HETEROGENEOUS
CPU+GPU
COMPUTING

Ana Lucia Varbanescu — University of Amsterdam
a.l.varbanescu@uva.nl

Significant contributions by: Stijn Heldens (U Twente),

Jie Shen (NUDT, China), Basilio Fraguela (A Coruna
University, ESP),

PART IV

Static and dynamic partitioning in practice

Heterogeneous Computing PMs

High productivity; not Domain and/or A
all applications are High application specific.
easy to implement. level Focus on: productivity
and performance y
OpenACC, HyGraphW
OmpSS, StarPU, Cashmere
Generic PL GlassWing Specific

OpenCL, TOTEM,

OpenMP+CUDA

S

(The most common atm.
Useful for performance, Low
more difficult to use in level
_practice)

Domain specific, focus
on performance.
More difficult to use.

Heterogeneous Computing today

[Limited applicability. Single Not interesting, |
Low overhead => high kernel given that static &
performagg;gtemslframeworks' run-time based
Qilin, Insieme, SKMD, SyStems exist
Glinda, ... Sporradic attempts
Libraries: HPL, ... and light runtime
Static systems Dynamic

Glinda 2.0 Run-time based systems:

StarPU

l\ OmpSS
[L head => high

ow overhead => hi i i ~ahili
g Multi-kernel H.|gh Applicability,
performance high overhead

\Still limited in applicability.) (complex) DAG

GLINDA

Computing static partitioning

Glinda: our approach®

- Modeling the partitioning
- The application workload
- The hardware capabilities
- The GPU-CPU data transfer

- Predict the optimal partitioning

- Making the decision in practice
- Only-GPU
- Only-CPU
- CPU+GPU with the optimal partitioning

*Jie Shen et al.,, HPCC’14.
“Look before you Leap: Using the Right Hardware.
Resources to Accelerate Applications

Modeling the partitioning

- Define the optimal (static) partitioning T +T =T
- 3= the fraction of data points assigned to the GPU G D ¢

)

Ue Td+Tp)

The right partition point

0 1 I3>

N
Model the app workload

n: the total problem size
w: workload per work-item

. S
Model the app workload

n-1
W= zwi ~ the area of the rectangle
i=0

@7
n: the total problem size o \ o
. . GPU partition V' N CPU partition
w: workload per work-item l

x (1-B)

B L1B

W (total workload size) quantifies how
much work has to be done

L
Modeling the partitioning

TG=% TC=% TD=Q * W=W;+Wc
s Fe 0
/Two pairs of metrics \

W: total workload size
P: processing throughput (W/second)

O: data-transfer size
kQ: data-transfer bandwidth (bytes/second) /

W, P, 1

- = X
T,+T,=T. WD W, P .k

P
X
Q

0,
We

.. B
Model the HW capabillities

- Workload: Wg + W, =W
- Execution time: T and T,
- P (processing throughput)

- Measured as workload processed per second
- P evaluates the hardware capability of a processor

GPU kernel execution time: T.=W /P
CPU kernel execution time: T.=W /P,

Model the data-transfer

- O (GPU data-transfer size)

- Measured in bytes

- Q (GPU data-transfer bandwidth)

- Measured in bytes per second

Data-transfer time: TD=0/Q + (Latency)
Latency < 0.1 ms, negligible impact

Predict the partitioning ...
TG=% TC=% TD=Q
Fe Fe Q
[&J’Gx ;o
I.+T,=T. ~wWww») w, P, B, O
. 0 W,

... by solving this equation in 3

I | S
Predict the partitioning

- Solve the equation

Ws
We

B-dependent terms

Expression
We=w xn x
W=w x n x (1-B)

O=Full data transfer or
Full data transfer x B

N
Predict the partitioning

- Solve the equation

Wsll
We

B-dependent terms B-independent terms

Expression Estimation
We=w xn x
W=w x n x (1-B)

O=Full data transfer or
Full data transfer x B

Modeling the partitioning

- Estimating the HW capability ratios by using profiling
- The ratio of GPU throughput to CPU throughput
- The ratio of GPU throughput to data transfer bandwidth

?;U C;U

O

WG
ﬁ/ —
RG D

R
G.C . GPU data-transfer time vs.
CPU kernel execution time vs. GPU kernel execution time

GPU kernel execution time

L
Predicting the optimal partitioning

- Solving 3 from the equation

Total workload size (")
N (W R
HW capability ratios mmp | W. P. - P, y O | mmppredictor
Data transfer size ’ _ Q0 W,

- There are three (3 predictors (by data transfer type)

.
5 R, p Ree = i X Ry,

1+1><RGD+RGC 1+ R
w

_ RGC
1+R..

p

No data transfer Partial data transfer Full data transfer

Making the decision in practice

- From [3 to a practical HW configuration

Calculate Ng and N

Ng =n xB Ns: GPU partition size
Nc =nx (1-B) Nc: CPU partition size
N<its lower N
bound v
\l' Y N.<its lower N
bound v
Only-CPU lY Round up Ng
Only-GPU l
CPU+GPU

Final Ng and N

Extensions

- Different profiling options
- Online vs. Offline profiling
- Partial vs. Full profiling

= A
= 5 Online A
O ®
a2 :
= £ | Offline
o 2
© O W
>
© v
runs n

<€ >

- CPU+Multiple GPUs
- ldentical GPUs
- Non-identical GPUs (may be suboptimal)

profile partial workload WV

Vg SV=EW

Glinda outcome

- (Any?) data-parallel application can be transformed to
support heterogeneous computing

- A decision on the execution of the application
- only on the CPU
- only on the GPU

- CPU+GPU
- And the partitioning point

How to use Glinda?

- Profile the platform: RGC, RGD
- Configure and use the solver: 3

- Take the decision: Only-CPU, Only-GPU, CPU+GPU (and
partitioning)
- if needed, apply the partitioning

- Code preparation
- Parallel implementations for both CPUs and GPUs

- Enable profiling and partitioning
- Code reuse

- Single-device code and multi-device code are reusable for different
datasets and HW platforms

P
o) o 2
T < c =
Lc =€ 5
C .m a o —)
— 4 m -—_— 1
© © S 0 T
O & 2t 5
0 OIS O m © PSS ©
q JNIAX X XA ~] ©
s PO
= - R XK XK RXKXXRXXXA
1 e —

G DL 00000000009 7
N Vavavawvawawvavi B\
l I _ 1
To) < ™ o - -
o o o o o
- ~— ~— ~— ~—

(sw) awi uoinNdaxIJ

The right HW configuration in 62 out of 72 test cases
Optimal partitioning

when CPU+GPU is selected

- Quality (compared to an oracle)

Results [1]

_.\\ \oe
t
S
b - ...233.2332%
)-».»»»»»»»»»»»»»»»
U m _w
D. M-
” M
G lm hEu 0000000000000000000.
. S| .mmmwmmmmmbmwmmmmmm
y e
I C e
n n - o
O a
.7
Wm]-mmm ,,
D. O mmm
fn _ _ _ _
C W%Jsm4m3mzm1,o.14o
- Il ..I
N,%nm
n 6
O 9
O m
._I. p]
d u / _ _ _ _
n_ru |0.. - .\ O@
a ._nlu WJJ
p n m m | %o
E ol o
O >0 O
O 7 5 al
[r— S (D) ..m o
N 383 |
% n al prm——
X O B
N T3 o
g - —
-— '
> O
u % 2 w o 3; “2_ 1_ 4_I 1_ S
N e o = aly = @ > %
D g - - (sw) swi uonnoaxg
Yy -

Summary: single-kernel static partitioning

- It targets single-kernel data parallel applications
- It computes a static partitioning before runtime

- The challenge is to determine the optimal partitioning by
building prior knowledge
- We are not the only one
+ Online-profiling + analytical modeling: Ginda
- Offline-training + analytical modeling (curve fitting): Glinda, Qilin
- Offline-training + machine learning: Insieme, work from U. Edingburgh

Related work

Glinda achieves similar or better performance

than the other partitioning approaches with

less cost
Machine 1 ing [1 ilin [3
achine learning [1,2] Qilin [3] Online Offline
_ -+
Cost (in relative | Collection et) ~ +
. (depending on m)
comparison,
+++ large, Training ++/++ + 0 -
++ medium,
+
small, | Deployment | . 1uding code analysis) 0 0 0
~ minor,
0 zero) Adaption e i +
P (depending on m)
[1]: 85%
[2] with SVM: 83.5% 94% (of the
1% (of % (of th
Performance [2] with ANN: 87.5% approximated 1% .(o the | 90% (ot e
. . optimal) optimal)
(of the approximated optimal)

optimal)

More advantages ...

- Support different types of heterogeneous platforms
- Multi-GPUs, identical or non-identical

- Support different profiling options suitable for different
execution scenarios
+ Online or offline
- Partial of full

- Determine not only the optimal partitioning but also the
best hardware configuration
- Only-GPU / Only-CPU / CPU+GPU with the optimal partitioning

- Support both balanced and imbalanced applications

More about Glinda

- Simplistic application modeling >> Imbalanced
applications

- Better than profiling? >> Performance modeling

- Single GPU only? >> NO, we support multiple GPUs/
accelerators on the same node

- Single node only? >> YES — for now .

L
What if ...

- ... we have multiple kernels?
- ... Can we still do static partitioning ?

CPU
Multiple

| Cores
4

\ —

4

Thousands of Cores

e
Multi-kernel applications?

- Use dynamic partitioning: OmpSs, StarPU
- Partition the kernels into chunks
- Distribute chunks to *PUs
- Keep data dependencies

Static partitioning: low applicability, high performance.

Dynamic partitioning: low performance, high applicability.

- Scheduling policies and chunk size

Can we get the best of both worlds?

How to satisfy both requirements?

- We combine static and dynamic partitioning

- We design an application analyzer that chooses the best performing
partitioning strategy for any given application

-

(1) Implement source (2) Analyze the app App | (3) Select the]| (4) Enable the
the app code kernel structure class partitioning strategy partitioning in the code
— __—

App Partitioning strategy
classification repository

(¥)

Implement/get Analyze Select a Enable
the source code application’s class partitioning strategy the partitioning

Application classification

5 application classes |

| v

kO k1

kn

v
] I Il \Y Y
: SK-One SK-Loop MK-Seq MK-Loop MK-DAG

Implement/get Analyze Select a Enable
the source code application’s class partitioning strategy the partitioning

Partitioning strategies

Static partitioning: Dynamic partitioning:
single-kernel applications multi-kernel applications

Implement/get

[Select a] Enable
the source code partitioning strategy the partitioning

Partitioning strategies

Static partitioning: in Glinda
single-kernel + multi-kernel applications

Dynamic partitioning: in OmpSs
Implemen multi-kernel applications (fall-back scenarios)

the source code _ |_partitioning strategy | the partitioning

Putting it all together: Glinda 2.0

App classfication Partitioning strategies Repository

, /‘3 e

e 3.(2) Goto SP

dad probe

2. App analyzer

7. SP Partitioner

Q ©

3.(1) Goto DP 5. HW profiler I Auto-tuner Predictor:

o o e e . . — o — -

1. Input data hmaker

Y

8. Executlion unit

YY

3.(1) DP Partitioner

w
9. Code library

L
Results [4]

- MK-Loop (STREAM-Loop)
- w/o sync: SP-Unified > DP-Perf >= DP-Dep >
- with sync: SP-Varied > DP-Perf >= DP-Dep > SP-Unified

6000 7133.2

Only-GPU
Only-CPU
5000 | SP-Unified
DP-Perf
DP-De
4000 'SP-Varl?ed w

g

3000 r

2000 r

1000 |

Execution time [ms]

STREAM-Loop-w/o STREAM-Loop-w

1

performance ga

Results

- Best partitioning strategy vs. Only-CPU or Only-GPU

53
5 S
= $ X3
:m 5 & c C
I AW% O v w
GO .. —— O () B G
le)e) AN:O C = <
NI 5 X X
29 Sv\ o
e @w > 0O M
D pw.o» <MW
mnm 4@1@
g %)
SN
S &
& &
BN O
2 3
&
&L
s L
S
e
fa\ OUyGS
ol ,OW
%)
ol
N
o 3
3
5
X

OCoOOOOMNOUOOTOAN O
—

dnpaadg asuewsojiad

e
Summary: Glinda

- Computes (close-to-)optimal partitioning
- Based on static partitioning

- Single-kernel

- Multi-kernel (with restrictions)

- No programming models attached
- CUDA + OpenMP/TBB
- OpenCL
- ... others => we propose HPL

What if ...

- ... static partitioning is not an option
- Application with phases

- Depdencies
. EEEE---
,I

- Glinda is no longer an option ®

- Use dynamic partitioning

CPU
Multiple
Cores

Thousands of Cores

Dynamic partitioning: StarPU, OmpSS

k2,k3,k4

Runtime system

» Partitioning &
Scheduling

& un

kO,k1,k5 Multiple

- Cores

Hundreds of Cores

PART V

Tools for heterogeneous processing

In this context ...

Tool for heterogeneous computing = some solution that mixes

a hdeterogeneous computing front-end *and® a CPU+GPU back-
en

- High level of abstraction => productivity
- Compiler/run-time system => performance

Examples:
- HPL = library
- Dedicated API (front-end)
- OpenCL (back-end)
- OmpSS = pragma’s + runtime-system
- C/sequential + pragmas (front-end)
- Dedicated run-time system
- StarPU = programming model + runtime-system
- Dedicated API (front-end)
- Dedicated run-time system

HPL
(HETEROGENEOUS
PARALLEL LIBRARY)

Implementing static partitioning

Purpose

- Library to program heterogeneous systems
- Expressive
- Easy to use
- Portable (uses OpenCL as backend)
- No need to learn new languages
- Good performance
- Facilitate code space exploration

L
HPL Basics

- Key concepts

- Kernels: functions that are evaluated in parallel by multiple threads
on any device

- Can be written either in standard OpenCL or in a language embedded in
C++

- Data types to express arrays and scalars that can be used in
kernels and serial code

- Kernel code can be generated at runtime
- Eases specialization, code space search

HPL hardware model

- Serial code runs in the host
- Parallel kernels can be run everywhere
- Processors can only access their device memory

Device 0
Host
Memory — Processors
o
o
Memory Device N-1
— Memory — Processors

HPL memory model

- Four kinds of memory in devices:

- Global: accessible for reading and writing by all the processors in a
device

- Local: fast scratchpad that can be shared by a group of threads

- Constant: writeable by the host, but only readable for the device
processors

- Private: owned by each thread

Kernel evaluation index space

- Global domain required
- Provides unique ID for each parallel thread
- Optional local domain

- Threads in the same local domain can share scratchpad and
synchronize with barriers

rou 8 threads globally rou
09 = =)
(0,3) | (0,4)
(1,3) | (1,4)
2,3) | (2,4)
(3,3) | (3,4)

Alreqolb
speaiy} ¢

2 threads
locally

group |< 4 threads locally >| group
(1,0) (1,1)

e
Arrays

- Array<type, ndims [,memkFlag]> : ndims-dimensional array
of elements of type type that can be used both in host
code and kernels
- Example: Array<float, 2> mx(100, 100);

- memoryFlag can be Global, Local, Constant or Private. Appropriate
default values.

- Scalars: expressed either with specialized types (Int,
Float, Double, ...) or with ndims=0

Array indexing

- In kernels
- Only scalar indexing, using []: mx{i][j]
- In host code:
- Scalar indexing, using (): mx(i,j)
- Subarray selection using () and Ranges: mx(Range(0,9),
Range(100,109))
- Range(a,b) is inclusive (meansja,b])
- Subarrays can be used as kernel arguments and in assignments:
x(Range(a,b)) = y(Range(c,d))

Arrays (cont)

- Arrays are logical units, not physical buffers

- Each Array is associated to buffers in different memories under the
hood

- The runtime automatically keeps coherent these hidden
copies

- Users just access each Array in the host and the kernels
as a single entity, relying on sequential consistency

- No specification of buffers and data transfers!

L
HPL Kernels

- Can be written using a language embedded in C++
provided by HPL

- The kernel code is generated at runtime
- Allows to adapt it to the device, inputs, etc.

- Can be written using standard OpenCL C

- Can reuse existing codes

- In both cases the kernel is associated to a C++ function
whose parameters are those of the kernel

e
HPL language

- Control flow structs with underscore

- if = if ; else = else_; for = for_ (with commas separating the
arguments); ...

- Predefined variables

- idx, idy, idz = id for 1st, 2nd and 3rd dimension within global
domain

- lidx, lidy, lidz = idem for the local id

- Similar ones for the group id, the sizes of the domains, etc.
- Predefined functions

- E.g.: barrier: barrier between threads in a group

How to execute a kernel

- eval(f)(args) parallel evaluation of kernel on the
arguments specified

- Global domain defaults to the size of the first argument

- eval(f).global(x,y,z).local(a,b,c).device(d) allows to specify the
domain sizes and the device to use

- HPL has API to find devices and properties
- Several devices can be used in parallel
- If the CPU supports OpenCL, it is also a device

L
Example 1: SAXPY (Y=a*X+Y)

#include "HPL.h”
using namespace HPL;

float v[1000];

Array<float, 1> x(1000); //host memory managed by HPL
Array<float, 1> y(1000, v); //v used as host memory for y

void saxpy(Array<float,l1> y, Array<float,1> x, Float a) {
y[idx] = a * x[idx] + y[idx];
}

int main() {
float a; //C scalar types are allowed as eval arguments
//the vectors and a are filled in with data (not shown)
eval (saxpy) (Y, X, a);

e
Example 2: A dot product

void dotp(Array<float,1> vl1l, Array<float,1> v2,
Array<float, 1> pSums) {
Array<float, 1, Local> sharedM(M);
Int i;

sharedM[1lidx] = wvl1[idx] * v2[idx];
barrier (LOCAL);

if (lidx == 0) {
for (i =0, 1 <M, i++) {
pSums[gidx] += sharedM[i];

eval (dotp).global(N).local(M)(vl, v2, pSums);
//reduces pSums in the host
result = pSums.reduce(std::plus<float>());

Kernel code generation

- The code is executed as regular C++

- HPL elements capture the code of the kernels, generating
an AST

- Simple analyses are performed

- e.g.: which arrays are read, written or both
- Enables automated management of array transfers, minimizing them

Meta-programming

- Regular C++ can be interleaved in the kernels
- It is not captured = it does not generate code

- But it can control the code generated
- Conditional/repetitive generation of code

if(problem_size > N) { /-
for(inti=0;i<16; i++) {

//C++ code with HPL Arrays/control structs (generates OpenCL
code). Should use ‘i’ to benefit from unroll

}

} else {
// Other C++ code with HPL Arrays/control

}

e
Using OpenCL kernels

const char *opencl_kernel = TOSTRING(N

__kernel void saxpy(__global float *y, global float *x, float a) {
const size tid = get global_id(0);
ylid] = a * x[id] + y[id];

void kernel(InOut< Array<float, 1 >> vy, In< Array<float, 1 >> x, Float a){}
Array<float, 1> y(1000), x(1000);
float a;

nativeHandle(kernel, “saxp
eval(kernel)(y, x, a);

encl_kernel);

Dividing work among devices

- Three possibilities in HPL
- By hand: choose subarrays to process in each device

- Annotations: marking which dimension of the arguments to partition
among the devices
- Using an ExecutionPlan
+ Provide devices to use

- Provide % of the problem to be run in each device or ask the
ExecutionPlan to search for the best partitioning

L
HPL: Summary

- HPL facilitates programming heterogeneous systems
using C++

- Average programmability improvement of 30-44% over
OpenCL

- Typical performance overhead << 5%

- Available with manual under GPL license at
http://hpl.des.udc.es

Ongoing work

- Enhancements to provide fault-tolerance to
heterogeneous applications

- To be published soon in a prestigious journal

- Extension to easily program heterogeneous clusters
- Works great. Ready for submission

- Just-in-time compiler for adaptive codes
- Polishing

Most relevant publications

- Basics: M. Vinas, Z. Bozkus, B.B. Fraguela. ‘Exploiting
heterogeneous parallelism with the Heterogeneous
Programming Library’. J. Parallel and Distributed Computing,
73(12):1627-1638. 2013

- Kernel code exploration: J.F. Fabeiro, D. Andrade, B.B.
Fraguela. ‘Writing a performance-portable matrix multiplication’.
Parallel Computing, 52:65-77. 2016

- Partitioning work on devices: M. Vinas, B.B. Fraguela, D.
Andrade, R. Doallo. ‘High Productivity Multi-device Exploitation
with the Heterogeneous Programming Library’. J. Parallel and
Distributed Computing, 101:51-68. 2017

Templates

template<typename T>

void add(Array<T, 2> a, Array<T, 2> b, Array<T, 2> c) {
a[idx][idy] = b[idx][idy] + c[idx][idy];

}

Array<float, 2> av(N,N), bv(N,N), cv(N,N);
Array<int, 2> avi(M,M), bvi(M,M), cvi(M,M);

//We use addv to add floats
eval (addv<float>) (cv, av, bv);

//We use addv to add ints
eval (addv<int>)(cvi, avi, bvi);

Kernel invocation process

Speedup of GPU EP with respect to CPU
sequential

300

250
=
¢ 200
| -
()
Q [|HPL
>
3
@ 100}
Q.
7))
50t
0 1 1 1 1
W A B C

problem size

Speedups in GPU with respect to CPU
execution

300

I OpenCL
[JHPL

250} []

n
o
o

speedup over CPU

)]
o

o 0 _ 1

EP Floyd transpose spmv reduction
benchmark

o

L
Overhead of HPL with respect to OpenCL

S

Il Tesla C2050/C2070
"]Quadro FX 380

w
3]

w

n
3]

—
[3)

o
T

% slowdown of HPL vs OpenCL
o
» N

Floyd trans ose reduction
enchmar

STARPU

Task parallelism and smart scheduling

Heterogeneous Task Scheduling

Goal of StarPU: schedule a task-parallel application on a
platform equipped with accelerators:

- Adapt to heterogeneity
- Decide about tasks to offload
- Decide about tasks to keep on CPU

- Communicate with discrete accelerator board(s)
- Send computation requests
- Send data to be processed
- Fetch results back

- Adapt for performance
- Decide about worthiness

Task parallelism

- Input dependencies
- Computation kernel
- Output dependencies

Input dependencies

Computation kernel A = A+B
' (||
Output dependencies A S

" Task =an « elementary » computation + dependencies

StarPU programming model

- Express parallelism. . .

- ... using the natural program flow

- Submit tasks in the sequential flow of the program. . .

- ... then let the runtime schedule the tasks asynchronously

for (j = 0; j < N; j++) {
POTRF (RW,A[J]I[J])7
for (i = j+1; i < N; i++)
TRSM (RW, A[i][J], R,A[JI[I]):
for (i = j+1; i < N; i++) {
SYRK (RW,A[i][i], R,A[1][]]);
for (k = j+1; k < i; k++)
GEMM (RW,A[i][k]1,R,A[i]1[]J], R,A[k][]]
}
}

__wait_ ();

Tasks

- Task Relationships W

- Abstract Application Structure l
- Directed Acyclic Graph (DAG)

StarPU Execution model

Task Scheduling:

- Mapping the graph of tasks (DAG) on the hardware
- Allocating computing resources

- Enforcing dependency constraints

- Handling data transfers

HEL

L
Single DAG, multiple schedules

== - -
D - g
- -
CPU GPU CPU GPU CPU GPU
Multicore i Multi-GPUs
CPU | ,
CPU CPU GPU CPU GPU GPU

Terminology

- Codelet
- ... relates an abstract computation kernel to its implementation(s)
- ... can be instantiated into one or more tasks
- .. . defines characteristics common to a set of tasks

- Task
- .. .Iis an instantiation of a Codelet
- ... atomically executes a kernel from its beginning to its end
- ... receives some input
- ... produces some output

- Data handle
- ... designates a piece of data managed by StarPU
- .. .Is typed (vector, matrix, etc.)
- .. .can be passed as input/output for a Task

.,
API

- Initializing/Ending a StarPU session
- Declaring a codelet

- Declaring and Managing Data

- Writing a Kernel Function

- Submitting a task

- Waiting for submitted tasks

- Team

Programming

Scaling a vector

1 float factor = 3.14;

2 float vector[NX];

3 starpu_data handle_t vector_handle;

4

s /* ... fill vector ... %/

6

7 starpu_vector_data_register(&vector_handle, 0,

8 (uintptr_t)vector, NX, sizeof(vector[0]));
9

starpu_task_insert(
&scal cl,
STARPU_RW, vector_handle,
STARPU VALUE, &factor, sizeof(factor),
0);

- mh = = = =
o A WO N - O

starpu_task_wait_for_all();
starpu_data_unregister(vector_handle);

- ek e
w N ™

/* ... display vector ... x/

-
©w

Heterogeneity at kernel level

- Heterogeneity: Device Kernels
- Extending a codelet to handle heterogeneous platforms

- Multiple kernel implementations for a CPU

- — SSE, AVX, ... optimized kernels

- Kernels implementations for accelerator devices
- — OpenCL, NVidia Cuda kernels

struct starpu_codelet scal_cl = {
.cpu_func = { scal_cpu_func,
scal_sse_cpu_func, scal_avx_cpu_func, NULL },
.opencl_func = { scal_cpu_opencl, NULL },
.cuda_func = { scal_cpu_cuda, NULL },
.nbuffers = 1,
.modes = { STARPU_RW },

0 N OO ;AW -

[
=

A kernel implementation

\static __global __ void vector_mult_cuda(unsigned n,

float xvector, float factor){
unsigned i = blockldx .xxblockDim.x + threadldx.x;
if (i <n)

vector[i] *= factor;

}

extern "C" void scal_cuda_func(void xbuffers[], void xcl_arg){
struct starpu _vector _interface xvector_handle = buffers[0];
unsigned n = STARPU_VECTOR_GET_NX(vector_handle);
float xvector = STARPU_VECTOR_GET_PTR(vector_handle);
float xptr_factor = cl_arg;

W O N OO ;M B W -

- ek ek e e
- W NN - O

unsigned threads_per_block = 64;
unsigned nblocks = (n+threads_per_block—1)/threads_per_block;

(Y
o o,

vector_mult_cuda<<<nblocks , threads per block 0,
starpu_cuda_get local stream ()>>>(n, vector,xptr_factor);

-, =
w ~

-t
w0
[N

e
StarPU scheduling

Basic policies:
- The Eager Scheduler : FCFS
- The Work Stealing Scheduler : Load Balancing

“Informed” policies
- The Prio Scheduler — based on task priorities
- The Deque Model Scheduler — based on HEFT

- Uses codelet performance models
- History-based
- Statistical (regression)

To set scheduler: export STARPU_SCHED = prio/dm/...

StarPU data management

- Handles dependencies
- Handles scheduling
- Handles data consistency (MSI)

e
Data Transfer Cost Modelling

- Discrete accelerators
- CPU to GPU transfers are expensive
- Weigh data transfer cost vs kernel offload benefit

- Transfer cost modelling

- Bus calibration
- Can differ even for identical devices
- Platform’s topology

- Data-transfer aware scheduling

- Deque Model Data Aware (dmda) scheduling policy variants
- Tunable data transfer cost bias
« Locality vs. load balancing

L
Data prefetching & partitioning

- Attempts to predict data to be used => prefetch
- Manual

- Supports data partitioning
- As close as it gets to static partitioning

L
Data partitioning

- Support for data parallelism

- Data can be accessed at different granularity levels in different
phases

e
StarPU: summary

- Implement the sequential task flow programming model
- Map computations on heterogeneous computing units

- Handles data management
- Transfers, locality, prefetching, scheduling ...

- Programming Model

- Tasks + Data + Dependencies
- Task to Task
- Task to Data
- Application Programming Interface (Library)

- Runtime System

- Heterogeneous Task scheduling
- User-selectable policy

OMPSS

An OpenMP-like task-parallel heterogeneous model

Introduction

Parallel Programming Model

- Build on existing standard: OpenMP

- Directive based to keep a serial version

- Targeting: SMP, clusters and accelerator devices

- Developed at Barcelona Supercomputing Center (BSC)
- Mercurium source-to-source compiler
« Nanos++ runtime system

Where does it come from (a bit of history)

- BSC had two working lines for several years
- OpenMP Extensions: Dynamic Sections, OpenMP Tasking prototype
- StarSs: Asynchronous Task Parallelism ldeas

- OmpSs is folds them together

OmpSs Execution model

- Thread-pool model

- All threads created on startup
- One of them starts executing main

- All get work from a task pool oS ~
- And can generate new work

Memory model

- The programmer sees a single naming space

- For the runtime there are different scenarios:

- Pure SMP
- Single address space
- Distributed/heterogeneous (GPUs, clusters, ...):
- Multiple address spaces exist
- Multiple copies of the same variable may exist
- Data consistency ensured by the implementation

e
Main unit: OpenMP task

- A task is a deferrable work with some data attached

#pragma omp task [clauses]
code—-block

- A task directive can be applied to a function declaration or
definition
- Calls to the function => task spawning points

Dependence clauses

- Express data dependencies (evaluated at runtime):
- input
- output
- Inout

- Used for optimization purposes, too
- Scheduling: data reuse, critical path, ...
- Data prefetching

#pragma omp task output(x)
X = 5;

#pragma omp task input(x)
printf ("%d\n”, x);

#pragma omp task inout(x)
X++;

#pragma omp task input(x)
printf ("%d\n”, x);

Extended expressions

- Dependency clauses are extended to allow:
- Array sections: reference a range of array elements
- Shaping expressions: convert pointers to arrays with size

int a [100];

int b =
#pragma
#ééagma
#é;agma

#pragma

&al[50];

omp task
omp task
omp task

omp task

input(a[10:20]) // Elements from 10 to 20
input(b[10:20]) // Also allowed in pointers
input(a[10;10]) // Alternative form

input([50]b) // References an array of 50 positions

e
Heterogeneity support

- Directive for device-specific information:

#pragma omp target [clauses]

- Clauses:
- device => specify a device(s) for the task (smp,cuda)
- copy_in, copy out, copy inout => computation data
- Extended expressions also allowed
- copy_deps => copy dependencies
- implements => may specify alternative implementation

Example

#pragma target device(smp) copy_ deps

#pragma omp task input ([N] c) output([N] b)

void scale task(double *b, double *c, double s, int N) {
int j;
for (J=0; J<BSIZE; J++) b[j] = s * c []];

#pragma omp target device(cuda) implements(scale task)
void scale task cuda(double *b, double *c, double s, int N){
const int threadsPerBlock = 128;
dim3 dimBlock (threadsPerBlock , 1 , 1) ;
dim3 dimGrid (si ze / threadsPerBlock +1) ;
scale kernel <<<dimGrid,dimBlock>>>(N,1,b,c,s) ;

e
Heterogeneity support

- Compiler tool-chain enables heterogeneous computing
- Working with multiple devices architectures
- Multiple implementations of the same function

int A[SIZE];

#pragma omp target device (smp) copy out([SIZE] A)
#pragma omp task

matrix initialization(A);
#pragma omp taskwait

#pragma omp target device (cuda) copy inout([SIZE]A)
#pragma omp task

{

cu matrix inc<<<Size,1>>>(A);

}

Asynchronous data-flow execution

- Dependence clauses allow to remove synch directives
- Runtime library computes dependences

int A[SIZE];
#pragma omp target device (smp) copy out([SIZE] A)

#pragma omp task out(A)
matrix_ initialization(A); %x mutuahzatD

HForagma—onp—taskwait

#pragma omp target device (cuda) copy inout([SIZE]A
#pragma omp task inout(A)

{
cu matrJ.x inc<<<Size,1>>>(A); %matnxD
}

Synchronization

- Using “taskwait”:
#pragma omp taskwait [on (expression)]
- Suspends current task until all child tasks are completed

- The on clause => wait on task to produce certain data
- Suspends the encountering task until data is available

dgemm(A,B,C); //
dgemm(D,E,F); //
dgemm(C,F,G); //
dgemm(A,D,H); //
dgemm(C,H,I); // 5
#pragma omp taskwait on(F)
dgemm(H,G,C); // 6
#pragma omp taskwait
print ("result C”, C) ;

= W N

Implementation

- Mercurium Compiler
- Source to source compiler: from OmpSs directives to runtime calls

- Nanos++ RTL

- Implement runtime services: create/execute tasks, synchronization,
dependencies, memory consistency,...

.
v

v v |
| Native | | Native \ ‘ Native |
Compiler Compiler Compiler
' <D
Executable — ==

Run-time features

- Schedulers (non-comprehensive list)
- Breadth-first:
- Global FCFS queue for tasks ready to execute

- Distributed breadth-first:

- multiple FCFS queues, one per thread

« When local queue is empty proceed work stealing
- Work-first scheduler:

- Multiple FCFS queue, one per thread

« FIFO access locally, LIFO access on steals

- Priorities
- Supports task priorities to tune the scheduling and execution order

- Throttling

- Supports policies for task creation and/or execution
- E.g., Immediate vs. asynchronous

L
OmpSs with GPUs : CUDA

- C/C++ files (usually .c or .cpp) = host code
- CUDA files (.cu) = kernel code

/* cuda-kernels.cu */

extern "C" { // specify extern "C" to call from C code
__global void init(int n, int *x) {CUDA code here}
__global void increment(int n, int *x) {CUDA code here}
} /* extern "C" */

#pragma omp target device(cuda) copy deps ndrange(l, n, 1)
#pragma omp task out(x[0 : n-1])

__global void init(int n, int *x);
#pragma omp target device(cuda) copy deps ndrange(l, n, 1)
#pragma omp task inout(x[0 : n-1])

__global void increment(int n, int *x);

init (10, x); increment(10, x);
#pragma omp taskwait

e
OmpSs with GPUs : OpenCL

- C/C++ files (usually .c or .cpp) = host code
- OpenCL files (.cl) = kernel code

/* cuda-kernels.cu */

extern "C" { // specify extern "C" to call from C code
__kernel void init(int n, int global *x) {OCL code}
__kernel void increment(int n, int blobal *x) {OCL code}
} /* extern "C" */

#pragma omp target device(opencl) copy deps ndrange(l,n,8) \
file(ocl kernels.cl)
#pragma omp task out(x[0 : n-1])
void init(int n, int *x);
#pragma omp target device(cuda) copy deps ndrange(l, n, 1)
#pragma omp task inout(x[0 : n-1])
void increment(int n, int *x);

init(10, x); increment(10, x); ..

e
OmpSs: Summary

- Easy-to-use
- OpenMP model
- Task-based

- No embedded support for data-parallelism
- Has to be “emulated” by tasks

- Run-time optimization is their core research
- User kept “out-of-the-loop”

- WIP: Glinda + OmpSS

CASHMERE + MCL

A divide-and-conquer approach

L
Cashmere™ [C-1]

- Dynamic runtime support for distributed heterogeneous
clusters

- Specific for divide-and-conquer

- Provides scalability on heterogeneous many-core
clusters:
- scalability in performance
- scalability in optimizing kernels

- Integrates two frameworks:
- Satin [C-2]
* What's in a name?
* MCL[3] Cilk = Satin = Cashmere
Higher quality fabric with fine threads

L
Satin

- Divide-and-conquer
- automatic load balancing due to job stealing

Spawn jobs

\»

\, job small enough for

leaf computation

Cashmere

- Two-level divide-and-conquer
- Cluster: load balancing with job stealing

- Node: multiple devices per node
- overlap data-transfers with kernel execution

spawn jobs jobs small enough

\» for many-cores

\

within node

within cluster

_. job small enough for leaf

computation: run MCL kernels

e
Many Core Levels (MCL)

- A program is an algorithm mapped to hardware

Program

Algorithm

i i i
i Mapping i
H 1 1 i
\/ \J \J \

Hardware

- Write kernels in MCL
- Receive performance feedback

e
Multiple Abstraction Layers

Hierarchy of hardware descriptions

perfect --.
A /\ translate

portability mic gpl

xeon phi nvidia--., amd
N

y
fermi kepler-,

I | A‘....
gtx480 gtx680

performance
control

Performance feedback

- Based on knowledge of the hardware
perfect

accelerator

..........
-

xeon phi nvidia amd

fermi kepler hd7970

/I /I\
c2050 gtx480 k20 titan gtx680

Example feedback:
Using 1/8 blocks per smp. Reduce the amount of shared memory used by storing/
loading shared memory in phases.

Programmer’s interface

- The MCL compiler generates OpenCL code (node-level)
and Cashmere code (cluster-level)

- Based on divide-and-conquer => runtime system is much lighter
than StarPU or OmpSs => lower overhead

- Calling a kernel:

1l leaf(a,b) {

2 try {

3 Kernel kernel = Cashmere.getKernel();

4 KernelLaunch k1l = kernel.createLaunch ();
5 MCL.launch(kl, a, b);

6 catch (exception) {

7 leafCPU (a,b)

8 }}

Insight in performance

T T T T T T I I I
L receive input il
node 16%20 a3 ' : I : : I : send output

|| || CPU part

node 16 xeon_phi g3 |- I writeBuffer
i i execute - hH

node 16 k20 g4 readBuffer
- - : - . send input

) receive output s | |
node 16 xeon_phi q4 : : : overall

node 16k20q5 [I l || I L

node 16 xeon_phi g5 | | | | J

mdescuat [- |]

nodescpuaz &+ 0 b 0 -

nodesgoasoast- - o} -

node 3 gtx480 g4

node 3 gtx480 g5 | I I i
| | | | | | | | |

1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750
time (ms)

Cashmere: Summary

- MCL makes optimizing kernels for many devices possible
- seamless integration of many-core functionality

- High performance, scalability, and automatic load
balancing even for widely different many-cores

- Efficiency >90% in 3/4 applications in heterogeneous

exeCUtlon application performance (GFLOPS) configuration

raytracer 1883 10 gtx480, 2 c2050, 1 gtx680,
1 titan, 1 hd7970

matmul 39027 10 gtx480, 2 c2050, 1 gtx680,
1 titan, 1 hd7970

k-means 10644 10 gtx480, 2 c2050, 1 gtx680,
1 titan, 1 hd7970, 7 k20,
1 xeon phi

n-body 13517 10 gtx480, 2 c2050, 1 gtx680,

1 titan, 1 hd7970, 7 k20,
2 xeon _ phi

References

[C-1] Hijma et al. “Cashmere: Heterogeneous Many-Core Computing”,
IPDPS, 2015

[C-2] Nieuwpoort et al. “Satin: A High-Level and Efficient Grid
Programming Model,” ACM TOPLAS, 2010

[C-3] Hijma et al. “Stepwise-refinement for performance: a methodology
for many-core programming,” CCPE, 2015

e
End of part V

- Questions ?

