
HETEROGENEOUS
CPU+GPU
COMPUTING

Ana Lucia Varbanescu – University of Amsterdam
a.l.varbanescu@uva.nl

Significant contributions by: Stijn Heldens (U Twente),
Jie Shen (NUDT, China), Basilio Fraguela (A Coruna

University, ESP),

PART IV
Static and dynamic partitioning in practice

Heterogeneous Computing PMs
High
level

Low
level

Generic Specific

OpenACC,
OmpSS, StarPU, …
HPL

HyGraph
Cashmere
GlassWing

TOTEM,
…

OpenCL,
OpenMP+CUDA

Domain and/or
application specific.

Focus on: productivity
and performance

Domain specific, focus
on performance.
More difficult to use.

The most common atm.
Useful for performance,
more difficult to use in
practice

High productivity; not
all applications are
easy to implement.

Heterogeneous Computing today

4

Single
kernel

Multi-kernel
(complex) DAG

Static Dynamic

Systems/frameworks:
Qilin, Insieme, SKMD,
Glinda, ...
Libraries: HPL, …

Sporradic attempts
and light runtime
systems

Run-time based systems:
StarPU
OmpSS
…

Glinda 2.0

Not interesting,
given that static &

run-time based
systems exist.

High Applicability,
high overhead

Low overhead => high
performance
Still limited in applicability.

Limited applicability.
Low overhead => high
performance

GLINDA
Computing static partitioning

Glinda: our approach*
• Modeling the partitioning

•  The application workload
•  The hardware capabilities
•  The GPU-CPU data transfer

• Predict the optimal partitioning
• Making the decision in practice

•  Only-GPU
•  Only-CPU
•  CPU+GPU with the optimal partitioning

*Jie Shen et al., HPCC’14.
“Look before you Leap: Using the Right Hardware.

Resources to Accelerate Applications

(+TD)	

Modeling the partitioning
• Define the optimal (static) partitioning

•  β= the fraction of data points assigned to the GPU

7

TG +TD = TC

Model the app workload

8

n

w

n:	
 the	
 total	
 problem	
 size	

w:	
 workload	
 per	
 work-­‐item

Model the app workload

9

n

w

n:	
 the	
 total	
 problem	
 size	

w:	
 workload	
 per	
 work-­‐item

0 1

GPU	
 par??on CPU	
 par??on

WG=w	
 x	
 n	
 x	
 β	

β 1-­‐β

WC=w	
 x	
 n	
 x	
 (1-­‐β)	

W	
 (total	
 workload	
 size)	
 quan?fies	
 how	

much	
 work	
 has	
 to	
 be	
 done	

W = wi
i=0

n−1

∑ ≈ the area of the rectangle

Modeling the partitioning

Two pairs of metrics

W: total workload size
P: processing throughput (W/second)

O: data-transfer size
Q: data-transfer bandwidth (bytes/second)
	

TG =
WG

PG
TD =

O
Q

 TC=
WC

PC

TG +TD = TC
WG

WC

=
PG
PC
×

1

1+ PG
Q
×
O
WG

W =WG +WC*

Model the HW capabilities

11

• Workload: WG + WC = W
• Execution time: TG and TC
• P (processing throughput)

•  Measured as workload processed per second
•  P evaluates the hardware capability of a processor

GPU	
 kernel	
 execu?on	
 ?me:	
 TG=WG/PG	

CPU	
 kernel	
 execu?on	
 ?me:	
 TC=WC/PC

Model the data-transfer

12

• O (GPU data-transfer size)
•  Measured in bytes

• Q (GPU data-transfer bandwidth)
•  Measured in bytes per second

Data-­‐transfer	
 ?me:	
 TD=O/Q	
 +	
 (Latency)	

Latency	
 <	
 0.1	
 ms,	
 negligible	
 impact	
 	

Predict the partitioning …

13

TG =
WG

PG
TD =

O
Q

 TC=
WC

PC

TG +TD = TC
WG

WC

=
PG
PC
×

1

1+ PG
Q
×
O
WG

… by solving this equation in β

WG

WC

=
PG
PC
×

1

1+ PG
Q
×
O
WG

Predict the partitioning

14

• Solve the equation

β-­‐dependent	
 terms	

WG=w	
 x	
 n	
 x	
 β	

WC=w	
 x	
 n	
 x	
 (1-­‐β)	

O=Full	
 data	
 transfer	
 	
 or	

	
 	
 	
 	
 	
 Full	
 data	
 transfer	
 x	
 β	

Expression

WG

WC

=
PG
PC
×

1

1+ PG
Q
×
O
WG

Predict the partitioning

15

• Solve the equation

β-­‐dependent	
 terms	

WG=w	
 x	
 n	
 x	
 β	

WC=w	
 x	
 n	
 x	
 (1-­‐β)	

O=Full	
 data	
 transfer	
 	
 or	

	
 	
 	
 	
 	
 Full	
 data	
 transfer	
 x	
 β	

β-­‐independent	
 terms	

Es?ma?on Expression

Modeling the partitioning
• Estimating the HW capability ratios by using profiling

•  The ratio of GPU throughput to CPU throughput
•  The ratio of GPU throughput to data transfer bandwidth

WG

WC

=
PG
PC
×

1

1+ PG
Q
×
O
WG

RGC

CPU kernel execution time vs.
GPU kernel execution time

GPU data-transfer time vs.
GPU kernel execution time

RGD

Predicting the optimal partitioning
• Solving β from the equation

•  There are three β predictors (by data transfer type)

WG

WC

=
PG
PC
×

1

1+ PG
Q
×
O
WG

Total workload size

HW capability ratios

Data transfer size

β predictor

β =
RGC
1+ RGC

β =
RGC

1+ v
w
×RGD + RGC

β =
RGC −

v
w
×RGD

1+ RGC

No data transfer Partial data transfer Full data transfer

Making the decision in practice
•  From β to a practical HW configuration

Calculate NG and NC
NG = n xβ
NC = n x (1-β)

NG<its lower
bound

Only-CPU

Nc<its lower
bound

Only-GPU

Round up NG

CPU+GPU
Final NG and NC

Y

N

Y

N

NG: GPU partition size
NC: CPU partition size

Extensions
• Different profiling options

•  Online vs. Offline profiling
•  Partial vs. Full profiling

• CPU+Multiple GPUs
•  Identical GPUs
•  Non-identical GPUs (may be suboptimal)

runs

O
ve

ra
ll

pr
of

ili
ng

ov
er

he
ad

Offline

Online

n

w
v

profile partial workload WV

WV = v×n

vmin ≤ v ≤ w

Glinda outcome
•  (Any?) data-parallel application can be transformed to

support heterogeneous computing

• A decision on the execution of the application

•  only on the CPU
•  only on the GPU
•  CPU+GPU

•  And the partitioning point

20

How to use Glinda?
• Profile the platform: RGC, RGD
• Configure and use the solver: β
•  Take the decision: Only-CPU, Only-GPU, CPU+GPU (and

partitioning)
•  if needed, apply the partitioning

• Code preparation
•  Parallel implementations for both CPUs and GPUs
•  Enable profiling and partitioning

• Code reuse
•  Single-device code and multi-device code are reusable for different

datasets and HW platforms

Results [1]
• Quality (compared to an oracle)

•  The right HW configuration in 62 out of 72 test cases
•  Optimal partitioning
when CPU+GPU is selected

E
xe

cu
tio

n
tim

e
(m

s)

Predicted
partitioning

Optimal
partitioning
(auto-tuning)

Results [2]
• Effectiveness (compared to Only-CPU/Only-GPU)

•  1.2x-14.6x speedup
•  If taking GPU for granted, up to 96% performance will be lost

E
xe

cu
tio

n
tim

e
(m

s)

Only-
GPU Our config

Only-
CPU

Summary: single-kernel static partitioning
•  It targets single-kernel data parallel applications
•  It computes a static partitioning before runtime
•  The challenge is to determine the optimal partitioning by

building prior knowledge
•  We are not the only one

•  Online-profiling + analytical modeling: Ginda
•  Offline-training + analytical modeling (curve fitting): Glinda, Qilin
•  Offline-training + machine learning: Insieme, work from U. Edingburgh

Glinda achieves similar or better performance
than the other partitioning approaches with
less cost

Related work

More advantages …
• Support different types of heterogeneous platforms

•  Multi-GPUs, identical or non-identical

• Support different profiling options suitable for different
execution scenarios
•  Online or offline
•  Partial of full

• Determine not only the optimal partitioning but also the
best hardware configuration
•  Only-GPU / Only-CPU / CPU+GPU with the optimal partitioning

• Support both balanced and imbalanced applications

More about Glinda
• Simplistic application modeling >> Imbalanced

applications
• Better than profiling? >> Performance modeling
• Single GPU only? >> NO, we support multiple GPUs/

accelerators on the same node
• Single node only? >> YES – for now .

What if …
• … we have multiple kernels?
• … Can we still do static partitioning ?

Thousands	
 of	
 Cores

Mul?ple	

Cores

Multi-kernel applications?
• Use dynamic partitioning: OmpSs, StarPU

•  Partition the kernels into chunks
•  Distribute chunks to *PUs
•  Keep data dependencies
•  Enabling multi-kernel asynchronous execution (inter-kernel

paralelism)
•  Respond automatically to runtime performance variability
•  (Often) lead to suboptimal performance

•  Scheduling policies and chunk size
•  Scheduling overhead (taking the decision, data transfer, etc.)

Static partitioning: low applicability, high performance.
Dynamic partitioning: low performance, high applicability.

Can we get the best of both worlds?

How to satisfy both requirements?
• We combine static and dynamic partitioning

•  We design an application analyzer that chooses the best performing
partitioning strategy for any given application

source
code

(2) Analyze the app
kernel structure

(1) Implement
the app

App
class

(3) Select the
partitioning strategy

Partitioning strategy
repository

(4) Enable the
partitioning in the code

App
classification

Implement/get
the source code

Analyze
application’s class

Select a
partitioning strategy

Enable
the partitioning

Application classification

...

I II III IV V

k0 k0

k0

k1

kn

k0

k1

kn

k0

k1
k2

k3 k4

k5
...

SK-One SK-Loop MK-Seq MK-Loop MK-DAG

5 application classes

Implement/get
the source code

Analyze
application’s class

Select a
partitioning strategy

Enable
the partitioning

Partitioning strategies

GPU CPU GPU CPU

GPU CPU

GPU CPU

k0 k0

k1

k2

GPU CPU

GPU CPU

GPU CPU

k0

k1

k2

global sync

global sync

global sync

k0

k1

GPU

CPU thread 0

data dependency
chains

scheduling policies
DP-Dep or DP-Perf

CPU thread 1

thread 0 thread 1

• SP-Varied• SP-Unified• SP-Single

• DP-Dep & DP-Perf

scheduled
partitions

Static partitioning:
single-kernel applications

Implement/get
the source code

Analyze
application’s class

Select a
partitioning strategy

Enable
the partitioning

Dynamic partitioning:
multi-kernel applications

Implement
the source code

Analyze
application’s class

Select a
partitioning strategy

Enable
the partitioning

Partitioning strategies

GPU CPU GPU CPU

GPU CPU

GPU CPU

k0 k0

k1

k2

GPU CPU

GPU CPU

GPU CPU

k0

k1

k2

global sync

global sync

global sync

k0

k1

GPU

CPU thread 0

data dependency
chains

scheduling policies
DP-Dep or DP-Perf

CPU thread 1

thread 0 thread 1

• SP-Varied• SP-Unified• SP-Single

• DP-Dep & DP-Perf

scheduled
partitions

Static partitioning: in Glinda
single-kernel + multi-kernel applications

Dynamic partitioning: in OmpSs
multi-kernel applications (fall-back scenarios)

Putting it all together: Glinda 2.0

Results [4]
• MK-Loop (STREAM-Loop)

•  w/o sync: SP-Unified > DP-Perf >= DP-Dep > SP-Varied
•  with sync: SP-Varied > DP-Perf >= DP-Dep > SP-Unified

 0

 1000

 2000

 3000

 4000

 5000

 6000

STREAM-Loop-w/o STREAM-Loop-w

Ex
ec

ut
io

n
tim

e
(m

s)

7133.2

w sync

Only-GPU
Only-CPU
SP-Unified
DP-Perf
DP-Dep
SP-Varied

	
 Ex
ec
u'

on
	
 '
m
e	

[m

s]
	

Results: performance gain
• Best partitioning strategy vs. Only-CPU or Only-GPU

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

MatrixMul

BlackScholes

Nbody
HotSpot

STREAM-Seq-w/o

STREAM-Seq-w

STREAM-Loop-w/o

STREAM-Loop-w

Avg

Pe
rfo

rm
an

ce
 S

pe
ed

up

22.2
Best vs OG
Best vs OC

	
 Pe
rf
or
m
an

ce
	
 S
pe

ed
up

	

Average:
3.0x (vs. Only-GPU)
5.3x (vs. Only-CPU)

Summary: Glinda
• Computes (close-to-)optimal partitioning
• Based on static partitioning

•  Single-kernel
•  Multi-kernel (with restrictions)

• No programming models attached
•  CUDA + OpenMP/TBB
•  OpenCL
•  … others => we propose HPL

What if …
• … static partitioning is not an option

•  Application with phases
•  Depdencies
•  …

• Glinda is no longer an option L

• Use dynamic partitioning

Thousands	
 of	
 Cores

Mul?ple	

Cores

Dynamic partitioning: StarPU, OmpSS

...

I II III IV V

k0 k0

k0

k1

kn

k0

k1

kn

k0

k1
k2

k3 k4

k5

...

SK-One SK-Loop MK-Seq MK-Loop MK-DAG

Partitioning &
Scheduling

Runtime system
k2,k3,k4

k0,k1,k5

PART V
Tools for heterogeneous processing

In this context …
Tool for heterogeneous computing = some solution that mixes
a heterogeneous computing front-end *and* a CPU+GPU back-
end
•  High level of abstraction => productivity
•  Compiler/run-time system => performance

Examples:
•  HPL = library

•  Dedicated API (front-end)
•  OpenCL (back-end)

•  OmpSS = pragma’s + runtime-system
•  C/sequential + pragmas (front-end)
•  Dedicated run-time system

•  StarPU = programming model + runtime-system
•  Dedicated API (front-end)
•  Dedicated run-time system

HPL
(HETEROGENEOUS
PARALLEL LIBRARY)
Implementing static partitioning

Purpose
•  Library to program heterogeneous systems

•  Expressive
•  Easy to use
•  Portable (uses OpenCL as backend)
•  No need to learn new languages
•  Good performance
•  Facilitate code space exploration

HPL Basics
• Key concepts

•  Kernels: functions that are evaluated in parallel by multiple threads
on any device
•  Can be written either in standard OpenCL or in a language embedded in

C++
•  Data types to express arrays and scalars that can be used in

kernels and serial code

• Kernel code can be generated at runtime
•  Eases specialization, code space search

HPL hardware model
• Serial code runs in the host
• Parallel kernels can be run everywhere
• Processors can only access their device memory

HPL memory model
•  Four kinds of memory in devices:

•  Global: accessible for reading and writing by all the processors in a
device

•  Local: fast scratchpad that can be shared by a group of threads
•  Constant: writeable by the host, but only readable for the device

processors
•  Private: owned by each thread

Kernel evaluation index space
• Global domain required

•  Provides unique ID for each parallel thread

• Optional local domain
•  Threads in the same local domain can share scratchpad and

synchronize with barriers

Arrays
• Array<type, ndims [,memFlag]> : ndims-dimensional array

of elements of type type that can be used both in host
code and kernels
•  Example: Array<float, 2> mx(100, 100);
•  memoryFlag can be Global, Local, Constant or Private. Appropriate

default values.

• Scalars: expressed either with specialized types (Int,
Float, Double, …) or with ndims=0

Array indexing
•  In kernels

•  Only scalar indexing, using []: mx[i][j]

•  In host code:
•  Scalar indexing, using (): mx(i,j)
•  Subarray selection using () and Ranges: mx(Range(0,9),

Range(100,109))
•  Range(a,b) is inclusive (means[a,b])
•  Subarrays can be used as kernel arguments and in assignments:

x(Range(a,b)) = y(Range(c,d))

Arrays (cont)
• Arrays are logical units, not physical buffers

•  Each Array is associated to buffers in different memories under the
hood

•  The runtime automatically keeps coherent these hidden
copies

• Users just access each Array in the host and the kernels
as a single entity, relying on sequential consistency

• No specification of buffers and data transfers!

HPL Kernels
• Can be written using a language embedded in C++

provided by HPL
•  The kernel code is generated at runtime
•  Allows to adapt it to the device, inputs, etc.

• Can be written using standard OpenCL C
•  Can reuse existing codes

•  In both cases the kernel is associated to a C++ function
whose parameters are those of the kernel

HPL language
• Control flow structs with underscore

•  if ð if_; else ð else_; for ð for_ (with commas separating the
arguments); …

• Predefined variables
•  idx, idy, idz ð id for 1st, 2nd and 3rd dimension within global

domain
•  lidx, lidy, lidz ð idem for the local id
•  Similar ones for the group id, the sizes of the domains, etc.

• Predefined functions
•  E.g.: barrier: barrier between threads in a group

How to execute a kernel
•  eval(f)(args) parallel evaluation of kernel on the

arguments specified
•  Global domain defaults to the size of the first argument
•  eval(f).global(x,y,z).local(a,b,c).device(d) allows to specify the

domain sizes and the device to use

• HPL has API to find devices and properties
• Several devices can be used in parallel
•  If the CPU supports OpenCL, it is also a device

Example 1: SAXPY (Y=a*X+Y)
#include "HPL.h”
using namespace HPL;

float v[1000];

Array<float, 1> x(1000); //host memory managed by HPL
Array<float, 1> y(1000, v); //v used as host memory for y

void saxpy(Array<float,1> y, Array<float,1> x, Float a) {
 y[idx] = a * x[idx] + y[idx];
}

int main() {
 float a; //C scalar types are allowed as eval arguments
 //the vectors and a are filled in with data (not shown)
 eval(saxpy)(y, x, a);
}

Example 2: A dot product
void dotp(Array<float,1> v1, Array<float,1> v2,

 Array<float, 1> pSums) {
 Array<float, 1, Local> sharedM(M);
 Int i;

 sharedM[lidx] = v1[idx] * v2[idx];
 barrier(LOCAL);

 if_(lidx == 0) {
 for_(i = 0, i < M, i++) {
 pSums[gidx] += sharedM[i];
 }
 }
}
 . . .

eval(dotp).global(N).local(M)(v1, v2, pSums);
//reduces pSums in the host
result = pSums.reduce(std::plus<float>());

Kernel code generation
•  The code is executed as regular C++
• HPL elements capture the code of the kernels, generating

an AST
• Simple analyses are performed

•  e.g.: which arrays are read, written or both
•  Enables automated management of array transfers, minimizing them

Meta-programming

• Regular C++ can be interleaved in the kernels
•  It is not captured ð it does not generate code
• But it can control the code generated

•  Conditional/repetitive generation of code

if(problem_size > N) {
 for(int i = 0; i < 16; i++) {
 //C++ code with HPL Arrays/control structs (generates OpenCL
code). Should use ‘i’ to benefit from unroll
 }
} else {
 // Other C++ code with HPL Arrays/control
}

Unroll 16
iterations

Select
code

version

Using OpenCL kernels

const char *opencl_kernel = TOSTRING(
 __kernel void saxpy(__global float *y, __global float *x, float a) {
 const size_t id = get_global_id(0);
 y[id] = a * x[id] + y[id];
 }
);

void kernel(InOut< Array<float, 1 >> y, In< Array<float, 1 >> x, Float a){}

. . .
Array<float, 1> y(1000), x(1000);
float a;
. . .
nativeHandle(kernel, “saxpy”, opencl_kernel);
eval(kernel)(y, x, a);

1. String
with kernel

2. Handle with labels to indicate whether
arguments are in, out or both

3. Associate handle, kernel
name and string with its code

4. Enjoy

Dividing work among devices
•  Three possibilities in HPL

•  By hand: choose subarrays to process in each device
•  Annotations: marking which dimension of the arguments to partition

among the devices
•  Using an ExecutionPlan

•  Provide devices to use
•  Provide % of the problem to be run in each device or ask the

ExecutionPlan to search for the best partitioning

HPL: Summary
• HPL facilitates programming heterogeneous systems

using C++
• Average programmability improvement of 30-44% over

OpenCL
•  Typical performance overhead << 5%
• Available with manual under GPL license at

http://hpl.des.udc.es

Ongoing work
• Enhancements to provide fault-tolerance to

heterogeneous applications
•  To be published soon in a prestigious journal

• Extension to easily program heterogeneous clusters
•  Works great. Ready for submission

•  Just-in-time compiler for adaptive codes
•  Polishing

Most relevant publications
•  Basics: M. Viñas, Z. Bozkus, B.B. Fraguela. ‘Exploiting

heterogeneous parallelism with the Heterogeneous
Programming Library’. J. Parallel and Distributed Computing,
73(12):1627-1638. 2013

•  Kernel code exploration: J.F. Fabeiro, D. Andrade, B.B.
Fraguela. ‘Writing a performance-portable matrix multiplication’.
Parallel Computing, 52:65-77. 2016

•  Partitioning work on devices: M. Viñas, B.B. Fraguela, D.
Andrade, R. Doallo. ‘High Productivity Multi-device Exploitation
with the Heterogeneous Programming Library’. J. Parallel and
Distributed Computing, 101:51-68. 2017

Templates

 template<typename T>
 void add(Array<T, 2> a, Array<T, 2> b, Array<T, 2> c) {
 a[idx][idy] = b[idx][idy] + c[idx][idy];
 }

 . . .

 Array<float, 2> av(N,N), bv(N,N), cv(N,N);
 Array<int, 2> avi(M,M), bvi(M,M), cvi(M,M);

//We use addv to add floats
 eval(addv<float>)(cv, av, bv);

//We use addv to add ints
 eval(addv<int>)(cvi, avi, bvi);

Kernel invocation process

Speedup of GPU EP with respect to CPU
sequential

Speedups in GPU with respect to CPU
execution

Overhead of HPL with respect to OpenCL

STARPU
Task parallelism and smart scheduling

Heterogeneous Task Scheduling
Goal of StarPU: schedule a task-parallel application on a
platform equipped with accelerators:

• Adapt to heterogeneity

•  Decide about tasks to offload
•  Decide about tasks to keep on CPU

• Communicate with discrete accelerator board(s)
•  Send computation requests
•  Send data to be processed
•  Fetch results back

• Adapt for performance
•  Decide about worthiness

Task parallelism
•  Input dependencies
• Computation kernel
• Output dependencies

StarPU programming model
• Express parallelism. . .
•  . . . using the natural program flow
• Submit tasks in the sequential flow of the program. . .
•  . . . then let the runtime schedule the tasks asynchronously

for (j = 0; j < N; j++) {
 POTRF (RW,A[j][j]);
 for (i = j+1; i < N; i++)
 TRSM (RW, A[i][j], R,A[j][j]);
 for (i = j+1; i < N; i++) {
 SYRK (RW,A[i][i], R,A[i][j]);

 for (k = j+1; k < i; k++)
GEMM (RW,A[i][k],R,A[i][j], R,A[k][j]);

 }
}
__wait__();

Tasks
•  Task Relationships
• Abstract Application Structure
• Directed Acyclic Graph (DAG)

StarPU Execution model
Task Scheduling:
• Mapping the graph of tasks (DAG) on the hardware
• Allocating computing resources
• Enforcing dependency constraints
• Handling data transfers

Single DAG, multiple schedules

Terminology
• Codelet

•  . . . relates an abstract computation kernel to its implementation(s)
•  . . . can be instantiated into one or more tasks
•  . . . defines characteristics common to a set of tasks

•  Task
•  . . . is an instantiation of a Codelet
•  . . . atomically executes a kernel from its beginning to its end
•  . . . receives some input
•  . . . produces some output

• Data handle
•  . . . designates a piece of data managed by StarPU
•  . . . is typed (vector, matrix, etc.)
•  . . . can be passed as input/output for a Task

API
•  Initializing/Ending a StarPU session
• Declaring a codelet
• Declaring and Managing Data
• Writing a Kernel Function
• Submitting a task
• Waiting for submitted tasks
•  Team

Programming
• Scaling a vector

Heterogeneity at kernel level
• Heterogeneity: Device Kernels
• Extending a codelet to handle heterogeneous platforms
• Multiple kernel implementations for a CPU
•  – SSE, AVX, ... optimized kernels
• Kernels implementations for accelerator devices
•  – OpenCL, NVidia Cuda kernels

A kernel implementation

StarPU scheduling
Basic policies:
•  The Eager Scheduler : FCFS
•  The Work Stealing Scheduler : Load Balancing

“Informed” policies
•  The Prio Scheduler – based on task priorities
•  The Deque Model Scheduler – based on HEFT

•  Uses codelet performance models
•  History-based
•  Statistical (regression)

To set scheduler: export STARPU_SCHED = prio/dm/…

StarPU data management
• Handles dependencies
• Handles scheduling
• Handles data consistency (MSI)

Data Transfer Cost Modelling
• Discrete accelerators

•  CPU to GPU transfers are expensive
•  Weigh data transfer cost vs kernel offload benefit

•  Transfer cost modelling
•  Bus calibration

•  Can differ even for identical devices
•  Platform’s topology

• Data-transfer aware scheduling
•  Deque Model Data Aware (dmda) scheduling policy variants
•  Tunable data transfer cost bias

•  Locality vs. load balancing

Data prefetching & partitioning
• Attempts to predict data to be used => prefetch

•  Manual

• Supports data partitioning
•  As close as it gets to static partitioning

Data partitioning
• Support for data parallelism

•  Data can be accessed at different granularity levels in different
phases

StarPU: summary
•  Implement the sequential task flow programming model
•  Map computations on heterogeneous computing units
•  Handles data management

•  Transfers, locality, prefetching, scheduling …

•  Programming Model
•  Tasks + Data + Dependencies

•  Task to Task
•  Task to Data

•  Application Programming Interface (Library)

•  Runtime System
•  Heterogeneous Task scheduling

•  User-selectable policy

OMPSS
An OpenMP-like task-parallel heterogeneous model

Introduction
• Parallel Programming Model

•  Build on existing standard: OpenMP
•  Directive based to keep a serial version
•  Targeting: SMP, clusters and accelerator devices
•  Developed at Barcelona Supercomputing Center (BSC)

•  Mercurium source-to-source compiler
•  Nanos++ runtime system

• Where does it come from (a bit of history)
•  BSC had two working lines for several years

•  OpenMP Extensions: Dynamic Sections, OpenMP Tasking prototype
•  StarSs: Asynchronous Task Parallelism Ideas

•  OmpSs is folds them together

OmpSs Execution model
•  Thread-pool model
• All threads created on startup

•  One of them starts executing main

• All get work from a task pool
•  And can generate new work

Memory model
•  The programmer sees a single naming space
•  For the runtime there are different scenarios:

•  Pure SMP
•  Single address space

•  Distributed/heterogeneous (GPUs, clusters, ...):
•  Multiple address spaces exist
•  Multiple copies of the same variable may exist
•  Data consistency ensured by the implementation

Main unit: OpenMP task
• A task is a deferrable work with some data attached

 #pragma omp task [clauses]
 code−block

• A task directive can be applied to a function declaration or
definition
•  Calls to the function => task spawning points

Dependence clauses
• Express data dependencies (evaluated at runtime):

•  input
•  output
•  Inout

• Used for optimization purposes, too
•  Scheduling: data reuse, critical path, ...
•  Data prefetching

#pragma omp task output(x)
 x = 5;
#pragma omp task input(x)
 printf ("%d\n”, x);
#pragma omp task inout(x)
 x++;
#pragma omp task input(x)
 printf ("%d\n”, x);

Extended expressions
• Dependency clauses are extended to allow:

•  Array sections: reference a range of array elements
•  Shaping expressions: convert pointers to arrays with size

int a [100];
int b = &a[50];

#pragma omp task input(a[10:20]) // Elements from 10 to 20
...
#pragma omp task input(b[10:20]) // Also allowed in pointers
...
#pragma omp task input(a[10;10]) // Alternative form
...
#pragma omp task input([50]b) // References an array of 50 positions

Heterogeneity support
• Directive for device-specific information:

 #pragma omp target [clauses]

• Clauses:
•  device => specify a device(s) for the task (smp,cuda)
•  copy_in, copy_out, copy_inout => computation data

•  Extended expressions also allowed
•  copy_deps => copy dependencies
•  implements => may specify alternative implementation

Example
#pragma target device(smp) copy_deps
#pragma omp task_input ([N] c) output([N] b)
void scale_task(double *b, double *c, double s, int N) {
 int j;
 for (j=0; j<BSIZE; j++) b[j] = s * c [j];
}

#pragma omp target device(cuda) implements(scale_task)
void scale_task_cuda(double *b, double *c, double s, int N){
 const int threadsPerBlock = 128;
 dim3 dimBlock (threadsPerBlock , 1 , 1) ;
 dim3 dimGrid (si ze / threadsPerBlock +1) ;
 scale_kernel <<<dimGrid,dimBlock>>>(N,1,b,c,s) ;
}

Heterogeneity support
• Compiler tool-chain enables heterogeneous computing

•  Working with multiple devices architectures
•  Multiple implementations of the same function

 int A[SIZE];

#pragma omp target device (smp) copy_out([SIZE] A)
#pragma omp task
 matrix_initialization(A);
#pragma omp taskwait

#pragma omp target device (cuda) copy_inout([SIZE]A)
#pragma omp task
{
 cu_matrix_inc<<<Size,1>>>(A);
}

Asynchronous data-flow execution
• Dependence clauses allow to remove synch directives

•  Runtime library computes dependences

int A[SIZE];

#pragma omp target device (smp) copy_out([SIZE] A)
#pragma omp task out(A)
 matrix_initialization(A);

#pragma omp taskwait

#pragma omp target device (cuda) copy_inout([SIZE]A)
#pragma omp task inout(A)
{
 cu_matrix_inc<<<Size,1>>>(A);
}

matrix_initialization

cu_matrix_inc

Synchronization
• Using “taskwait”:

 #pragma omp taskwait [on (expression)]
•  Suspends current task until all child tasks are completed

•  The on clause => wait on task to produce certain data
•  Suspends the encountering task until data is available

dgemm(A,B,C); // 1
dgemm(D,E,F); // 2
dgemm(C,F,G); // 3
dgemm(A,D,H); // 4
dgemm(C,H,I); // 5
#pragma omp taskwait on(F)
dgemm(H,G,C); // 6
#pragma omp taskwait
print ("result C”, C) ;

Implementation
• Mercurium Compiler

•  Source to source compiler: from OmpSs directives to runtime calls

• Nanos++ RTL
•  Implement runtime services: create/execute tasks, synchronization,

dependencies, memory consistency,…

Run-time features
• Schedulers (non-comprehensive list)

•  Breadth-first:
•  Global FCFS queue for tasks ready to execute

•  Distributed breadth-first:
•  multiple FCFS queues, one per thread
•  When local queue is empty proceed work stealing

•  Work-first scheduler:
•  Multiple FCFS queue, one per thread
•  FIFO access locally, LIFO access on steals

• Priorities
•  Supports task priorities to tune the scheduling and execution order

•  Throttling
•  Supports policies for task creation and/or execution

•  E.g., Immediate vs. asynchronous

OmpSs with GPUs : CUDA
• C/C++ files (usually .c or .cpp) = host code
• CUDA files (.cu) = kernel code
 /* cuda-kernels.cu */
extern "C" { // specify extern "C" to call from C code
__global__ void init(int n, int *x) {CUDA code here}
__global__ void increment(int n, int *x) {CUDA code here}
} /* extern "C" */

#pragma omp target device(cuda) copy_deps ndrange(1, n, 1)
#pragma omp task out(x[0 : n-1])
 __global__ void init(int n, int *x);
#pragma omp target device(cuda) copy_deps ndrange(1, n, 1)
#pragma omp task inout(x[0 : n-1])
 __global__ void increment(int n, int *x);

init(10, x); increment(10, x);
#pragma omp taskwait

OmpSs with GPUs : OpenCL
• C/C++ files (usually .c or .cpp) = host code
• OpenCL files (.cl) = kernel code
 /* cuda-kernels.cu */
extern "C" { // specify extern "C" to call from C code
__kernel void init(int n, int __global *x) {OCL code}
__kernel void increment(int n, int __blobal *x) {OCL code}
} /* extern "C" */

#pragma omp target device(opencl) copy_deps ndrange(1,n,8) \
 file(ocl_kernels.cl)
#pragma omp task out(x[0 : n-1])
 void init(int n, int *x);
#pragma omp target device(cuda) copy_deps ndrange(1, n, 1)
#pragma omp task inout(x[0 : n-1])
 void increment(int n, int *x);
…
init(10, x); increment(10, x); …

OmpSs: Summary
• Easy-to-use

•  OpenMP model
•  Task-based

• No embedded support for data-parallelism
•  Has to be “emulated” by tasks

• Run-time optimization is their core research
•  User kept “out-of-the-loop”

• WiP: Glinda + OmpSS

CASHMERE + MCL
A divide-and-conquer approach

Cashmere* [C-1]
• Dynamic runtime support for distributed heterogeneous

clusters
•  Specific for divide-and-conquer

• Provides scalability on heterogeneous many-core
clusters:
•  scalability in performance
•  scalability in optimizing kernels

•  Integrates two frameworks:
•  Satin [C-2]
•  MCL [3] * What’s in a name?

Cilk è Satin è Cashmere
Higher quality fabric with fine threads

Satin
• Divide-and-conquer

•  automatic load balancing due to job stealing

Cashmere
•  Two-level divide-and-conquer

•  Cluster: load balancing with job stealing
•  Node: multiple devices per node

•  overlap data-transfers with kernel execution

Many Core Levels (MCL)
• A program is an algorithm mapped to hardware

• Write kernels in MCL
• Receive performance feedback

Multiple Abstraction Layers

Performance feedback
• Based on knowledge of the hardware

Example feedback:
Using 1/8 blocks per smp. Reduce the amount of shared memory used by storing/
loading shared memory in phases.

Programmer’s interface
•  The MCL compiler generates OpenCL code (node-level)

and Cashmere code (cluster-level)
•  Based on divide-and-conquer => runtime system is much lighter

than StarPU or OmpSs => lower overhead

• Calling a kernel:
 1 leaf(a,b) {

2 try {
3 Kernel kernel = Cashmere.getKernel();
4 KernelLaunch kl = kernel.createLaunch ();
5 MCL.launch(kl, a, b);
6 catch (exception) {
7 leafCPU (a,b)
8 }}

Insight in performance

Cashmere: Summary
• MCL makes optimizing kernels for many devices possible

•  seamless integration of many-core functionality

• High performance, scalability, and automatic load
balancing even for widely different many-cores

• Efficiency >90% in 3/4 applications in heterogeneous
execution

References
[C-1] Hijma et al. “Cashmere: Heterogeneous Many-Core Computing”,
IPDPS, 2015
[C-2] Nieuwpoort et al. “Satin: A High-Level and Efficient Grid
Programming Model,” ACM TOPLAS, 2010
[C-3] Hijma et al. “Stepwise-refinement for performance: a methodology
for many-core programming,” CCPE, 2015

End of part V
• Questions ?

