HETEROGENEOUS CPU+GPU COMPUTING

Ana Lucia Varbanescu – University of Amsterdam a.l.varbanescu@uva.nl

Significant contributions by: **Stijn Heldens** (U Twente), **Jie Shen** (NUDT, China), **Basilio Fraguela** (A Coruna University, ESP),

What have we covered?

- Preliminaries
- Part I: Introduction to CPU+GPU heterogeneous computing
 - Performance promise vs. challenges
- Part II: Programing models
- Part III: Workload partitioning models
 - Static vs. Dynamic partitioning
- Part IV: Static partitioning and Glinda

Slides available:

- Part V: Tools for (programming) heterogeneous systems
 - Low-level to high-level
- Take home message

Take howe message [1]

- Heterogeneous computing works!
 - More resources.
 - Specialized resources.
- Most efforts in static partitioning and run-time systems
 - Glinda = static partitioning for single-kernel, data parallel applications
 - Now works for multi-kernel applications, too
 - StarPU, OmpSS = run-time based dynamic partitioning for multikernel, complex DAG applications
- Domain-specific efforts, too
 - HyGraph graph processing
 - Cashmere divide-and-conquer, distributed

Take home message [2]

- Choose a system based on your application scenario:
 - Single-kernel vs. multi-kernel
 - Massive parallel vs. Data-dependent
 - Single run vs. Multiple run
 - Programming model of choice
- There are models to cover combinations of these choices!
 - No framework to combine them all food for thought?

Future research directions

- More heterogeneous platforms
- Extension to more application classes
 - Multi-kernel with complex DAGs
 - (streaming applications, graph-processing applications)
- Integration with distributed systems
 - Intra-node workload partitioning + inter-node workload scheduling
- Extension of the partitioning model
 - Energy consumption

Open questions?

- Analytical modeling instead of profiling
 - Statistical modeling ask me more!
- Extending to other type of workloads
 - Graph processing ask me more!
- Performance portability
 - HPL/specialized OpenCL ask me more!