i

cfg
Approximate Computing for Low-
power: Survey and Challenges

Prof. Dr. Akash Kumar

Chair for Processor Design

(Ack: my past and current students/PostDocs)
(Some slides adapted from Anand)

TECHHISEHE DRESDEN WISSENECHAFTSRAT
cfaed.tu-dresden.de UNVERSITAT concept x) OFG WR
[I

Outline

R T,
0 Why?
O Motivation for Approximate Computing
0 What?

O Approximate computing: Design philosophy and
approach

1 How?

o Technologies for Approximate Computing

© Akash Kumar

Increased

demands

Q.

(J

o0

>N

(%)

c

1991 .) 0 @
== Need new sources of efficiency to bridge the gap! =— 2 -

=

L

Ack:Hugo De Man,DATE 2002 Diminishing

‘ Dennard scaling ends benefits from

Interconnects,
@ Leakage, techn’ology
Varlatlons scaling
u Reliability

g L \1‘“
B R

HELL OF NANOSCALE PHYSICS

Efficiency Gap In Computing
[4|

» Significant gap between future requirements an

d
projected capabilities of computing platforms \@“oﬁ
1000

100 s‘g}o\

“How do we advance
computing systems without
(significant) technology
progress?” DARPA/ISAT
workshop,March 2012

Today’s __,,... y
mobile /ﬁ;llng ("7nm)

,_'/ many-core,
platforms / heterogeneity,

GFLOPS/W

near-threshold
computing

Snapdragon 805
Tegra K1, A8X

B\,

10-20 GFLOPS/W

10

Time © Akash Kumar

The Computational Efficiency Gap
=]

~200000 W

20w 20w

IBM Watson playing Jeopardy, 2011 © Akash Kumar

Humans Approximate
6|

5223 51,759

21

Accuracy

)

8

~ | Petaflop/W

>

Application
923 > 45 9 \ context
21 b\ dictates

required

=N

\

&
b))

=
®)
®)

21) 923 (43 ---

accuracy of
923 B Y results
_—— /-j

83
3 21

[Effort expended increases with required accuracy J

AIKUSIT INOTTTOT

But Computers DO NOT

@
float x = 923;
923 float y = 21;
21 > 45 ‘:> cout << (x/y > 45.0) ?
“YES”:”"NO”;

92 float x = 923;
3 > 175 |:> float y = 21;
cout << (x/y > .75) ?
“YES”:”"NO”;

But, | worked
harder than
needed

» Overkill (for many applications)
» Leads to inefficiency

» Can computers be more efficient by producing “just good enough” results?
© Akash Kumar

Intrinsic Application Resilience: Sources
N

» Intrinsic
application
resilience: Ability
to produce
acceptable
outputs despite Redundant Propabiliatic
underlying leatRats Computations
computations
being performed
in an approximate

manner . Intrinsic
‘Noisy’ Real L .
World Inputs Application Self-Healing
Resilience

('omp ate distances Update cluster
& assign points means

foclusters © Akash Kumar

Intrinsic Resilience In RMS Applications

lts an Approximate World ... At the Top

0 No golden answer (multiple answers Google
are equally acceptable) e
O Web search, recommendation systems b" lg
0 Even the best algorithm cannot
D h c q)
°°‘I‘ment o Applications have produce correct results all the time
_ mage searc a mix of resilient . . .
- Dliltlrecogm?on and sensitive o Mosglrecognmon / machine learning
igit model generation q roblems
Eye detection computatlons P
Eye model generation R ﬂl o
Image segmentation 83% of runtime : iy T 2=
Census data modeling = % Runtime in spent fim O TOO eXpenSI\/e. to prOduce fU”y .If:m“&ﬂ”“ =riak
Census data classification resilient . correct or opTImG| I’eSU|TS &«% . EA
Health information analysis compurations computations o e T . iy &
o h b O Heuristic and probabilistic algorithms 2. -
Character recognition that can be | d . del ’ ST rerbese
Online data clustering | ! ! ! | approximated relaxe conS|stency models, ... &

0 20 40 60 80 100 Miller-Rabin Eventual
VK.Chippa,S.T.ChakradharK.Roy and A.Raghunathan,“Analysis and characterization of inherent application primality test consistency
resilience for approximate computing,’” DAC 2013. © Akash Kumar © Akash Kumar

. Ld Ll I .

Yet, Computing Lives In A Utopian World! Outline
R S o1 — = | Em
e ,
» Why?
* Motivation for Approximate Computing
Programming Languages, Compilers, » What!
Runtimes
Jnme * Approximate computing: Design philosophy and approach
Architecture

» How?

Logic

Circuits

Boolean Equivalence

© Akash Kumar

* Technologies for Approximate Computing

© Akash Kumar

APPROXIMATE COMPUTING: DESIGN PHILOSOPHY
[13

» Computing platforms that can modulate
the effort expended towards quality of

results
* Higher effort = Higher quality but lower
efficiency

» How do we get the best Q vs.E tradeoff?

!

* Disproportionate benefit

S | SRSV
S L

.

Energy—->
Quality>

=
5
pi

| -
Max Egore > Min

© Akash Kumar

lts an Approximate World ... At the Top
K

No golden answer

Google
oING m

Perfect/correct answers
not always possible

expensivge to produce

og

an
£l ¢

Miller-Rabin Eventual

consistency

primality test
© Akash Kumar

Approximate Computing Throughout the Stack

Perfect/correct answers
not always possible

Too expensive to produce
perfecf/correcf answers

No golden answer
Google
b|r18' m

~

Programming Languages, Compilers,
Runtimes

Architecture

Logic

Circuits

Where did Approximate Computing come from?

16]
0 Tradeoffs between Quality of Results and Efficiency
are not new

O Intellectual roots of approximate computing can be
traced back to many fields

© Akash Kumar

Where did Approximate Computing come from?

0 Approximation, Heuristic, and Probabilistic
algorithms

O Tradeoff amount of work for sub-optimal or
occasionally incorrect results

Probability and Computing

Randomnized Algoeithms and Probabilistic Analvsis

Rcjeey Mutwrd Prubshokur Rughorn

Approximation
Algorithms

© Akash Kumar

Where did Approximate Computing come from?
[18 |

o Networking
O Best-effort packet delivery (IP)

o Reliability layered on top only when needed (TCP)

O Many apps do not need or use reliable packet delivery!
® Video, audio streaming

1P Packel
IP Packet

4

Packets may be dropped,
corrupted, or delivered
out-of-order!

© Akash Kumar

Where did Approximate Computing come from?
19]

0 Large-scale unstructured data storage

Consistency:

Availability
ACID (Total :

Transactions Redundancy) . Rf(ils o
. mongoDB riak
i al

okyo
._# CouchDB M Cabinet i

SRy {membase

Eventual (!) consistency

© Akash Kumar

Where did Approximate Computing come from?
20 |

0 Digital Signal Processing

o Filter design (optimize taps, coefficients, and precision
based on specifications)

ey g esgnss i Cge e el FIR

‘\”‘W\yﬂyﬂf

| 4 wroeg on TRMIAFE S ipet Peve Featunes meie CC [S0c) Mers
e Of GEASELION. LI OMARATE. LI FRLSLIINN. S SR Chan

"
TR -~

'17.‘ Ier, th

| Buser

[# 0w s o 2|

g8 1 P e

© Akash Kumar

Approximate Computing Now: Why?
=N

0 Arising from the application level

o Inherent lack of notion or ability for a single ‘correct’
answer

o ‘Noisy’ or redundant real-world data

O Perceptual limitations

0 Arising from the transistor level
O Increasing fault-rates

O Increased effort/resource to achieve fault-tolerance

© Akash Kumar

Outline
[22 |

» Why!?

* Motivation for Approximate Computing
» What!

* Approximate computing: Design philosophy and approach
» How?

* Technologies for Approximate Computing

© Akash Kumar

Approximate Computing Approach
[23 |

* Approximations at various layers of abstraction W
L” Need to ensure quality specifications are met

~y/ Relaxed
~ -

Approximate | Approximate Approximate | Approximate
Software Architecture Circuits Layout??

Application

Approximate
Implementation

Quality =g ey (O]TE1[1a%
Specifications = e, Met?

] ' © Akash Kumar

Some Early Efforts in Approx. Computing™
[24]

Approximate signal processing (Chandrakasan et. al, 1997)

Voltage overscaling (Shanbhag et. al, ISLPED 1999)

Probabilistic CMOS (Palem et. al, 2003)

Manufacturing yield enhancement (Breuer et. al, 2004-)

Energy-efficient, variation-tolerant approximate hardware (Roy et. al, 2006-)
Probabilistic Arithmetic / Biased voltage overscaling (Palem et. al, CASES 2006-)

Parallel runtime framework with computation skipping, dependency relaxation
(Raghunathan et. al, IPDPS 2009; IPDPS 2010)

Error-resilient / stochastic processors (Mitra et. al, 2010; Kumar et. al, 2010)

O 0o o o o o o

O

Cross-layer, scalable-effort approximate HW design (Chippa et. al, 2010)

o0 Programming support for approximate computing (Chilimbi el. al, 2010; Misailovic et. al,
2010; Sampson et. al, 2011)

°
[

O ces
[

Why some in
O Dancing authors. © red?

* :]
Not an exhaustive list! © Akash Komar

Approximate
Software

Largely based on:
[1] Mittal, “A survey of techniques for approximate computing”, ACM Computing Surveys 2016
[2] Shafique, Hafiz, Rehman, El-Harouni & Henkel, "Cross-layer Approximate Computing: From Logic to
Architectures", DAC 2016
© Akash Kumar

Approximate Software

[26|
0 Techniques can be applied at
o Compile-time OR
O Run-time
0 Frameworks that exploit multiple layers

O Precision specification -> identify and specify what to
approximate

O Precision reduction implementation -> actually perform and
control approximation
01 Application at different layers (Better throughout!)
o Language
o Algorithm

o Compiler
© Akash Kumar

Compile-time vs Run-time

0 Compile-time
O Use information available before execution
O Possibly lower execution overhead
O Need analysis on accuracy bounds
01 Run-time
O More lenient towards incomplete accuracy analysis
o Generally larger overhead
0 Combination of the two

O Runtime reconfigurable approximate systems

© Akash Kumar

Precision Specification
=

1. Code annotation

2. Built-in Language support

w

Explicit algorithm techniques

Output quality monitoring

A

© Akash Kumar

Precision Specification
N

1. Code annotation
O using existing programming languages with "magic”" markers
m Comments, pragmas

O ignored by regular compiler, but can be processed by
special preprocessors

o E.g. iACT

//axc_memoize for functions

axc_pragma [(@:5),(1:18)]{2}
foo(x, y, &ret);

pragma axc_memoize [(©:5),(1:18)]out(z) f

p i x o d o ¥ ol 5

.62 z’_lf;xn’y;_ Lxdd§ float foo(float x, float y, &var_ret) {
e £ var_ret = X + y;

return ret;

//axc_memoize for loops

}

}

Mishra, Barik & Paul, "iACT: A software-hardware framework for

understanding the scope of approximate computing”, WACAS, 2014 © Akash Kumar

Precision Specification

EN
2. Built-in Language support
O implemented by extending existing programming languages
or designing a new programming language
Enerd, Proposed by Sampson (2011)

m Use Type Qualifiers to indicate approximate data and operations

m Approximation-aware execution substrate can make use of this
additional information

@Approx int a = ..;
int p; // precise by default

p=aq; // illegal

Sampson, Dietl, Fortuna, Gnanapragasam, Ceze & Grossman, "EnerJ: Approximate

Data Types for Safe and General Low-power Computation”, PLDI 2011 © Akash Kumar

Precision Specification
N

2. Built-in Language support
Rely, Proposed by Carbin (2013)

m allows to program explicitly on unreliable hardware, while giving
guarantees on error probabilities

® incorporates Hardware Reliability Specification

m used for numerical calculations, e.g. computation kernels

knowledge about intermediate reliablity constraints needed

specify joint reliability of operations in signature .. R(x,vy) ..

specify data in unreliable storage: ... in urel

Carbin, Misailovic & Rinard, "Verifying Quantitative Reliability for

Programs That Execute on Unreliable Hardware", OOPSLA, 2013 © Akash Kumar

Precision Specification

#define nblocks 20

#define height 16

#define width 16

int <0.99*R(pblocks , cblock) > search_ref (
int <R(pblocks) > pblocks(3) in urel ,
int <R(cblock) > cblock(2) in urel)

{
int minssd = INT_MAX, minblock = -1 in urel ;
intssd,t,t1,12inurel;
inti=0,i,k;
repeat nblocks {
ssd=0;]=0;...i=i+1;
}
return minblock ;
}

© Akash Kumar

Precision Specification
N

2. Built-in Language support
Axilog, Proposed by Mahajan (2015)

m extend verilog syntax with annotations to declare arguments safe to
approximate

m infer which other connections and gates are safe to approximate

m synthesis can either relax timing constraints or assume probabilistic
gate models

module full adder(a, b, c in, c out, s);
input a, b, c_in; output c_out;
approximate output s;
assigns = a b c_in;
assignc_out = a &b +b &c_in+ a&c_in;
relax(s);

endmodule

© Akash Kumar

Mahajan et al, "Axilog: Abstractions for Approximate Hardware Design and Reuse", Micro 2015

Precision Specification

EN
3. Explicit Algorithm Techniques
o careful analysis of algorithm and input data properties
O manually optimize code with existing means

O no automation

4. Output quality monitoring

O measure output quality and adjust "control knobs"
accordingly

O role of quality metrics is most important

O quality metrics often application-specific

© Akash Kumar

Precision Reduction Implementation
N

1. Loop perforation

2. Precision Scaling

3. Memoization

4. Task Skipping

5. Program Selection

6. Neural Network Substitution

7. Approximate Storage

© Akash Kumar

Precision Reduction Implementation

1. Loop perforation — identify loops where only a
subset of iterations can be performed while
maintaining acceptable accuracy

2. Precision Scaling — right-shift data or truncate

3. Memoization — use for functions with similar
input /output pairs

4. Task Skipping — perform subset of tasks

5. Program Selection — select from multiple versions

.. Approximate Storage — allow data to degrade

7. Neural Network Substitution
© Akash Kumar

Precision Reduction Implementation Overall Frameworks
=N

1 Neural Network Substitution 1. Green Baek & Chilimbi, "Green: A Framework for
Supporting Energy-conscious Programming

O Replace part of the program with an accelerator based on neural Using Controlled Approximation”, PLDI, 2010

network

O NN needs to be trained with input/output data sets of original function

: : 2. iACT Mishra, A. K.; Barik, R. & Paul, S. iACT: A
: l software-hardware framework for
g i S v f .ﬂ‘m'”sr—» Trained |: Cote | 'Eiﬁﬁ";ﬁ,’;‘f understanding the scope of approximate
I .
Code Programmer Code || p e '""”"3 Network | | Generator e computing, WACAS, 2014
: (Topology & : :
| : Synaptic : i
i Input : Weights) : i . . P . .
E 5 : ; 3 GRATER Lofti, é., Rahimi, A.; Yazdanbakhsh, A.;
i i i § Esmaeilzadeh, H. & Gupta, R. K. GRATER: An
Programming Code Observation Training Code Generation Execulion Approximcﬁion Workflow fOI’ Exploiting DCITG-
Compilati Level Parallelism in FPGA Acceleration, DATE
Figure 1: The Parrot transformation at a glance: from ted code to lerated ion on an NPU-aug i core. 2016

Esmaeilzadeh, Sampson, Ceze & Burger, "Neural Acceleration for
General-Purpose Approximate Programs", Micro, 2012 © Akash Kumar © Akash Kumar

Green GREEN

En [40 |
0 Whole-stack flow

0 Uses language extensions

01 Supports loop termination and approximate function e

;| “qes

o ! Program : - :
selection [Samnons._ ,-’ Jud - _’-
1 xecute
i ; i Data |
0 Generates necessary support code to perform : ; : !
i | Inputs '—h. .
adaptive QoS control at runtime ! o | : 5 s
| Supplied L e i i i

0 Approximate functions have to be supplied by user

Figure 1. Overview of the Green system.

© Akash Kumar © Akash Kumar

Qriginal code:

Fapprox loop

Calibration code:

for(i=0; i

locp bo

if (QoS_Lp_Rpprox(i, (oS SLA, truel] |
if b} |

Qas % (1

Default QoS Lp Approx:

count,

QoS SLA, static)

Figure 3. An end-to-end example of applying loop approximation to the Pi estimation program.

IACT

0 Compiler, runtime and simulated hardware test bed

0 Use pragmas to annotate approximation amenable
functions

0 Compiler performs static analysis, places annotations
in binaries

0 Supported transformations:
O automated variable precision reduction
O noisy ALU computations

O approximate memoization

© Akash Kumar

IACT Capabilities

-
Language pragmas

#pragma axc

#pragma axc_precision_reduce

#pragma axc memoize [(arg, err), ...]

{out_vars}

Static AxC transformation such as
precision reduction and bitwidth
Reduction

I'd

Programmer provided per-function
checker functions

Semi-auto generated checker
functions

Application
level

Compiler level

/Static adaptive AxC transformation
such as memoization, quality
assertion, machine learmning
techniques for checker function
generation

Runtime
level

Precision reduction, hardware
memoization, noisy computation,
noisy network channels, noisy
memory modules

p

Hardware
level

Figure 2. Summary of the capabilities of iIACT.

© Akash Kumar

GRATER

0 Synthesize smaller hardware accelerators of OpenCL
computation kernels automatically, exploiting inherent
application error tolerance

0 Uses genetic algorithm to find operations whose
precision can be reduced safely

0 Increases data-level parallelism by allowing to place
more functional units

0 Generate implementation for FPGA (in their case,
Altera)

© Akash Kumar

Selection Mutation/
Crossover

- GPU
Accelerated Profiling

\ Fitness Evaluation /

4-, l/- Final Set of Approximate Kernels

i| Approximate || Approximate || Approximat
i Kernel, Kernel Kernel i

Fig. 2: Overview of GRATER, our approximation design workflow.

Approximate Computing in Software

0 Templates allow programmers to easily specify mechanisms
for computation skipping and dependency relaxation

O Auto-tuning and runtime frameworks explore quality-speed
tradeoff

Example: lterative-convergence pattern

float *[M] points;
float * [k] means;
int [M] memberships;
float *[M] distances;
- K-means() {
means = random_array(k);
iterate {
for (i=1to M) {
, distances][i] = calc_distances(means,
pointsli]);
memberships[i]J=compute_cluster(distance

iterate {
for (i=1to M) {

} until converged();

\ 4

iterate { =)
for (j=1to M){ }
: Approximate means = calc_means(points, memberships);
) When to stop } until (no_change(means));
}until converged():—> iterations }

Kumar

Approximate Computing in Software

0 Image segmentation (K-means) Dell 2950 (8-core Xeon,

. 32GB RAM), Intel TBB

S
"’.,?!ﬁi - =

01 Face detection (GLVQ)

5X speedup
99% accuracy

Used in NEC’s Face Recognition Products

PR o] 7P
Jupy 1%

0 Semantic Document Search

TFIDF Contant Document Result

Search query VRetoT Veetor Matrix

3X speedup
Vector - -
irdue Viniversily

o .
- 2) [=) (e T Vil Iso-accuracy
EopwE] e e e ™ ZiwikifJohn urduc
A - . .
Do e .

ox
o =
g

zza

25:wiki/lurdue Grand Urix

© Akash Kumar

Approximate Computing Approach

* Need to ensure quality specifications are met

~yJ Relaxed
~ _

Approximate
Layout??

{ * Approximations at various layers of abstraction ’

Application

Approximate
Software

Approximate
Implementation

(O]VF:1115%
Specifications

. © Akash Kumar

Approximate Computing Approach
[49 [s0 |
L
Pt e W A pawa e
Approximate A p p rox I m q lre
Architecture °
Architecture
"‘4 - wsen e e g™
“a L]
Prapapg— © Akash Kumar
. . Approximate Architecture
Approximate Architecture
[st | N El N
Algorithm- Domain-specific Programmable General purpose Algorjthm- Dophain-specific Programmable General purpose
specific accelerators — accelerators (GPGPUs, processors/ specifi ccelerators — accelerators (GPGPUs, proc
accelerators jmage, video ... MIC) / Vector processors Multicores accelerators image, video ... MIC) / Vector processors Multicores
Pros:
« ANT — Hedge et. al. - * ERSA—Leem et.al.— * Truffle — © Large energy benefits © Broader applicability
ISLPED 1999 DATE 2010 Esmaeilzadeh et.
+ Significance driven : iltochastic processor - al.—ASPLOS Challenges:
computing — Mohapatra arayanan et. al. — 2012 . L . .
o oED 2009 DATE 2010 . Ener] - Sampson @® Limited applicability ® Inher.ently limited energy benefit
+ Scalable effort hardware " Cores of different et.al.— PLDI 201 | Dominated by control front-ends
;oclgi;g); étz?)ll T DAC L T lities) (Al that cannot be approximated
’ approximate . .
i:slzructions ® Allow arbitrary errors in hardware
Application specific designsJ - . .
L ; — limits the fraction of computations
© Akash Kumar that can be aPPrOXimated © Akash Kumar

Approximate Architecture

N

1 4

Algor\thm- Dophain-specific Progratymable GeNeral purpose
specifi ccelerators — accelerat Us, proc

accelerators image, video ... MIC) / Vector processors Multicores

= 4

Opportunity:

© Wide range of
applications — fine grained
parallelism

© SIMD:Control overheads amortized
over many execution units

© Need quality guarantees from HW

Swagath Venkataramani, Vinay K. Chippa, Srimat T. Chakradhar, Kaushik Roy, and
Anand Raghunathan, Quality programmable vector processors for approximate

computing, MICRO 2013. © Akash Kumar

claed ==

=

Designing Inexact Systems
Efficiently using Elimination
Heuristics
DATE 2015

54

Introduction
55 |

0 Diminishing transistor sizes = increase in power
density and errors

0 Inexact computing can trade accuracy for significant
gain in area/power

0 Real-world examples where accuracy can be traded
O Video streaming (errors in few pixels considered okay)
O Brain-inspired computing architectures

O Learning and decision systems

© Akash Kumar

Background and Motivation
Ex

0 Previous works:

o Decreasing the voltage of operation significantly to reduce
the power consumption albeit at the cost of reliable circuit

operation [Kim, ACM JETC 2014][George, CASES 2006]

O Reducing the number of transistors in order to save energy
[Lingamneni, ACM TECS 201 3]

O Removing parts of circuit that have a lower probability of
being active — probabilistic pruning [Lingamneni, DATE 201 1]

0 However, designing such inexact systems is expensive

0 Exponential growth in search space

© Akash Kumar

Background and Motivation

0 Current inexact systems lack

o Ability to estimate quickly the overall inexactness of a
system

O Identifying the best set of inexact components to use from a
given set of components

0 Having an overall design flow to construct such
inexact systems with tunable parameters is the scope
of this research

© Akash Kumar

Contributions
En

o1 Algorithm to quickly estimate the inexactness of the
larger components

0 A design-flow that uses the above algorithm to design
the entire system under the area and power
constraints

01 A heuristic to reduce the design-space exploration
time by eliminating the non-distinct points.

0 Results of the design-flow applied to an ECG
application of QRS detection.

© Akash Kumar

Design Flow — Inexact Components
=

0 Inexact components considered
o Adders
O Multipliers

0 2 types of configurations for adders and multipliers

O Series
O Parallel a2 a2 a3
A My

al al

Adders in series Adders in parallel

© Akash Kumar

Probabilistic pruning

© Akash Kumar

Probabilistic Pruning — Accuracy

Tradeoff
o |

01 Accuracy tradeoff for Pruned Kogge-Stone Adders

. e o T Trea T 1
adder/multiplier e
8 - Energy - - - - ._
Energy-Delay Product -~ [}
O As more nodes pruned, 7F Eneroy-Dolayvea Procuct — M — 7 =
gains in area, delay and e L -

energy increase

O An order of magnitude
improvement in energy-
delay-area for 10% error

Normalized Gains (Conventional / Pruned)

]
1e-006 0.0001 0.01 04 1 10
Relative Error (percentage)

© Akash Kumar

Design Flow — Parameter Computation
2 |

0 Calculation of overall design

parameters a2) a2 Kl
O Area -), __ } \ /
o Power -) ___31 al

o Delay — path with maximum

Adders in series Adders in parallel

delay in given design

O Relative error — path with n
maximum error in given design

O Essentially identifying critical path Bz

© Akash Kumar

Design Flow — Optimization Problem
s

0 Given
O Inexact versions for each adder and multiplier
0 Obijective

o Choose the inexact versions for all components such that we
get the most significant gains in power/delay/area with the
least tradeoff in accuracy

© Akash Kumar

Design Flow — Optimization Problem
N

0 Exhaustive search — exponential growth

O For a system with 2 adders and 2 multipliers with 5 inexact
versions of each — design search space is 625 points

O For a system with 5 adders and 5 multipliers with 5 inexact
versions of each — design search space is 9.7 million points

O 37 years for simulating all options!

© Akash Kumar

Design Flow — Optimization Problem

Search space

108 Search space growth

0% = + = +
2 3 4 5 -] 7 8 9
Number of components in design

© Akash Kumar

Design Flow — Heuristic Search

01 Reduce design space exploration time
o Order of inexact components does not matter (22!l

o Only designs which would result in distinct Pareto points
considered
O Design space compared to exhaustive search
m 2 adders, 2 multipliers = 64 points (vs 625)
m 5 adders, 5 multipliers = 16,384 points (vs 9.7min) (Still 22 days!)

O Orders of magnitude smaller than exhaustive search

© Akash Kumar

Design

Flow — Heuristic Search

Exhaustive vs Heuristic

10%°

1015 L

Search space

1010 L

—¥%— Heuristic search

----- Exhaustive search o

5 10 15 20
Number of inexact components available

25

© Akash Kumar

Design Flow — System level

For each module
in design

Run estimation

v

Run estimation
approach for
distinct points

v

Pick Pareto
optimal points

v

Simulate chosen
Pareto optimal
points

More
odules?

» approach for
overall system

!

Pick Pareto
optimal designs

I

Simulate optimal
designs

End

© Akash Kumar

Module 1 Module 2

Module 3

Module 1

Module 2

Module 3

04

0
Power (i) 0 Relative error (%)

© Akash Kumar

05 06
04

a
Power (miy) 0 Relative srror (%)

© Akash Kumar

Results — Accuracy of Estimation

T

0 Estimation and simulation results in similar trend

o Estimation considers worst case scenario

1077
5
T an CTTITT
g 4
4
£ =m T
D 3
2 | (mmmm (111 .
= IEY)
I~ 2 1]) | I“nT
.
o0 e simulated
1 T = estimated

0 5 10 15 20 25 30

Design

© Akash Kumar

Case Study - Background

T

1 QRS detection, one of the

most important features
of ECG considered

0 Figure below shows steps
required to process ECG

P PR QRS ST
Wave Segment Complex Segment

signal before QRS can be
detected

ﬂ.l —+ x(n)

y(n)

J dr
ECG Low Pass L,

Filter

High Pass dq] | | I’ |- Lf

Filter dr

—+ z(n)

|ﬂh

Lo

© Akash Kumar

Case Study — Inexact QRS design

0 5 inexact adders and 5 inexact multipliers chosen to
implement the different filters

Muiltipliers
Low pass filter 6 6 7
High Pass Filter 16 16 17
Differentiator 4 4 5
Squaring 0 0 1
Integrator 30 30 1
y %[';] —+ x(n) r vin)
oo e | [1 0 {am

© Akash Kumar

Case Study — Low Pass Filter

01 Different points obtained for the low-pass filter using
estimation approach — 20% power, 10% area

Hauristic search

savings for 0.1% error
l/—I;\--\\I ./—|:.'-\|
A N

3

w) (ms)
A

é"' J © Akash Kumar

Case Study — High Pass Filter

01 Different points obtained for the high pass filter using
estimation approach — 15% power, 10% area
savings for 0.0005% error _

::::::::

l

© Akash Kumar

Case Study — Heuristic for entire system
0 5 Pareto optimal points chosen for each module
0 Estimation on distinct points run for entire system

0 5 Pareto optimal designs finally chosen for simulation

d] — x(n) y(n)
dt

ECG Low Pass | | High Pass i[_]) []2) Li)
Filter Filter dt 32 &~ zin

© Akash Kumar

Case Study — Exact vs Inexact design

0 None of the inexact designs missed a QRS signal
01 Able to achieve good output with up to 15% power

Power Area savings | Relative Error | Number of

savings (%) (%) (%) QRS signals
missed

0 0 0 (0]

Exact design

Pareto optimal 12.6 4.5 0.18 (0]
1
Pareto optimal 14.6 4.9 0.96 0
2
Pareto optimal 12 53 1.92 0
3
Pareto optimal 12.8 59 3.03 0]
4

© Akash Kumar

QRS Peak detection with app. adders

Adder Type: IMAPCT_THIRD ApproxBits:56 Location:Last Database:100 PSNR:46.5025
0.025 T T T T T I

I
ECG Low Pass

= ECG Low Pass Approximate Adder

002 ® Exact Peaks

. ® Approximate Paaks

L . L

0015

=
al

© Akash Kumar

QRS Peak detection with app. adders

Adder Type: IMPACT_THIRD ApproxBits:56 Location:1 Database:100 PSNR:69.0225
0025 - - - — -

| ECG Low Pass

——— ECG Low Pass Appraximate Adder |
® Exact Peaks

| @ Appraximate Praks il

rJ {xﬁ M|

A M o)

0015 h\

002

| L 1 I L
o 500 1000 1500 2000 2500 3000 3500 4000 © Akash Kumar

Limitations and future works
S0

01 The error in estimation increases with the number of
components although the trend remains the same —
have better heuristics for estimation

0 Heuristic for automated Pareto point selection rather
than human input

01 Designing co-efficient specific components for filters

© Akash Kumar

Conclusions

0 Proposed overall design flow for constructing inexact
systems using individual modules

0 Heuristics to reduce search space

0 Quick estimation of overall design parameters
including relative error

01 Case study with QRS detection flow shows the
effectiveness of the overall design flow

© Akash Kumar

Challenges

01 Determine the precision
0 Application designers are the best approximators!
0 Defining the approx. metric for an application

0 Which level to apply? Across the stack? Need a
whole flow compatible with existing tools

Run-time variation of the accuracy in the flow
H/w support necessary

Runtime reconf. approx. hardware

Can we use the remaining hardware?

© Akash Kumar

Approx. Addition of images
I

(a) First input image

(b) Second input image

(c) Exact result of image addition (d) Image addition performed using
an approximate adder configuration
from © Akash Kumar

Approx. Addition Result

{a) 5 lower bits replaced by noise (PSNR = 29 dB) (b} 5 lower bits truncated (PSNR = 29 dB) {c) 5 lower bits approx. by InXA2 (PSNR = 33 dB)

(d) 5 lower bits approx. by InXA! (PSNR = 27 dB) () approximated by GeAr/ (PSNR = 28 dB) ()5 lower bits approx. by InXA3 (PSNR = 33 dB)
© Akash Kumar

Summary

0 Modern device /system level challenges forces us to
rethink the design principles

0 Approximate Computing is not new, but surely opens
a new door

0 Various mechanisms in various layers proposed to
address the challenges and save power

0 Can be applied at all levels, but the higher the
layer, the bigger the gains

© Akash Kumar

Questions and Answers

Email: akash.kumar@tu-dresden.de

© Akash Kumar

