
Approximate Computing for Low-
power: Survey and Challenges

Prof. Dr. Akash Kumar
Chair for Processor Design

(Ack: my past and current students/PostDocs)
(Some slides adapted from Anand)

© Akash Kumar

Outline

 Why?
 Motivation for Approximate Computing

 What?
 Approximate computing: Design philosophy and

approach

 How?
 Technologies for Approximate Computing

2

© Akash Kumar

SEVENTH HEAVEN OFAPPLICATIONS

HELL OF NANOSCALE PHYSICS

1990 2000 2010 2020
350nm 250nm 180nm 130nm 90nm 65nm 45nm 32nm 22nm 14nm 10nm 7nm

Diminishing
benefits from
technology

scaling

Increased
compute
efficiency
demands

E
ffi

ci
en

cy
ga

p
PCs

Smartphones

IoT
Wearables

Ack:Hugo De Man,DATE 2002

Leakage,
Variations

Interconnects,
closure,SI

Reliability
Thermal

Dennard scaling ends

2000 2010 2020
350nm 250nm 180nm 130nm 90nm 65nm 45nm 32nm 22nm 14nm 10nm 7nmNeed new sources of efficiency to bridge the gap!

3

© Akash Kumar

Efficiency Gap In Computing

 Significant gap between future requirements and
projected capabilities of computing platforms
1000

Snapdragon 805
Tegra K1, A8X

10-20 GFLOPS/W

Time

Scaling (~7nm),
many-core,

heterogeneity,
near-threshold

computing

Today’s
mobile
platformsGF

LO
PS

/W

10

100

“How do we advance
computing systems without
(significant) technology
progress?” DARPA/ISAT
workshop,March 2012

4

© Akash Kumar

20 W20 W

~200000 W

The Computational Efficiency Gap

IBM Watson playing Jeopardy, 2011

5

© Akash Kumar

Humans Approximate

923 = − − .− −?21

is 923 >1.75?21

is 923 > 45?21

Task:
Division

Application
context
dictates
required
accuracy of
results

Accuracy

21) 923 (43
84
83
63

Effort expended increases with required accuracy

~1Petaflop/W

6

© Akash Kumar

But Computers DO NOT

float x = 923;
float y = 21;
cout << (x/y > 45.0) ?
“YES”:”NO”;

NO92321
923 21 float x = 923;

float y = 21;
cout << (x/y > 1.75) ?
“YES”:”NO”;

YES

But, I worked
harder than
needed

 Overkill (for many applications)

 Leads to inefficiency
 Can computers be more efficient by producing “just good enough” results?

7

© Akash Kumar

Intrinsic Application Resilience: Sources

Intrinsic
Application
Resilience

‘Noisy’ Real
World Inputs

Redundant
Input Data

Perceptual
Limitations

Statistical
Probabilistic

Computations

Self-Healing

Compute distances
& assign points
to clusters

Update cluster
means

Repeat until convergence

 Intrinsic
application
resilience: Ability
to produce
acceptable
outputs despite
underlying
computations
being performed
in an approximate
manner

8

© Akash Kumar

Intrinsic Resilience In RMS Applications

V.K.Chippa,S.T.Chakradhar,K.Roy andA.Raghunathan,“Analysis and characterization of inherent application
resilience for approximate computing,” DAC 2013.

Recognition, Mining, Synthesis Application Suite

Search image
Results

0: Burger
1: Bread
2: Food

.

.
25: McDonals

Principle Component
Analysis

SVM Classifier

83% of runtime
spent in
computations
that can be
approximated

0 20 40 60 80 100 120

Document search
Image search

Digit recognition
Digit model generation

Eye detection
Eye model generation

Image segmentation
Census data modeling

Census data classification
Health information analysis

Character recognition
Online data clustering

Total Resilience

Applications have
a mix of resilient
and sensitive
computations

% Runtime in
resilient
computations

9

© Akash Kumar

Its an Approximate World … At the Top

 No golden answer (multiple answers
are equally acceptable)
 Web search, recommendation systems

 Even the best algorithm cannot
produce correct results all the time
 Most recognition / machine learning

problems

 Too expensive to produce fully
correct or optimal results
 Heuristic and probabilistic algorithms,

relaxed consistency models, …
Miller-Rabin
primality test

Eventual
consistency

10

© Akash Kumar

Yet, Computing Lives In A Utopian World!
No golden answer Perfect/correct answers Too expensive to produce

not always possible perfect/correct answers

St
ri

ct
N

um
er

ic
al

or
Bo

ol
ea

n
Eq

ui
va

le
nc

e

Recognition

Search
Mining

Analytics

Vision

Programming Languages,Compilers,
Runtimes

Architecture

Logic

Circuits

11

© Akash Kumar

Outline

 Why?
• Motivation forApproximate Computing

 What?
• Approximate computing:Design philosophy and approach

 How?
• Technologies forApproximate Computing

12

© Akash Kumar

APPROXIMATE COMPUTING: DESIGN PHILOSOPHY

Effort
Max Min

EffortMinMax

Q
ua

lit
y

EffortMinMax

En
er

gy


 How do we get the best Q vs.E tradeoff?
• Disproportionate benefit

 Computing platforms that can modulate
the effort expended towards quality of
results
• Higher effort Higher quality but lower

efficiency

MAXMIN

EFFORT

13

© Akash Kumar

Its an Approximate World … At the Top

No golden answer Perfect/correct answers
not always possible

Too expensive to produce
perfect/correct answers

Miller-Rabin
primality test

Eventual
consistency

14

© Akash Kumar

Approximate Computing Throughout the Stack

No golden answer Perfect/correct answers
not always possible

Too expensive to produce
perfect/correct answers

Programming Languages, Compilers,
Runtimes

Architecture

Logic

Circuits St
ric

t N
um

er
ic

al
 o

r
Bo

ol
ea

n
Eq

ui
va

le
nc

e
15

© Akash Kumar

Where did Approximate Computing come from?

 Tradeoffs between Quality of Results and Efficiency
are not new
 Intellectual roots of approximate computing can be

traced back to many fields

16

© Akash Kumar

Where did Approximate Computing come from?

 Approximation, Heuristic, and Probabilistic
algorithms
 Tradeoff amount of work for sub-optimal or

occasionally incorrect results

17

© Akash Kumar

Where did Approximate Computing come from?

 Networking
 Best-effort packet delivery (IP)
 Reliability layered on top only when needed (TCP)
 Many apps do not need or use reliable packet delivery!
 Video, audio streaming

Packets may be dropped,
corrupted, or delivered

out-of-order!

18

© Akash Kumar

Where did Approximate Computing come from?

 Large-scale unstructured data storage

Eventual (!) consistency

19

© Akash Kumar

Where did Approximate Computing come from?

 Digital Signal Processing
 Filter design (optimize taps, coefficients, and precision

based on specifications)

20

© Akash Kumar

Approximate Computing Now: Why?

 Arising from the application level
 Inherent lack of notion or ability for a single ‘correct’

answer
 ‘Noisy’ or redundant real-world data
 Perceptual limitations

 Arising from the transistor level
 Increasing fault-rates
 Increased effort/resource to achieve fault-tolerance

21

© Akash Kumar

Outline

 Why?
• Motivation forApproximate Computing

 What?
• Approximate computing:Design philosophy and approach

 How?
• Technologies forApproximate Computing

22

© Akash Kumar

Approximate Computing Approach

Implementation

Software Architecture Circuit Layout

• Approximations at various layers of abstraction
• Need to ensure quality specifications are met

Application
Relaxed

Equivalence

Approximation mechanisms

Approximate
Software

Approximate
Architecture

Approximate
Circuits

Approximate
Implementation

Approximate
Layout??

Quality
Met?

Quality
Specifications

23

© Akash Kumar

Some Early Efforts in Approx. Computing*

 Approximate signal processing (Chandrakasan et. al, 1997)
 Voltage overscaling (Shanbhag et. al, ISLPED 1999)
 Probabilistic CMOS (Palem et. al, 2003)
 Manufacturing yield enhancement (Breuer et. al, 2004-)
 Energy-efficient, variation-tolerant approximate hardware (Roy et. al, 2006-)
 Probabilistic Arithmetic / Biased voltage overscaling (Palem et. al, CASES 2006-)
 Parallel runtime framework with computation skipping, dependency relaxation

(Raghunathan et. al, IPDPS 2009; IPDPS 2010)
 Error-resilient / stochastic processors (Mitra et. al, 2010; Kumar et. al, 2010)
 Cross-layer, scalable-effort approximate HW design (Chippa et. al, 2010)
 Programming support for approximate computing (Chilimbi el. al, 2010; Misailovic et. al,

2010; Sampson et. al, 2011)
 …
 …
 http://timor.github.io/refgraph/ Dancing authors. 

* Not an exhaustive list!

Why some in
red?

24

© Akash Kumar

Approximate
Software

Largely based on:
[1] Mittal, “A survey of techniques for approximate computing”, ACM Computing Surveys 2016
[2] Shafique, Hafiz, Rehman, El-Harouni & Henkel, "Cross-layer Approximate Computing: From Logic to
Architectures", DAC 2016

25

© Akash Kumar

 Techniques can be applied at
 Compile-time OR
 Run-time

 Frameworks that exploit multiple layers
 Precision specification -> identify and specify what to

approximate
 Precision reduction implementation -> actually perform and

control approximation

 Application at different layers (Better throughout!)
 Language
 Algorithm
 Compiler

Approximate Software
26

© Akash Kumar

 Compile-time
 Use information available before execution
 Possibly lower execution overhead
 Need analysis on accuracy bounds

 Run-time
 More lenient towards incomplete accuracy analysis
 Generally larger overhead

 Combination of the two
 Runtime reconfigurable approximate systems

Compile-time vs Run-time
27

© Akash Kumar

1. Code annotation

2. Built-in Language support

3. Explicit algorithm techniques

4. Output quality monitoring

Precision Specification
28

© Akash Kumar

1. Code annotation
 using existing programming languages with "magic" markers
 Comments, pragmas

 ignored by regular compiler, but can be processed by
special preprocessors

 E.g. iACT

Precision Specification

Mishra, Barik & Paul, "iACT: A software-hardware framework for
understanding the scope of approximate computing", WACAS, 2014

29

© Akash Kumar

2. Built-in Language support
 implemented by extending existing programming languages

or designing a new programming language
EnerJ, Proposed by Sampson (2011)

 Use Type Qualifiers to indicate approximate data and operations
 Approximation-aware execution substrate can make use of this

additional information

Precision Specification

@Approx int a = ...;
int p; // precise by default

p = a; // illegal

Sampson, Dietl, Fortuna, Gnanapragasam, Ceze & Grossman, "EnerJ: Approximate
Data Types for Safe and General Low-power Computation", PLDI 2011

30

© Akash Kumar

2. Built-in Language support
Rely, Proposed by Carbin (2013)

 allows to program explicitly on unreliable hardware, while giving
guarantees on error probabilities

 incorporates Hardware Reliability Specification
 used for numerical calculations, e.g. computation kernels
 knowledge about intermediate reliablity constraints needed

 specify joint reliability of operations in signature .. R(x,y)..
 specify data in unreliable storage: … in urel

Precision Specification

Carbin, Misailovic & Rinard, "Verifying Quantitative Reliability for
Programs That Execute on Unreliable Hardware", OOPSLA, 2013

31

© Akash Kumar

Precision Specification

#define nblocks 20
#define height 16
#define width 16
int <0.99*R(pblocks , cblock) > search_ref (

int <R(pblocks) > pblocks(3) in urel ,
int <R(cblock) > cblock(2) in urel)

{
int minssd = INT_MAX , minblock = -1 in urel ;
int ssd , t , t1 , t2 in urel ;
int i = 0 , j , k ;
repeat nblocks {

ssd = 0; j = 0; ... i = i + 1;
}
return minblock ;

}

32

© Akash Kumar

2. Built-in Language support
Axilog, Proposed by Mahajan (2015)

 extend verilog syntax with annotations to declare arguments safe to
approximate

 infer which other connections and gates are safe to approximate
 synthesis can either relax timing constraints or assume probabilistic

gate models

Precision Specification

module full adder(a, b, c in, c out, s);
input a, b, c_in; output c_out;
approximate output s;
assign s = a ^ b ^ c_in;
assign c_out = a & b + b & c_in + a & c_in;
relax(s);

endmodule

Mahajan et al, "Axilog: Abstractions for Approximate Hardware Design and Reuse", Micro 2015

33

© Akash Kumar

3. Explicit Algorithm Techniques
 careful analysis of algorithm and input data properties
 manually optimize code with existing means
 no automation

4. Output quality monitoring
 measure output quality and adjust "control knobs"

accordingly
 role of quality metrics is most important
 quality metrics often application-specific

Precision Specification
34

© Akash Kumar

1. Loop perforation
2. Precision Scaling
3. Memoization
4. Task Skipping
5. Program Selection
6. Neural Network Substitution
7. Approximate Storage

Precision Reduction Implementation
35

© Akash Kumar

1. Loop perforation – identify loops where only a
subset of iterations can be performed while
maintaining acceptable accuracy

2. Precision Scaling – right-shift data or truncate
3. Memoization – use for functions with similar

input/output pairs
4. Task Skipping – perform subset of tasks
5. Program Selection – select from multiple versions
6. Approximate Storage – allow data to degrade
7. Neural Network Substitution

Precision Reduction Implementation
36

© Akash Kumar

 Neural Network Substitution
 Replace part of the program with an accelerator based on neural

network

 NN needs to be trained with input/output data sets of original function

Precision Reduction Implementation

Esmaeilzadeh, Sampson, Ceze & Burger, "Neural Acceleration for
General-Purpose Approximate Programs", Micro, 2012

37

© Akash Kumar

1. Green

2. iACT

3. GRATER

Overall Frameworks

Baek & Chilimbi, "Green: A Framework for
Supporting Energy-conscious Programming
Using Controlled Approximation", PLDI, 2010

Mishra, A. K.; Barik, R. & Paul, S. iACT: A
software-hardware framework for
understanding the scope of approximate
computing, WACAS, 2014

Lofti, A.; Rahimi, A.; Yazdanbakhsh, A.;
Esmaeilzadeh, H. & Gupta, R. K. GRATER: An
Approximation Workflow for Exploiting Data-
Level Parallelism in FPGA Acceleration, DATE
2016

38

© Akash Kumar

 Whole-stack flow
 Uses language extensions
 Supports loop termination and approximate function

selection
 Generates necessary support code to perform

adaptive QoS control at runtime
 Approximate functions have to be supplied by user

Green
39

© Akash Kumar

GREEN
40

© Akash Kumar

 Compiler, runtime and simulated hardware test bed
 Use pragmas to annotate approximation amenable

functions
 Compiler performs static analysis, places annotations

in binaries

 Supported transformations:
 automated variable precision reduction
 noisy ALU computations
 approximate memoization

iACT
42

© Akash Kumar

iACT Capabilities
43

© Akash Kumar

 Synthesize smaller hardware accelerators of OpenCL
computation kernels automatically, exploiting inherent
application error tolerance

 Uses genetic algorithm to find operations whose
precision can be reduced safely

 Increases data-level parallelism by allowing to place
more functional units

 Generate implementation for FPGA (in their case,
Altera)

GRATER
44

© Akash Kumar

Approximate Computing in Software

 Templates allow programmers to easily specify mechanisms
for computation skipping and dependency relaxation
 Auto-tuning and runtime frameworks explore quality-speed

tradeoff
Example: Iterative-convergence pattern

iterate {
for (i = 1 to M) {

…
}

} until converged();

Best-effort

iterate {
for (j = 1 to M) {

 ..
} When to stop

iterations
}

} until converged();

Approximate

Best-effortit t
Filter computations
that can be dropped

Best effortiterate {
mask [0 to M] = filter ()
for (j = 1 to M, mask) {

 ..
}

} until converged();

Approximate

iiterate {
mask [0 to M] = filter ()
for (j = 1 to M, mask, batch P) { Ignore some

dependencies

Best-effort

 ..
}

} until converged();

dependencies

Approximate

float *[M] points;
float * [k] means;
int [M] memberships;
float *[M] distances;
K‐means() {

means = random_array(k);
iterate {

for (i= 1 to M) {
distances[i] = calc_distances(means,
points[i]);
memberships[i]=compute_cluster(distance
s);

}
means = calc_means(points, memberships);

} until (no_change(means));
}

46

© Akash Kumar

Approximate Computing in Software
 Image segmentation (K-means)

 Face detection (GLVQ)

 Semantic Document Search

Used in NEC’s Face Recognition Products

5X speedup
99% accuracy

3X speedup
Iso-accuracy

4.9X speedup
0.1% error

Dell 2950 (8-core Xeon,
32GB RAM), Intel TBB

47

© Akash Kumar

Approximate Computing Approach

Implementation

Software Architecture Circuit Layout

• Approximations at various layers of abstraction
• Need to ensure quality specifications are met

Application
Relaxed

Equivalence

Approximation mechanisms

Approximate
Software

Approximate
Architecture

Approximate
Circuits

Approximate
Implementation

Approximate
Layout??

Quality
Met?

Quality
Specifications

48

© Akash Kumar

49

© Akash Kumar

Approximate
Architecture

50

© Akash Kumar

Approximate Architecture

Programmable
accelerators (GPGPUs,
MIC) / Vector processors

Domain-specific
accelerators –
image, video …

Algorithm-
specific
accelerators

General purpose
processors/
Multicores

Application specific designs

• ERSA – Leem et. al. –
DATE 2010

• Stochastic processor –
Narayanan et. al. –
DATE 2010

Cores of different
reliabilities Accurate and

approximate
instructions

• ANT – Hedge et. al. –
ISLPED 1999

• Significance driven
computing – Mohapatra
et.al.– ISLPED 2009

• Scalable effort hardware
– Chippa et. al. – DAC
2010, DAC 2011

• Truffle –
Esmaeilzadeh et.
al.–ASPLOS
2012

• EnerJ – Sampson
et.al.– PLDI 2011

51

© Akash Kumar

Approximate Architecture

Programmable
accelerators (GPGPUs,
MIC) / Vector processors

Domain-specific
accelerators –
image, video …

Algorithm-
specific
accelerators

Pros:

General purpose
processors/
Multicores

 Large energy benefits

Challenges:
 Limited applicability  Inherently limited energy benefit –

Dominated by control front-ends
that cannot be approximated

 Allow arbitrary errors in hardware
– limits the fraction of computations
that can be approximated

 Broader applicability

52

© Akash Kumar

Approximate Architecture

Programmable
accelerators (GPGPUs,
MIC) / Vector processors

Domain-specific
accelerators –
image, video …

Algorithm-
specific
accelerators

General purpose
processors/
Multicores

Opportunity:

 Wide range of
applications – fine grained
parallelism

 SIMD:Control overheads amortized
over many execution units

 Need quality guarantees from HW

53

Swagath Venkataramani, Vinay K. Chippa, Srimat T. Chakradhar, Kaushik Roy, and
Anand Raghunathan, Quality programmable vector processors for approximate
computing, MICRO 2013.

Designing Inexact Systems
Efficiently using Elimination

Heuristics
DATE 2015

54

© Akash Kumar

 Diminishing transistor sizes  increase in power
density and errors

 Inexact computing can trade accuracy for significant
gain in area/power

 Real-world examples where accuracy can be traded
 Video streaming (errors in few pixels considered okay)
 Brain-inspired computing architectures
 Learning and decision systems

Introduction
55

© Akash Kumar

 Previous works:
 Decreasing the voltage of operation significantly to reduce

the power consumption albeit at the cost of reliable circuit
operation [Kim, ACM JETC 2014][George, CASES 2006]

 Reducing the number of transistors in order to save energy
[Lingamneni, ACM TECS 2013]

 Removing parts of circuit that have a lower probability of
being active – probabilistic pruning [Lingamneni, DATE 2011]

 However, designing such inexact systems is expensive
 Exponential growth in search space

Background and Motivation
56

© Akash Kumar

 Current inexact systems lack
 Ability to estimate quickly the overall inexactness of a

system
 Identifying the best set of inexact components to use from a

given set of components

 Having an overall design flow to construct such
inexact systems with tunable parameters is the scope
of this research

Background and Motivation
57

© Akash Kumar

 Algorithm to quickly estimate the inexactness of the
larger components

 A design-flow that uses the above algorithm to design
the entire system under the area and power
constraints

 A heuristic to reduce the design-space exploration
time by eliminating the non-distinct points.

 Results of the design-flow applied to an ECG
application of QRS detection.

Contributions
58

© Akash Kumar

 Inexact components considered
 Adders
 Multipliers

 2 types of configurations for adders and multipliers
 Series
 Parallel

Design Flow – Inexact Components
59

© Akash Kumar

Probabilistic pruning
60

© Akash Kumar

 Accuracy tradeoff for
adder/multiplier
 As more nodes pruned,

gains in area, delay and
energy increase

 An order of magnitude
improvement in energy-
delay-area for 10% error

Probabilistic Pruning – Accuracy
Tradeoff

61

© Akash Kumar

 Calculation of overall design
parameters
 Area -
 Power -
 Delay – path with maximum

delay in given design
 Relative error – path with

maximum error in given design
 Essentially identifying critical path

Design Flow – Parameter Computation
62

© Akash Kumar

Design Flow – Optimization Problem

 Given
 Inexact versions for each adder and multiplier

 Objective
 Choose the inexact versions for all components such that we

get the most significant gains in power/delay/area with the
least tradeoff in accuracy

63

© Akash Kumar

Design Flow – Optimization Problem

 Exhaustive search – exponential growth
 For a system with 2 adders and 2 multipliers with 5 inexact

versions of each – design search space is 625 points
 For a system with 5 adders and 5 multipliers with 5 inexact

versions of each – design search space is 9.7 million points
 37 years for simulating all options!

64

© Akash Kumar

Design Flow – Optimization Problem
65

© Akash Kumar

 Reduce design space exploration time
 Order of inexact components does not matter (??!!)
 Only designs which would result in distinct Pareto points

considered
 Design space compared to exhaustive search
 2 adders, 2 multipliers = 64 points (vs 625)
 5 adders, 5 multipliers = 16,384 points (vs 9.7mln) (Still 22 days!)

 Orders of magnitude smaller than exhaustive search

Design Flow – Heuristic Search
66

© Akash Kumar

Design Flow – Heuristic Search
67

© Akash Kumar

Design Flow – System level

Start

For each module
in design

Run estimation
approach for

distinct points

Pick Pareto
optimal points

Run estimation
approach for

overall system

End

More
modules?

Pick Pareto
optimal designs

Simulate optimal
designs

Simulate chosen
Pareto optimal

points

68

© Akash Kumar

Module 1 Module 2 Module 3

69

© Akash Kumar

Module 1 Module 2 Module 3

70

© Akash Kumar

 Estimation and simulation results in similar trend
 Estimation considers worst case scenario

Results – Accuracy of Estimation
71

© Akash Kumar

 QRS detection, one of the
most important features
of ECG considered

 Figure below shows steps
required to process ECG
signal before QRS can be
detected

Case Study - Background
72

© Akash Kumar

 5 inexact adders and 5 inexact multipliers chosen to
implement the different filters

Case Study – Inexact QRS design

Sub-design Number of taps Number of adders Number of
Multipliers

Low pass filter 6 6 7

High Pass Filter 16 16 17

Differentiator 4 4 5

Squaring 0 0 1

Integrator 30 30 1

73

© Akash Kumar

 Different points obtained for the low-pass filter using
estimation approach – 20% power, 10% area
savings for 0.1% error

Case Study – Low Pass Filter
74

© Akash Kumar

 Different points obtained for the high pass filter using
estimation approach – 15% power, 10% area
savings for 0.0005% error

Case Study – High Pass Filter
75

© Akash Kumar

 5 Pareto optimal points chosen for each module
 Estimation on distinct points run for entire system
 5 Pareto optimal designs finally chosen for simulation

Case Study – Heuristic for entire system
76

© Akash Kumar

 None of the inexact designs missed a QRS signal
 Able to achieve good output with up to 15% power

savings and 6% area savings

Case Study – Exact vs Inexact design

Design Power
savings (%)

Area savings
(%)

Relative Error
(%)

Number of
QRS signals
missed

Exact design 0 0 0 0

Pareto optimal
1

12.6 4.5 0.18 0

Pareto optimal
2

14.6 4.9 0.96 0

Pareto optimal
3

12 5.3 1.92 0

Pareto optimal
4

12.8 5.9 3.03 0

77

© Akash Kumar

QRS Peak detection with app. adders
78

© Akash Kumar

QRS Peak detection with app. adders
79

© Akash Kumar

 The error in estimation increases with the number of
components although the trend remains the same –
have better heuristics for estimation

 Heuristic for automated Pareto point selection rather
than human input

 Designing co-efficient specific components for filters

Limitations and future works
80

© Akash Kumar

 Proposed overall design flow for constructing inexact
systems using individual modules

 Heuristics to reduce search space

 Quick estimation of overall design parameters
including relative error

 Case study with QRS detection flow shows the
effectiveness of the overall design flow

Conclusions
81

© Akash Kumar

Challenges

 Determine the precision
 Application designers are the best approximators!
 Defining the approx. metric for an application
 Which level to apply? Across the stack? Need a

whole flow compatible with existing tools
 Run-time variation of the accuracy in the flow
 H/w support necessary
 Runtime reconf. approx. hardware
 Can we use the remaining hardware?

117

© Akash Kumar

Approx. Addition of images
118

© Akash Kumar

Approx. Addition Result
119

© Akash Kumar

Summary

 Modern device/system level challenges forces us to
rethink the design principles

 Approximate Computing is not new, but surely opens
a new door

 Various mechanisms in various layers proposed to
address the challenges and save power

 Can be applied at all levels, but the higher the
layer, the bigger the gains

120

© Akash Kumar

Questions and Answers

Email: akash.kumar@tu-dresden.de

121

