi-core programming
• Architecture independent

•  Explicit support for multi-/many-cores

•  Low-level host API
•  High-level bindings (e.g., Java, Python)

• Separate kernel language
• Run-time compilation
• Supports (some) architecture-dependent optimizations

•  Explicit & implicit

50

Compute
kernels

A host program

Work-item

Work-group

The OpenCL platform model

The OpenCL memory model

The OpenCL virtual platform

Programming in OpenCL
• Kernels are the main functional units in OpenCL

•  Kernels are executed by work-items
•  Work-items are mapped transparently on the hardware platform

•  Functional portability is guaranteed
•  Programs run correctly on different families of hardware
•  Explicit platform-specific optimizations are dangerous

• Performance portability is NOT guaranteed
•  Performance portability is NOT guaranteed

OpenCL is an efficient programming model for
heterogeneous platforms iff we specialize the code to fit

different processors.

•  Functional portability guaranteed by the standard
• Performance portability is NOT guaranteed

•  vs. CUDA:
•  Used to be comparable (2012)
•  Lagging behind due to lack of support from NVIDIA

•  vs. OpenMP/other CPU models: 3 challenges
•  GPU-like programming styles

•  Memory access patterns, data transfer, (local memory) => MUST remove
•  Parallelism granularity

•  Architectural mismatches with CPUs => MUST tune
•  OpenCL compilers/runtime libraries/…

•  Still under development => MUST test

OpenCL for heterogeneous platforms

OpenCL is an efficient programming model for
heterogeneous platforms iff we specialize the code to fit

different processors.

Heterogeneous Computing PMs

56

High
level

Low
level

Generic Specific

OpenACC, OpenMP 4.0
OmpSS, StarPU, …
HPL

HyGraph,
Cashmere,
GlassWing

TOTEM
OpenCL
OpenMP+CUDA

Domain and/or
application specific.

Focus on: productivity
and performance

Domain specific, focus
on performance.
More difficult to use.
Quite rare.

The most common atm.
Useful for performance,
more difficult to use in
practice

High productivity; not
all applications are
easy to implement.

Heterogeneous computing PMs
• CUDA + OpenMP/TBB

•  Typical combination for NVIDIA GPUs
•  Individual development per *PU
•  Glue code can be challenging

• OpenCL (KHRONOS group)
•  Functional portability => can be used as a unified model
•  Performance portability via code specialization

• HPL (University of A Coruna, Spain)
•  Library on top of OpenCL, to automate code specialization

Heterogeneous computing PMs
• StarPU (INRIA, France)

•  Special API for coding
•  Runtime system for scheduling

• OmpSS (UPC + BSC, Spain)
•  C + OpenCL/CUDA kernels
•  Runtime system for scheduling and communication optimization

Heterogeneous computing PMs
• Cashmere (VU Amsterdam + NLeSC)

•  Dedicated to Divide-and-conquer solutions
•  OpenCL backend.

• GlassWing (VU Amsterdam)
•  Dedicated to MapReduce applications

•  TOTEM (U. of British Columbia, Canada)
•  Graph processing
•  CUDA+Multi-threading

• HyGraph (TUDelft, UTwente, UvA, NL)
•  Graph processing
•  Based on CUDA+OpenMP

• Questions ?

End of part II

PART III
Challenge 2: Workload partitioning

Workload
• DAG (directed acyclic graph) of “kernels”

...
I II III IV V

k0 k0

k0

k1

kn

k0

k1

kn

k0

k1
k2

k3 k4

k5

...

SK-One SK-Loop MK-Seq MK-Loop MK-DAG

Determining the partition
• Static partitioning (SP) vs. Dynamic partitioning (DP)

63

Thousands	
 of	
 Cores

Mul3ple	

Cores

Thousands	
 of	
 Cores

Mul3ple	

Cores

Static vs. dynamic
• Static partitioning

•  + can be computed before runtime => no overhead
•  + can detect GPU-only/CPU-only cases
•  + no unnecessary CPU-GPU data transfers
•  -- does not work for all applications

• Dynamic partitioning
•  + responds to runtime performance variability
•  + works for all applications
•  -- incurs (high) runtime scheduling overhead
•  -- might introduce (high) CPU-GPU data-transfer overhead
•  -- might not work for CPU-only/GPU-only cases

64

Determining the partition
• Static partitioning (SP) vs. Dynamic partitioning (DP)

65

Thousands	
 of	
 Cores

Mul3ple	

Cores

Thousands	
 of	
 Cores

Mul3ple	

Cores

(near-) Optimal
Low applicability

Often sub-ptimal
High applicability

Heterogeneous Computing today

66

Single
kernel

Multi-kernel
(complex) DAG

Static Dynamic

Systems/frameworks:
Qilin, Insieme, SKMD,
Glinda, ...
Libraries: HPL, …

Sporradic attempts
and light runtime
systems

Run-time based systems:
StarPU
OmpSS
…

Glinda 2.0

Not interesting,
given that static &

run-time based
systems exist.

High Applicability,
high overhead

Low overhead => high
performance
Still limited in applicability.

Limited applicability.
Low overhead => high
performance

• Questions ?

End of part II

