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PART IV 
Static and dynamic partitioning in practice  



Heterogeneous Computing PMs 
High  
level 

Low 
level 

Generic Specific 

 
OpenACC,  
OmpSS, StarPU, … 
HPL 

HyGraph 
Cashmere 
GlassWing 

TOTEM, 
… 

OpenCL, 
OpenMP+CUDA 

Domain and/or 
application specific. 

Focus on: productivity 
and performance 

Domain specific, focus 
on performance. 
More difficult to use. 

The most common atm. 
Useful for performance, 
more difficult to use in 
practice 

High productivity; not 
all applications are 
easy to implement.  



Heterogeneous Computing today 
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Single  
kernel 

Multi-kernel 
(complex) DAG 

Static Dynamic 

 
Systems/frameworks: 
Qilin, Insieme, SKMD, 
Glinda, ...  
Libraries: HPL, … 

Sporradic attempts  
and light runtime 
systems  

Run-time based systems:  
StarPU 
OmpSS 
… 

Glinda 2.0 

Not interesting, 
given that static & 

run-time based 
systems exist.  

High Applicability, 
high overhead 

Low overhead => high 
performance 
Still limited in applicability.  

Limited applicability. 
Low overhead => high 
performance  



GLINDA  
Computing static partitioning  



Glinda: our approach* 
• Modeling the partitioning 

•  The application workload 
•  The hardware capabilities 
•  The GPU-CPU data transfer 

• Predict the optimal partitioning 
• Making the decision in practice 

•  Only-GPU 
•  Only-CPU 
•  CPU+GPU with the optimal partitioning 

*Jie Shen et al., HPCC’14.  
“Look before you Leap: Using the Right Hardware. 

Resources to Accelerate Applications 



(+TD)	
  

Modeling the partitioning 
• Define the optimal (static) partitioning 

•  β= the fraction of data points assigned to the GPU  
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TG +TD = TC



Model the app workload 
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Model the app workload 
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Modeling the partitioning 

Two pairs of metrics  
 
W: total workload size 
P: processing throughput (W/second) 
 
O: data-transfer size 
Q: data-transfer bandwidth (bytes/second) 
	


TG =
WG

PG
TD =

O
Q

 TC=
WC

PC

TG +TD = TC
WG

WC

=
PG
PC
×

1

1+ PG
Q
×
O
WG

W =WG +WC* 



Model the HW capabilities 
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• Workload: WG + WC = W 
• Execution time: TG and TC 
• P (processing throughput) 

•  Measured as workload processed per second 
•  P evaluates the hardware capability of a processor 

GPU	
  kernel	
  execu?on	
  ?me:	
  TG=WG/PG	
  
CPU	
  kernel	
  execu?on	
  ?me:	
  TC=WC/PC 



Model the data-transfer 
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• O (GPU data-transfer size) 
•  Measured in bytes 

• Q (GPU data-transfer bandwidth) 
•  Measured in bytes per second 

 

Data-­‐transfer	
  ?me:	
  TD=O/Q	
  +	
  (Latency)	
  
Latency	
  <	
  0.1	
  ms,	
  negligible	
  impact	
  	
  



Predict the partitioning …  
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… by solving this equation in β  
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Predict the partitioning 
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• Solve the equation 

β-­‐dependent	
  terms	
  

WG=w	
  x	
  n	
  x	
  β	
   
WC=w	
  x	
  n	
  x	
  (1-­‐β)	
   

O=Full	
  data	
  transfer	
  	
  or	
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  x	
  β	
   

Expression 
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Predict the partitioning 
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• Solve the equation 

β-­‐dependent	
  terms	
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  n	
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Modeling the partitioning 
• Estimating the HW capability ratios by using profiling 

•  The ratio of GPU throughput to CPU throughput  
•  The ratio of GPU throughput to data transfer bandwidth 

WG

WC

=
PG
PC
×

1

1+ PG
Q
×
O
WG

RGC 

CPU kernel execution time vs. 
GPU kernel execution time  

GPU data-transfer time vs.  
GPU kernel execution time 

RGD 



Predicting the optimal partitioning 
• Solving β from the equation 

 

•  There are three β predictors (by data transfer type) 

WG

WC
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PG
PC
×

1

1+ PG
Q
×
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Total workload size 

HW capability ratios 

Data transfer size 

β predictor 

β =
RGC
1+ RGC

β =
RGC

1+ v
w
×RGD + RGC

β =
RGC −

v
w
×RGD

1+ RGC

No data transfer Partial data transfer Full data transfer 



Making the decision in practice 
•  From β to a practical HW configuration 

Calculate NG and NC 
NG = n xβ 
NC = n x (1-β)  

NG<its lower 
bound 

Only-CPU 

Nc<its lower 
bound 

Only-GPU 

Round up NG  

CPU+GPU 
Final NG and NC 

Y 

N 

Y 

N 

NG: GPU partition size 
NC: CPU partition size 



Extensions 
• Different profiling options 

•  Online vs. Offline profiling 
•  Partial vs. Full profiling 

• CPU+Multiple GPUs 
•  Identical GPUs  
•  Non-identical GPUs (may be suboptimal) 

# runs
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er

he
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n

w
v

profile partial workload WV 

WV = v×n

vmin ≤ v ≤ w



Glinda outcome 
•  (Any?) data-parallel application can be transformed to 

support heterogeneous computing 
 
• A decision on the execution of the application 

•  only on the CPU 
•  only on the GPU 
•  CPU+GPU 

•  And the partitioning point  

20 



How to use Glinda?  
• Profile the platform: RGC, RGD 
• Configure and use the solver: β 
•  Take the decision: Only-CPU, Only-GPU, CPU+GPU (and 

partitioning) 
•  if needed, apply the partitioning 

• Code preparation 
•  Parallel implementations for both CPUs and GPUs 
•  Enable profiling and partitioning 

• Code reuse 
•  Single-device code and multi-device code are reusable for different 

datasets and HW platforms 



Results [1] 
• Quality (compared to an oracle) 

•  The right HW configuration in 62 out of 72 test cases 
•  Optimal partitioning  
when CPU+GPU is selected 
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Predicted 
partitioning 

Optimal 
partitioning 
(auto-tuning) 



Results [2] 
• Effectiveness (compared to Only-CPU/Only-GPU) 

•  1.2x-14.6x speedup 
•  If taking GPU for granted, up to 96% performance will be lost 
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Only-
GPU Our config 

Only-
CPU 



Summary: single-kernel static partitioning 
•  It targets single-kernel data parallel applications 
•  It computes a static partitioning before runtime 
•  The challenge is to determine the optimal partitioning by 

building prior knowledge 
•  We are not the only one 

•  Online-profiling + analytical modeling: Ginda 
•  Offline-training + analytical modeling (curve fitting): Glinda, Qilin 
•  Offline-training + machine learning: Insieme, work from U. Edingburgh 



Glinda achieves similar or better performance 
than the other partitioning approaches with 
less cost 

Related work  



More advantages …  
• Support different types of heterogeneous platforms 

•  Multi-GPUs, identical or non-identical 

• Support different profiling options suitable for different 
execution scenarios 
•  Online or offline 
•  Partial of full 

• Determine not only the optimal partitioning but also the 
best hardware configuration  
•  Only-GPU / Only-CPU / CPU+GPU with the optimal partitioning 

• Support both balanced and imbalanced applications 



More about Glinda 
• Simplistic application modeling >> Imbalanced 

applications 
• Better than profiling?  >> Performance modeling  
• Single GPU only? >> NO, we support multiple GPUs/

accelerators on the same node  
• Single node only? >> YES – for now . 
 



What if …  
• … we have multiple kernels?  
• … Can we still do static partitioning ?  

Thousands	
  of	
  Cores 

Mul?ple	
  
Cores 



Multi-kernel applications? 
• Use dynamic partitioning: OmpSs, StarPU 

•  Partition the kernels into chunks 
•  Distribute chunks to *PUs 
•  Keep data dependencies 
•  Enabling multi-kernel asynchronous execution (inter-kernel 

paralelism) 
•  Respond automatically to runtime performance variability 
•  (Often) lead to suboptimal performance  

•  Scheduling policies and chunk size 
•  Scheduling overhead (taking the decision, data transfer, etc.) 

Static partitioning: low applicability, high performance.  
Dynamic partitioning: low performance, high applicability.  

Can we get the best of both worlds?  



How to satisfy both requirements? 
• We combine static and dynamic partitioning 

•  We design an application analyzer that chooses the best performing 
partitioning strategy for any given application 

source 
code

(2) Analyze the app 
kernel structure

(1) Implement 
the app

App 
class 

(3) Select the 
partitioning strategy

Partitioning strategy 
repository

(4) Enable the 
partitioning in the code

App 
classification

Implement/get  
the source code 

Analyze  
application’s class 

Select a  
partitioning strategy 

Enable 
the partitioning 



Application classification 
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Partitioning strategies 

GPU CPU GPU CPU

GPU CPU

GPU CPU

k0 k0

k1

k2

GPU CPU

GPU CPU

GPU CPU

k0

k1

k2

global sync

global sync

global sync

k0

k1

GPU 

CPU thread 0

data dependency
chains

scheduling policies
DP-Dep or DP-Perf

CPU thread 1

thread 0 thread 1

• SP-Varied• SP-Unified• SP-Single

• DP-Dep & DP-Perf

scheduled
partitions

Static partitioning: 
single-kernel applications 

Implement/get 
the source code 

Analyze  
application’s class 

Select a  
partitioning strategy 

Enable 
the partitioning 

Dynamic partitioning: 
multi-kernel applications 



Implement  
the source code 

Analyze  
application’s class 

Select a  
partitioning strategy 

Enable 
the partitioning 

Partitioning strategies 
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• SP-Varied• SP-Unified• SP-Single
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scheduled
partitions

Static partitioning: in Glinda 
single-kernel + multi-kernel applications 

Dynamic partitioning: in OmpSs 
multi-kernel applications (fall-back scenarios) 



Putting it all together: Glinda 2.0 



Results [4] 
• MK-Loop (STREAM-Loop) 

•  w/o sync:  SP-Unified > DP-Perf >= DP-Dep > SP-Varied 
•  with sync:  SP-Varied > DP-Perf >= DP-Dep > SP-Unified 
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Results: performance gain 
• Best partitioning strategy vs. Only-CPU or Only-GPU 
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Average: 
3.0x (vs. Only-GPU) 
5.3x (vs. Only-CPU) 



Summary: Glinda 
• Computes (close-to-)optimal partitioning  
• Based on static partitioning  

•  Single-kernel  
•  Multi-kernel (with restrictions)  

• No programming models attached  
•  CUDA + OpenMP/TBB  
•  OpenCL  
•  … others => we propose HPL  



What if … 
• … static partitioning is not an option  

•  Application with phases  
•  Depdencies  
•  …  

• Glinda is no longer an option L 

• Use dynamic partitioning 

Thousands	
  of	
  Cores 

Mul?ple	
  
Cores 



Dynamic partitioning: StarPU, OmpSS 

...
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PART V 
Tools for heterogeneous processing  



In this context … 
Tool for heterogeneous computing = some solution that mixes 
a heterogeneous computing front-end *and* a CPU+GPU back-
end  
•  High level of abstraction => productivity  
•  Compiler/run-time system => performance  
 
Examples: 
•  HPL = library 

•  Dedicated API (front-end) 
•  OpenCL (back-end) 

•  OmpSS = pragma’s + runtime-system  
•  C/sequential + pragmas (front-end) 
•  Dedicated run-time system 

•  StarPU = programming model + runtime-system  
•  Dedicated API (front-end) 
•  Dedicated run-time system  



HPL  
(HETEROGENEOUS 
PARALLEL LIBRARY) 
Implementing static partitioning  



Purpose 
•  Library to program heterogeneous systems 

•  Expressive 
•  Easy to use 
•  Portable (uses OpenCL as backend) 
•  No need to learn new languages 
•  Good performance 
•  Facilitate code space exploration 



HPL Basics 
• Key concepts 

•  Kernels: functions that are evaluated in parallel by multiple threads 
on any device 
•  Can be written either in standard OpenCL or in a language embedded in 

C++ 
•  Data types to express arrays and scalars that can be used in 

kernels and serial code 

• Kernel code can be generated at runtime 
•  Eases specialization, code space search 



HPL hardware model 
• Serial code runs in the host 
• Parallel kernels can be run everywhere 
• Processors can only access their device memory 



HPL memory model 
•  Four kinds of memory in devices: 

•  Global: accessible for reading and writing by all the processors in a 
device 

•  Local: fast scratchpad that can be shared by a group of threads 
•  Constant: writeable by the host, but only readable for the device 

processors 
•  Private: owned by each thread 



Kernel evaluation index space 
• Global domain required 

•  Provides unique ID for each parallel thread 

• Optional local domain 
•  Threads in the same local domain can share scratchpad and 

synchronize with barriers 



Arrays 
• Array<type, ndims [,memFlag]> : ndims-dimensional array 

of elements of type type that can be used both in host 
code and kernels 
•  Example: Array<float, 2> mx(100, 100); 
•  memoryFlag can be Global, Local, Constant or Private. Appropriate 

default values. 

• Scalars: expressed either with specialized types (Int, 
Float, Double, …) or with ndims=0 



Array indexing 
•  In kernels 

•  Only scalar indexing, using []: mx[i][j] 

•  In host code: 
•  Scalar indexing, using (): mx(i,j) 
•  Subarray selection using () and Ranges: mx(Range(0,9), 

Range(100,109)) 
•  Range(a,b) is inclusive (means[a,b]) 
•  Subarrays can be used as kernel arguments and in assignments: 

x(Range(a,b)) = y(Range(c,d)) 



Arrays (cont) 
• Arrays are logical units, not physical buffers 

•  Each Array is associated to buffers in different memories under the 
hood 

•  The runtime automatically keeps coherent these hidden 
copies 

• Users just access each Array in the host and the kernels 
as a single entity, relying on sequential consistency 

• No specification of buffers and data transfers! 



HPL Kernels 
• Can be written using a language embedded in C++ 

provided by HPL 
•  The kernel code is generated at runtime 
•  Allows to adapt it to the device, inputs, etc. 

• Can be written using standard OpenCL C 
•  Can reuse existing codes 

•  In both cases the kernel is associated to a C++ function 
whose parameters are those of the kernel 



HPL language 
• Control flow structs with underscore 

•  if ð if_;  else ð else_; for ð for_ (with commas separating the 
arguments); … 

• Predefined variables 
•  idx, idy, idz ð id for 1st, 2nd and 3rd dimension within global 

domain 
•  lidx, lidy, lidz ð idem for the local id 
•  Similar ones for the group id, the sizes of the domains, etc. 

• Predefined functions 
•  E.g.: barrier: barrier between threads in a group 



How to execute a kernel 
•  eval(f)(args) parallel evaluation of kernel on the 

arguments specified 
•  Global domain defaults to the size of the first argument 
•  eval(f).global(x,y,z).local(a,b,c).device(d) allows to specify the 

domain sizes and the device to use 

• HPL has API to find devices and properties 
• Several devices can be used in parallel 
•  If the CPU supports OpenCL, it is also a device 



Example 1: SAXPY (Y=a*X+Y) 
#include "HPL.h”
using namespace HPL;

float v[1000];

Array<float, 1> x(1000); //host memory managed by HPL
Array<float, 1> y(1000, v); //v used as host memory for y

void saxpy(Array<float,1> y, Array<float,1> x, Float a) {
   y[idx] = a * x[idx] + y[idx];
}

int main() {
   float a; //C scalar types are allowed as eval arguments 
   //the vectors and a are filled in with data (not shown)
   eval(saxpy)(y, x, a);
}



Example 2: A dot product 
void dotp(Array<float,1> v1, Array<float,1> v2, 

   Array<float, 1> pSums) {
  Array<float, 1, Local> sharedM(M);
  Int i;

  sharedM[lidx] =  v1[idx] * v2[idx];
  barrier(LOCAL);
  
  if_( lidx == 0 ) {
     for_( i = 0, i < M, i++ ) {
        pSums[gidx] += sharedM[i];
     }
  }
}
 . . .
  
eval(dotp).global(N).local(M)(v1, v2, pSums);
//reduces pSums in the host
result = pSums.reduce(std::plus<float>()); 



Kernel code generation 
•  The code is executed as regular C++ 
• HPL elements capture the code of the kernels, generating 

an AST 
• Simple analyses are performed 

•  e.g.: which arrays are read, written or both 
•  Enables automated management of array transfers, minimizing them 



Meta-programming 

• Regular C++ can be interleaved in the kernels  
•  It is not captured ð it does not generate code 
• But it can control the code generated 

•  Conditional/repetitive generation of code 

 
if(problem_size > N) { 
  for(int i = 0; i < 16; i++) { 
    //C++ code with HPL Arrays/control structs (generates OpenCL 
code). Should use ‘i’ to benefit from unroll 
  } 
} else { 
   // Other C++ code with HPL Arrays/control  
} 

Unroll 16 
iterations 

Select 
code 

version 



Using OpenCL kernels 

const char *opencl_kernel = TOSTRING( 
  __kernel void saxpy(__global float *y, __global float *x, float a) { 
    const size_t id = get_global_id(0); 
    y[id] = a * x[id] + y[id]; 
  } 
); 
 
void kernel(InOut< Array<float, 1 >> y, In< Array<float, 1 >> x, Float a){} 
 
. . . 
Array<float, 1> y(1000), x(1000); 
float a; 
. . . 
nativeHandle(kernel, “saxpy”, opencl_kernel); 
eval(kernel)(y, x, a); 

1. String 
with kernel 

2. Handle with labels to indicate whether 
arguments are in, out or both 

3. Associate handle, kernel 
name and string with its code 

4. Enjoy 



Dividing work among devices 
•  Three possibilities in HPL 

•  By hand: choose subarrays to process in each device 
•  Annotations: marking which dimension of the arguments to partition 

among the devices 
•  Using an ExecutionPlan 

•  Provide devices to use 
•  Provide % of the problem to be run in each device or ask the 

ExecutionPlan to search for the best partitioning 



HPL: Summary 
• HPL facilitates programming heterogeneous systems 

using C++ 
• Average programmability improvement of 30-44% over 

OpenCL 
•  Typical performance overhead << 5% 
• Available with manual under GPL license at 

http://hpl.des.udc.es 



Ongoing work 
• Enhancements to provide fault-tolerance to 

heterogeneous applications 
•  To be published soon in a prestigious journal 

• Extension to easily program heterogeneous clusters 
•  Works great. Ready for submission  

•  Just-in-time compiler for adaptive codes 
•  Polishing 



Most relevant publications 
•  Basics: M. Viñas, Z. Bozkus, B.B. Fraguela. ‘Exploiting 

heterogeneous parallelism with the Heterogeneous 
Programming Library’. J. Parallel and Distributed Computing, 
73(12):1627-1638. 2013 

•  Kernel code exploration: J.F. Fabeiro, D. Andrade, B.B. 
Fraguela. ‘Writing a performance-portable matrix multiplication’. 
Parallel Computing, 52:65-77. 2016 

•  Partitioning work on devices: M. Viñas, B.B. Fraguela, D. 
Andrade, R. Doallo. ‘High Productivity Multi-device Exploitation 
with the Heterogeneous Programming Library’. J. Parallel and 
Distributed Computing, 101:51-68. 2017 



Templates 

  template<typename T>
  void add(Array<T, 2> a, Array<T, 2> b, Array<T, 2> c) {
     a[idx][idy] =  b[idx][idy] + c[idx][idy];  
  }

 . . .

  Array<float, 2> av(N,N), bv(N,N), cv(N,N);
  Array<int, 2> avi(M,M), bvi(M,M), cvi(M,M);

//We use addv to add floats
  eval(addv<float>)(cv, av, bv);
  
//We use addv to add ints
  eval(addv<int>)(cvi, avi, bvi);



Kernel invocation process 



Speedup of GPU EP with respect to CPU 
sequential 



Speedups in GPU with respect to CPU 
execution 



Overhead of HPL with respect to OpenCL 



STARPU 
Task parallelism and smart scheduling  



Heterogeneous Task Scheduling 
Goal of StarPU: schedule a task-parallel application on a 
platform equipped with accelerators: 
  
• Adapt to heterogeneity 

•  Decide about tasks to offload 
•  Decide about tasks to keep on CPU 

• Communicate with discrete accelerator board(s) 
•  Send computation requests 
•  Send data to be processed 
•  Fetch results back 

• Adapt for performance 
•  Decide about worthiness 



Task parallelism 
•  Input dependencies 
• Computation kernel 
• Output dependencies 



StarPU programming model 
• Express parallelism. . . 
•  . . . using the natural program flow 
• Submit tasks in the sequential flow of the program. . . 
•  . . . then let the runtime schedule the tasks asynchronously 
 

for (j = 0; j < N; j++) {
  POTRF (RW,A[j][j]);
  for (i = j+1; i < N; i++)
    TRSM (RW, A[i][j], R,A[j][j]);
  for (i = j+1; i < N; i++) {
    SYRK (RW,A[i][i], R,A[i][j]);

 for (k = j+1; k < i; k++)
GEMM (RW,A[i][k],R,A[i][j], R,A[k][j]);

  }
}
__wait__();



Tasks 
•  Task Relationships 
• Abstract Application Structure 
• Directed Acyclic Graph (DAG) 



StarPU Execution model 
Task Scheduling: 
• Mapping the graph of tasks (DAG) on the hardware 
• Allocating computing resources 
• Enforcing dependency constraints 
• Handling data transfers 



Single DAG, multiple schedules 



Terminology 
• Codelet 

•  . . . relates an abstract computation kernel to its implementation(s) 
•  . . . can be instantiated into one or more tasks 
•  . . . defines characteristics common to a set of tasks 

•  Task 
•  . . . is an instantiation of a Codelet 
•  . . . atomically executes a kernel from its beginning to its end 
•  . . . receives some input 
•  . . . produces some output 

• Data handle 
•  . . . designates a piece of data managed by StarPU 
•  . . . is typed (vector, matrix, etc.) 
•  . . . can be passed as input/output for a Task 



API 
•  Initializing/Ending a StarPU session 
• Declaring a codelet 
• Declaring and Managing Data 
• Writing a Kernel Function 
• Submitting a task 
• Waiting for submitted tasks 
•  Team 



Programming  
• Scaling a vector  



Heterogeneity at kernel level 
• Heterogeneity: Device Kernels 
• Extending a codelet to handle heterogeneous platforms 
• Multiple kernel implementations for a CPU 
•  – SSE, AVX, ... optimized kernels 
• Kernels implementations for accelerator devices 
•  – OpenCL, NVidia Cuda kernels 



A kernel implementation 



StarPU scheduling 
Basic policies: 
•  The Eager Scheduler : FCFS 
•  The Work Stealing Scheduler : Load Balancing  

“Informed” policies  
•  The Prio Scheduler – based on task priorities  
•  The Deque Model Scheduler – based on HEFT  

•  Uses codelet performance models  
•  History-based  
•  Statistical (regression) 

To set scheduler: export STARPU_SCHED = prio/dm/…  



StarPU data management  
• Handles dependencies  
• Handles scheduling  
• Handles data consistency (MSI) 

 



Data Transfer Cost Modelling 
• Discrete accelerators 

•  CPU to GPU transfers are expensive  
•  Weigh data transfer cost vs kernel offload benefit 

•  Transfer cost modelling 
•  Bus calibration 

•  Can differ even for identical devices 
•  Platform’s topology 

• Data-transfer aware scheduling 
•  Deque Model Data Aware (dmda) scheduling policy variants 
•  Tunable data transfer cost bias 

•  Locality vs. load balancing 



Data prefetching & partitioning 
• Attempts to predict data to be used => prefetch 

•  Manual  

• Supports data partitioning  
•  As close as it gets to static partitioning  



Data partitioning  
• Support for data parallelism 

•  Data can be accessed at different granularity levels in different 
phases  



StarPU: summary    
•  Implement the sequential task flow programming model 
•  Map computations on heterogeneous computing units 
•  Handles data management  

•  Transfers, locality, prefetching, scheduling …  

•  Programming Model 
•  Tasks +  Data + Dependencies  

•  Task to Task 
•  Task to Data 

•  Application Programming Interface (Library) 

•  Runtime System 
•  Heterogeneous Task scheduling 

•  User-selectable policy  



OMPSS 
An OpenMP-like task-parallel heterogeneous model 



Introduction 
• Parallel Programming Model  

•  Build on existing standard: OpenMP  
•  Directive based to keep a serial version  
•  Targeting: SMP, clusters and accelerator devices  
•  Developed at Barcelona Supercomputing Center (BSC)  

•  Mercurium source-to-source compiler   
•  Nanos++ runtime system  

• Where does it come from (a bit of history)  
•  BSC had two working lines for several years  

•  OpenMP Extensions: Dynamic Sections, OpenMP Tasking prototype  
•  StarSs: Asynchronous Task Parallelism Ideas  

•  OmpSs is folds them together  



OmpSs Execution model  
•  Thread-pool model 
• All threads created on startup 

•  One of them starts executing main 

• All get work from a task pool 
•  And can generate new work  



Memory model  
•  The programmer sees a single naming space 
•  For the runtime there are different scenarios: 

•  Pure SMP  
•  Single address space 

•  Distributed/heterogeneous ( GPUs, clusters, ...): 
•  Multiple address spaces exist 
•  Multiple copies of the same variable may exist 
•  Data consistency ensured by the implementation 



Main unit: OpenMP task  
• A task is a deferrable work with some data attached 

 #pragma omp task [clauses] 
       code−block

• A task directive can be applied to a function declaration or 
definition 
•  Calls to the function => task spawning points  



Dependence clauses  
• Express data dependencies (evaluated at runtime): 

•  input 
•  output 
•  Inout 

• Used for optimization purposes, too  
•  Scheduling: data reuse, critical path, ... 
•  Data prefetching  

#pragma omp task output(x)
  x = 5;
#pragma omp task input(x)
  printf ("%d\n”, x);
#pragma omp task inout(x)
  x++;
#pragma omp task input(x)
  printf ("%d\n”, x);



Extended expressions  
• Dependency clauses are extended to allow: 

•  Array sections: reference a range of array elements 
•  Shaping expressions: convert pointers to arrays with size 

int a [100];
int b = &a[50];

#pragma omp task input(a[10:20]) // Elements from 10 to 20
...
#pragma omp task input(b[10:20]) // Also allowed in pointers
...
#pragma omp task input(a[10;10]) // Alternative form
...
#pragma omp task input([50]b) // References an array of 50 positions



Heterogeneity support  
• Directive for device-specific information: 

 #pragma omp target [clauses]

• Clauses: 
•  device => specify a device(s) for the task (smp,cuda) 
•  copy_in, copy_out, copy_inout => computation data 

•  Extended expressions also allowed 
•  copy_deps => copy dependencies  
•  implements => may specify alternative implementation  



Example 
#pragma target device(smp) copy_deps
#pragma omp task_input ([N] c) output([N] b)
void scale_task(double *b, double *c, double s, int N) {
  int j;
  for (j=0; j<BSIZE; j++) b[j] = s * c [j];
}

#pragma omp target device(cuda) implements(scale_task)
void scale_task_cuda(double *b, double *c, double s, int N){
  const int threadsPerBlock = 128;
  dim3 dimBlock ( threadsPerBlock , 1 , 1 ) ;
  dim3 dimGrid ( si ze / threadsPerBlock +1) ;
  scale_kernel <<<dimGrid,dimBlock>>>(N,1,b,c,s) ;
}



Heterogeneity support  
• Compiler tool-chain enables heterogeneous computing  

•  Working with multiple devices architectures  
•  Multiple implementations of the same function  

 int A[SIZE]; 

#pragma omp target device (smp) copy_out([SIZE] A) 
#pragma omp task 
  matrix_initialization(A); 
#pragma omp taskwait 

#pragma omp target device (cuda) copy_inout([SIZE]A) 
#pragma omp task 
{ 
  cu_matrix_inc<<<Size,1>>>(A); 
} 



Asynchronous data-flow execution 
• Dependence clauses allow to remove synch directives 

•  Runtime library computes dependences 

int A[SIZE]; 

#pragma omp target device (smp) copy_out([SIZE] A) 
#pragma omp task out(A)
  matrix_initialization(A); 

#pragma omp taskwait 

#pragma omp target device (cuda) copy_inout([SIZE]A) 
#pragma omp task inout(A)
{ 
  cu_matrix_inc<<<Size,1>>>(A); 
} 

matrix_initialization 

cu_matrix_inc 



Synchronization 
• Using “taskwait”: 

 #pragma omp taskwait [on (expression)]
•  Suspends current task until all child tasks are completed 

•  The on clause => wait on task to produce certain data 
•  Suspends the encountering task until data is available 

dgemm(A,B,C); // 1
dgemm(D,E,F); // 2
dgemm(C,F,G); // 3
dgemm(A,D,H); // 4
dgemm(C,H,I); // 5
#pragma omp taskwait on(F)
dgemm(H,G,C); // 6
#pragma omp taskwait
print ("result C”, C) ;



Implementation  
• Mercurium Compiler 

•  Source to source compiler: from OmpSs directives to runtime calls 

• Nanos++ RTL 
•  Implement runtime services: create/execute tasks, synchronization, 

dependencies, memory consistency,… 



Run-time features  
• Schedulers (non-comprehensive list) 

•  Breadth-first:  
•  Global FCFS queue for tasks ready to execute  

•  Distributed breadth-first:  
•  multiple FCFS queues, one per thread  
•  When local queue is empty proceed work stealing  

•  Work-first scheduler:  
•  Multiple FCFS queue, one per thread 
•  FIFO access locally, LIFO access on steals  

• Priorities  
•  Supports task priorities to tune the scheduling and execution order 

•  Throttling  
•   Supports policies for task creation and/or execution  

•  E.g., Immediate vs. asynchronous  



OmpSs with GPUs : CUDA  
• C/C++ files (usually .c or .cpp) = host code  
• CUDA files (.cu) = kernel code   
 /* cuda-kernels.cu */
extern "C" {  // specify extern "C" to call from C code
__global__ void init(int n, int *x) {CUDA code here}
__global__ void increment(int n, int *x) {CUDA code here}
} /* extern "C" */

#pragma omp target device(cuda) copy_deps ndrange(1, n, 1)
#pragma omp task out(x[0 : n-1])
  __global__ void init(int n, int *x);
#pragma omp target device(cuda) copy_deps ndrange(1, n, 1)
#pragma omp task inout(x[0 : n-1])
  __global__ void increment(int n, int *x);

init(10, x); increment(10, x);
#pragma omp taskwait



OmpSs with GPUs : OpenCL 
• C/C++ files (usually .c or .cpp) = host code  
• OpenCL files (.cl) = kernel code   
 /* cuda-kernels.cu */
extern "C" {  // specify extern "C" to call from C code
__kernel void init(int n, int __global *x)      {OCL code}
__kernel void increment(int n, int __blobal *x) {OCL code}
} /* extern "C" */

#pragma omp target device(opencl) copy_deps ndrange(1,n,8) \  
  file(ocl_kernels.cl) 
#pragma omp task out(x[0 : n-1])
  void init(int n, int *x);
#pragma omp target device(cuda) copy_deps ndrange(1, n, 1)
#pragma omp task inout(x[0 : n-1])
  void increment(int n, int *x);
…
init(10, x); increment(10, x); … 



OmpSs: Summary  
• Easy-to-use 

•  OpenMP model  
•  Task-based  

• No embedded support for data-parallelism 
•  Has to be “emulated” by tasks  

• Run-time optimization is their core research  
•  User kept “out-of-the-loop” 

 
• WiP: Glinda + OmpSS  



CASHMERE + MCL 
A divide-and-conquer approach  



Cashmere* [C-1] 
• Dynamic runtime support for distributed heterogeneous 

clusters  
•  Specific for divide-and-conquer 

• Provides scalability on heterogeneous many-core 
clusters: 
•  scalability in performance 
•  scalability in optimizing kernels 

•  Integrates two frameworks: 
•  Satin [C-2] 
•  MCL [3] * What’s in a name?   

Cilk è Satin è Cashmere 
Higher quality fabric with fine threads 



Satin  
• Divide-and-conquer 

•  automatic load balancing due to job stealing 



Cashmere 
•  Two-level divide-and-conquer 

•  Cluster: load balancing with job stealing 
•  Node: multiple devices per node 

•  overlap data-transfers with kernel execution 



Many Core Levels (MCL) 
• A program is an algorithm mapped to hardware 
 
 
 
 
 
 

• Write kernels in MCL 
• Receive performance feedback 



Multiple Abstraction Layers  



Performance feedback  
• Based on knowledge of the hardware 

Example feedback: 
Using 1/8 blocks per smp. Reduce the amount of shared memory used by storing/
loading shared memory in phases.  



Programmer’s interface  
•  The MCL compiler generates OpenCL code (node-level) 

and Cashmere code (cluster-level)  
•  Based on divide-and-conquer => runtime system is much lighter 

than StarPU or OmpSs => lower overhead 

• Calling a kernel: 
  1 leaf(a,b) {

2   try {
3     Kernel kernel = Cashmere.getKernel();
4     KernelLaunch kl = kernel.createLaunch ();
5     MCL.launch(kl, a, b);
6   catch ( exception ) {
7 leafCPU ( a,b )
8 }}



Insight in performance 



Cashmere: Summary 
• MCL makes optimizing kernels for many devices possible 

•  seamless integration of many-core functionality 

• High performance, scalability, and automatic load 
balancing even for widely different many-cores 

• Efficiency >90% in 3/4 applications in heterogeneous 
execution 
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End of part V  
• Questions ?  


