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 Motivation for Approximate Computing
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 Approximate computing: Design philosophy and 

approach

 How?
 Technologies for Approximate Computing
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SEVENTH HEAVEN OFAPPLICATIONS

HELL OF NANOSCALE PHYSICS
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350nm 250nm 180nm 130nm 90nm 65nm 45nm 32nm  22nm  14nm 10nm  7nmNeed new sources of efficiency to bridge the gap!

3

© Akash Kumar

Efficiency Gap In Computing

 Significant gap between future requirements and
projected capabilities of computing platforms
1000
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Tegra K1, A8X

10-20 GFLOPS/W

Time

Scaling (~7nm), 
many-core, 

heterogeneity,
near-threshold 

computing

Today’s
mobile
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100

“How do we advance 
computing systems without 
(significant) technology
progress?” DARPA/ISAT 
workshop,March 2012
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20 W20 W

~200000 W

The Computational Efficiency Gap

IBM Watson playing Jeopardy, 2011
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Humans Approximate

923 = − − .− −?21

is 923 >1.75?21

is 923 > 45?21

Task:
Division

Application 
context 
dictates 
required 
accuracy of 
results

Accuracy

21) 923 (43
84
83
63

Effort expended increases with required accuracy

~1Petaflop/W
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But Computers DO NOT

float x = 923;
float y = 21;
cout << (x/y > 45.0) ?
“YES”:”NO”;

NO92321
923 21 float x = 923;

float y = 21;
cout << (x/y > 1.75) ?
“YES”:”NO”;

YES

But, I worked
harder than 
needed

 Overkill (for many applications)

 Leads to inefficiency
 Can computers be more efficient by producing “just good enough” results?
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Intrinsic Application Resilience: Sources

Intrinsic
Application
Resilience

‘Noisy’ Real
World Inputs

Redundant 
Input Data

Perceptual 
Limitations

Statistical 
Probabilistic 

Computations

Self-Healing

Compute distances
& assign points 
to clusters

Update cluster
means

Repeat until convergence

 Intrinsic 
application 
resilience: Ability 
to produce 
acceptable 
outputs despite 
underlying 
computations 
being performed 
in an approximate 
manner

8



© Akash Kumar

Intrinsic Resilience In RMS Applications

V.K.Chippa,S.T.Chakradhar,K.Roy andA.Raghunathan,“Analysis and characterization of inherent application
resilience for approximate computing,” DAC 2013.

Recognition, Mining, Synthesis Application Suite

Search image
Results

0: Burger
1: Bread
2: Food

.

.
25: McDonals

Principle Component 
Analysis

SVM Classifier

83% of runtime 
spent in 
computations 
that can be 
approximated

0 20 40 60 80 100 120

Document search
Image search 

Digit recognition
Digit model generation

Eye detection
Eye model generation

Image segmentation
Census data modeling

Census data classification
Health information analysis 

Character recognition 
Online data clustering

Total Resilience

Applications have 
a mix of resilient 
and sensitive 
computations

% Runtime in 
resilient 
computations
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Its an Approximate World … At the Top

 No golden answer (multiple answers 
are equally acceptable)
 Web search, recommendation systems

 Even the best algorithm cannot 
produce correct results all the time
 Most recognition / machine learning 

problems

 Too expensive to produce fully 
correct or optimal results
 Heuristic and probabilistic algorithms, 

relaxed consistency models, …
Miller-Rabin 
primality test

Eventual 
consistency
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Yet, Computing Lives In A Utopian World!
No golden answer Perfect/correct answers Too expensive to produce

not always possible perfect/correct answers

St
ri

ct
N

um
er

ic
al

or
Bo

ol
ea

n
Eq

ui
va

le
nc

e

Recognition

Search
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Vision

Programming Languages,Compilers, 
Runtimes

Architecture

Logic

Circuits
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Outline

 Why?
• Motivation forApproximate Computing

 What?
• Approximate computing:Design philosophy and approach

 How?
• Technologies forApproximate Computing
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APPROXIMATE COMPUTING: DESIGN PHILOSOPHY

Effort
Max Min

EffortMinMax

Q
ua

lit
y

EffortMinMax

En
er

gy


 How do we get the best Q vs.E tradeoff?
• Disproportionate benefit

 Computing platforms that can modulate 
the effort expended towards quality of 
results
• Higher effort Higher quality but lower 

efficiency

MAXMIN

EFFORT
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Its an Approximate World … At the Top

No golden answer Perfect/correct answers 
not always possible

Too expensive to produce 
perfect/correct answers

Miller-Rabin 
primality test

Eventual 
consistency
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Approximate Computing Throughout the Stack

No golden answer Perfect/correct answers 
not always possible

Too expensive to produce 
perfect/correct answers

Programming Languages, Compilers, 
Runtimes

Architecture
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Where did Approximate Computing come from?

 Tradeoffs between Quality of Results and Efficiency 
are not new
 Intellectual roots of approximate computing can be 

traced back to many fields
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Where did Approximate Computing come from?

 Approximation, Heuristic, and Probabilistic 
algorithms
 Tradeoff amount of work for sub-optimal or 

occasionally incorrect results
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Where did Approximate Computing come from?

 Networking
 Best-effort packet delivery (IP)
 Reliability layered on top only when needed (TCP)
 Many apps do not need or use reliable packet delivery!
 Video, audio streaming

Packets may be dropped, 
corrupted, or delivered 

out-of-order!
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Where did Approximate Computing come from?

 Large-scale unstructured data storage

Eventual (!) consistency
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Where did Approximate Computing come from?

 Digital Signal Processing
 Filter design (optimize taps, coefficients, and precision 

based on specifications)
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Approximate Computing Now: Why?

 Arising from the application level
 Inherent lack of notion or ability for a single ‘correct’ 

answer
 ‘Noisy’ or redundant real-world data
 Perceptual limitations

 Arising from the transistor level
 Increasing fault-rates
 Increased effort/resource to achieve fault-tolerance
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Outline

 Why?
• Motivation forApproximate Computing

 What?
• Approximate computing:Design philosophy and approach

 How?
• Technologies forApproximate Computing
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Approximate Computing Approach

Implementation

Software Architecture Circuit Layout

• Approximations at various layers of abstraction
• Need to ensure quality specifications are met

Application
Relaxed

Equivalence

Approximation mechanisms

Approximate
Software

Approximate
Architecture

Approximate
Circuits

Approximate
Implementation

Approximate
Layout??

Quality 
Met?

Quality
Specifications
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Some Early Efforts in Approx. Computing*

 Approximate signal processing (Chandrakasan et. al, 1997)
 Voltage overscaling (Shanbhag et. al, ISLPED 1999)
 Probabilistic CMOS (Palem et. al, 2003)
 Manufacturing yield enhancement (Breuer et. al, 2004-)
 Energy-efficient, variation-tolerant approximate hardware (Roy et. al, 2006-)
 Probabilistic Arithmetic / Biased voltage overscaling (Palem et. al, CASES 2006-)
 Parallel runtime framework with computation skipping, dependency relaxation 

(Raghunathan et. al, IPDPS 2009; IPDPS 2010)
 Error-resilient / stochastic processors (Mitra et. al, 2010; Kumar et. al, 2010) 
 Cross-layer, scalable-effort approximate HW design (Chippa et. al, 2010)
 Programming support for approximate computing (Chilimbi el. al, 2010; Misailovic et. al, 

2010; Sampson et. al, 2011)
 …
 …
 http://timor.github.io/refgraph/ Dancing authors. 

* Not an exhaustive list!

Why some in 
red?
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Approximate
Software

Largely based on:
[1] Mittal, “A survey of techniques for approximate computing”, ACM Computing Surveys 2016
[2] Shafique, Hafiz, Rehman, El-Harouni & Henkel, "Cross-layer Approximate Computing: From Logic to 
Architectures", DAC 2016
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 Techniques can be applied at 
 Compile-time OR
 Run-time

 Frameworks that exploit multiple layers
 Precision specification -> identify and specify what to 

approximate
 Precision reduction implementation -> actually perform and 

control approximation

 Application at different layers (Better throughout!)
 Language
 Algorithm
 Compiler

Approximate Software
26
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 Compile-time
 Use information available before execution
 Possibly lower execution overhead
 Need analysis on accuracy bounds

 Run-time
 More lenient towards incomplete accuracy analysis
 Generally larger overhead

 Combination of the two
 Runtime reconfigurable approximate systems

Compile-time vs Run-time
27
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1. Code annotation

2. Built-in Language support

3. Explicit algorithm techniques

4. Output quality monitoring

Precision Specification
28
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1. Code annotation
 using existing programming languages with "magic" markers 
 Comments, pragmas

 ignored by regular compiler, but can be processed by 
special preprocessors

 E.g. iACT

Precision Specification

Mishra, Barik & Paul, "iACT: A software-hardware framework for 
understanding the scope of approximate computing", WACAS, 2014 
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2. Built-in Language support
 implemented by extending existing programming languages 

or designing a new programming language
EnerJ, Proposed by Sampson (2011)

 Use Type Qualifiers to indicate approximate data and operations
 Approximation-aware execution substrate can make use of this 

additional information

Precision Specification

@Approx int a = ...; 
int p; // precise by default

p = a; // illegal

Sampson, Dietl, Fortuna, Gnanapragasam, Ceze & Grossman, "EnerJ: Approximate 
Data Types for Safe and General Low-power Computation", PLDI 2011 
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2. Built-in Language support
Rely, Proposed by Carbin (2013)

 allows to program explicitly on unreliable hardware, while giving 
guarantees on error probabilities

 incorporates Hardware Reliability Specification
 used for numerical calculations, e.g. computation kernels
 knowledge about intermediate reliablity constraints needed

 specify joint reliability of operations in signature .. R(x,y)..
 specify data in unreliable storage: … in urel

Precision Specification

Carbin, Misailovic & Rinard, "Verifying Quantitative Reliability for 
Programs That Execute on Unreliable Hardware", OOPSLA, 2013 
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Precision Specification

#define nblocks 20 
#define height 16 
#define width 16 
int <0.99*R(pblocks , cblock) > search_ref ( 

int <R(pblocks) > pblocks(3) in urel , 
int <R(cblock) > cblock(2) in urel) 

{ 
int minssd = INT_MAX , minblock = -1 in urel ; 
int ssd , t , t1 , t2 in urel ; 
int i = 0 , j , k ; 
repeat nblocks { 

ssd = 0; j = 0; ... i = i + 1; 
} 
return minblock ; 

} 
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2. Built-in Language support
Axilog, Proposed by Mahajan (2015)

 extend verilog syntax with annotations to declare arguments safe to 
approximate

 infer which other connections and gates are safe to approximate
 synthesis can either relax timing constraints or assume probabilistic 

gate models

Precision Specification

module full adder(a, b, c in, c out, s); 
input a, b, c_in; output c_out; 
approximate output s; 
assign s = a ^ b ^ c_in; 
assign c_out = a & b + b & c_in + a & c_in; 
relax(s); 

endmodule

Mahajan et al, "Axilog: Abstractions for Approximate Hardware Design and Reuse", Micro 2015 
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3. Explicit Algorithm Techniques
 careful analysis of algorithm and input data properties
 manually optimize code with existing means
 no automation

4. Output quality monitoring
 measure output quality and adjust "control knobs" 

accordingly
 role of quality metrics is most important
 quality metrics often application-specific

Precision Specification
34
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1. Loop perforation
2. Precision Scaling
3. Memoization
4. Task Skipping
5. Program Selection
6. Neural Network Substitution
7. Approximate Storage

Precision Reduction Implementation
35
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1. Loop perforation – identify loops where only a 
subset of iterations can be performed while 
maintaining acceptable accuracy

2. Precision Scaling – right-shift data or truncate
3. Memoization – use for functions with similar 

input/output pairs
4. Task Skipping – perform subset of tasks
5. Program Selection – select from multiple versions
6. Approximate Storage – allow data to degrade
7. Neural Network Substitution

Precision Reduction Implementation
36



© Akash Kumar

 Neural Network Substitution
 Replace part of the program with an accelerator based on neural 

network

 NN needs to be trained with input/output data sets of original function

Precision Reduction Implementation

Esmaeilzadeh, Sampson, Ceze & Burger, "Neural Acceleration for 
General-Purpose Approximate Programs", Micro, 2012
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1. Green

2. iACT

3. GRATER

Overall Frameworks

Baek & Chilimbi, "Green: A Framework for 
Supporting Energy-conscious Programming 
Using Controlled Approximation", PLDI, 2010

Mishra, A. K.; Barik, R. & Paul, S. iACT: A 
software-hardware framework for 
understanding the scope of approximate 
computing, WACAS, 2014

Lofti, A.; Rahimi, A.; Yazdanbakhsh, A.; 
Esmaeilzadeh, H. & Gupta, R. K. GRATER: An 
Approximation Workflow for Exploiting Data-
Level Parallelism in FPGA Acceleration, DATE 
2016
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 Whole-stack flow
 Uses language extensions
 Supports loop termination and approximate function 

selection
 Generates necessary support code to perform 

adaptive QoS control at runtime
 Approximate functions have to be supplied by user

Green
39
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GREEN
40
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 Compiler, runtime and simulated hardware test bed
 Use pragmas to annotate approximation amenable 

functions
 Compiler performs static analysis, places annotations 

in binaries

 Supported transformations: 
 automated variable precision reduction
 noisy ALU computations
 approximate memoization

iACT
42
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iACT Capabilities
43
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 Synthesize smaller hardware accelerators of OpenCL 
computation kernels automatically, exploiting inherent 
application error tolerance

 Uses genetic algorithm to find operations whose 
precision can be reduced safely

 Increases data-level parallelism by allowing to place 
more functional units

 Generate implementation for FPGA (in their case, 
Altera)

GRATER
44
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Approximate Computing in Software

 Templates allow programmers to easily specify mechanisms 
for computation skipping and dependency relaxation
 Auto-tuning and runtime frameworks explore quality-speed 

tradeoff
Example: Iterative-convergence pattern

iterate {
for (i = 1 to M) {

…
}

} until converged();

Best-effort

iterate {
for ( j = 1 to M) {

 ..
} When to stop 

iterations
}

} until converged( );

Approximate

Best-effortit t
Filter computations 
that can be dropped

Best effortiterate {
mask [0 to M] = filter ( )
for ( j = 1 to M, mask) {

 ..
}

} until converged( );

Approximate

iiterate {
mask [0 to M] = filter ( )
for ( j = 1 to M, mask, batch P) { Ignore some 

dependencies

Best-effort

 ..
}

} until converged( );

dependencies

Approximate

float *[M] points;
float * [k] means;
int [M] memberships;
float *[M] distances;
K‐means() {

means = random_array(k);
iterate {

for (i= 1 to M) {
distances[i] = calc_distances(means, 
points[i]);
memberships[i]=compute_cluster(distance
s);

}
means = calc_means(points, memberships);

} until (no_change(means));
}
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Approximate Computing in Software
 Image segmentation (K-means)

 Face detection (GLVQ)

 Semantic Document Search

Used in  NEC’s Face Recognition Products

5X speedup
99% accuracy

3X speedup
Iso-accuracy

4.9X speedup
0.1% error

Dell 2950 (8-core Xeon, 
32GB RAM), Intel TBB
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Approximate Computing Approach

Implementation

Software Architecture Circuit Layout

• Approximations at various layers of abstraction
• Need to ensure quality specifications are met

Application
Relaxed

Equivalence

Approximation mechanisms

Approximate
Software

Approximate
Architecture

Approximate
Circuits

Approximate
Implementation

Approximate
Layout??

Quality 
Met?

Quality
Specifications
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Approximate
Architecture
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Approximate Architecture

Programmable
accelerators (GPGPUs, 
MIC) / Vector processors

Domain-specific 
accelerators –
image, video …

Algorithm-
specific 
accelerators

General purpose 
processors/
Multicores

Application specific designs

• ERSA – Leem et. al. –
DATE 2010

• Stochastic processor –
Narayanan et. al. –
DATE 2010

Cores of different 
reliabilities Accurate and

approximate
instructions

• ANT – Hedge et. al. –
ISLPED 1999

• Significance driven 
computing – Mohapatra
et.al.– ISLPED 2009

• Scalable effort hardware
– Chippa et. al. – DAC
2010, DAC 2011

• Truffle –
Esmaeilzadeh et.
al.–ASPLOS 
2012

• EnerJ – Sampson
et.al.– PLDI 2011
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Approximate Architecture

Programmable
accelerators (GPGPUs, 
MIC) / Vector processors

Domain-specific 
accelerators –
image, video …

Algorithm-
specific 
accelerators

Pros:

General purpose 
processors/
Multicores

 Large energy benefits

Challenges:
 Limited applicability  Inherently limited energy benefit –

Dominated by control front-ends 
that cannot be approximated

 Allow arbitrary errors in hardware
– limits the fraction of computations
that can be approximated

 Broader applicability

52



© Akash Kumar

Approximate Architecture

Programmable
accelerators (GPGPUs, 
MIC) / Vector processors

Domain-specific 
accelerators –
image, video …

Algorithm-
specific 
accelerators

General purpose 
processors/
Multicores

Opportunity:

 Wide range of 
applications – fine grained 
parallelism

 SIMD:Control overheads amortized
over many execution units

 Need quality guarantees from HW

53

Swagath Venkataramani, Vinay K. Chippa, Srimat T. Chakradhar, Kaushik Roy, and 
Anand Raghunathan, Quality programmable vector processors for approximate 
computing, MICRO 2013.

Designing Inexact Systems 
Efficiently using Elimination 

Heuristics
DATE 2015

54
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 Diminishing transistor sizes  increase in power 
density and errors

 Inexact computing can trade accuracy for significant 
gain in area/power

 Real-world examples where accuracy can be traded
 Video streaming (errors in few pixels considered okay)
 Brain-inspired computing architectures
 Learning and decision systems

Introduction
55

© Akash Kumar

 Previous works:
 Decreasing the voltage of operation significantly to reduce 

the power consumption albeit at the cost of reliable circuit 
operation [Kim, ACM JETC 2014][George, CASES 2006]

 Reducing the number of transistors in order to save energy 
[Lingamneni, ACM TECS 2013]

 Removing parts of circuit that have a lower probability of 
being active – probabilistic pruning [Lingamneni, DATE 2011]

 However, designing such inexact systems is expensive
 Exponential growth in search space

Background and Motivation
56
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 Current inexact systems lack
 Ability to estimate quickly the overall inexactness of a 

system
 Identifying the best set of inexact components to use from a 

given set of components

 Having an overall design flow to construct such 
inexact systems with tunable parameters is the scope 
of this research

Background and Motivation
57
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 Algorithm to quickly estimate the inexactness of the 
larger components

 A design-flow that uses the above algorithm to design 
the entire system under the area and power 
constraints

 A heuristic to reduce the design-space exploration 
time by eliminating the non-distinct points. 

 Results of the design-flow applied to an ECG 
application of QRS detection.

Contributions
58
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 Inexact components considered
 Adders
 Multipliers

 2 types of configurations for adders and multipliers
 Series
 Parallel

Design Flow – Inexact Components
59
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Probabilistic pruning
60
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 Accuracy tradeoff for 
adder/multiplier
 As more nodes pruned, 

gains in area, delay and 
energy increase

 An order of magnitude 
improvement in energy-
delay-area for 10% error

Probabilistic Pruning – Accuracy 
Tradeoff

61

© Akash Kumar

 Calculation of overall design
parameters
 Area -
 Power -
 Delay – path with maximum 

delay in given design
 Relative error – path with 

maximum error in given design
 Essentially identifying critical path

Design Flow – Parameter Computation
62
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Design Flow – Optimization Problem

 Given 
 Inexact versions for each adder and multiplier 

 Objective
 Choose the inexact versions for all components such that we 

get the most significant gains in power/delay/area with the 
least tradeoff in accuracy

63
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Design Flow – Optimization Problem

 Exhaustive search – exponential growth
 For a system with 2 adders and 2 multipliers with 5 inexact 

versions of each – design search space is 625 points
 For a system with 5 adders and 5 multipliers with 5 inexact 

versions of each – design search space is 9.7 million points 
 37 years for simulating all options!

64
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Design Flow – Optimization Problem
65
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 Reduce design space exploration time
 Order of inexact components does not matter (??!!)
 Only designs which would result in distinct Pareto points 

considered
 Design space compared to exhaustive search 
 2 adders, 2 multipliers = 64 points (vs 625)
 5 adders, 5 multipliers = 16,384 points (vs 9.7mln) (Still 22 days!)

 Orders of magnitude smaller than exhaustive search

Design Flow – Heuristic Search
66
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Design Flow – Heuristic Search
67
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Design Flow – System level

Start

For each module 
in design

Run estimation 
approach for 

distinct points

Pick Pareto 
optimal points

Run estimation 
approach for 

overall system

End

More 
modules?

Pick Pareto 
optimal designs

Simulate optimal 
designs

Simulate chosen 
Pareto optimal 

points

68
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Module 1 Module 2 Module 3

69
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Module 1 Module 2 Module 3

70
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 Estimation and simulation results in similar trend
 Estimation considers worst case scenario

Results – Accuracy of Estimation
71
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 QRS detection, one of the
most important features 
of ECG considered

 Figure below shows steps
required to process ECG
signal before QRS can be
detected

Case Study - Background
72
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 5 inexact adders and 5 inexact multipliers chosen to 
implement the different filters

Case Study – Inexact QRS design

Sub-design Number of taps Number of adders Number of 
Multipliers

Low pass filter 6 6 7

High Pass Filter 16 16 17

Differentiator 4 4 5

Squaring 0 0 1

Integrator 30 30 1
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 Different points obtained for the low-pass filter using 
estimation approach – 20% power, 10% area 
savings for 0.1% error

Case Study – Low Pass Filter
74
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 Different points obtained for the high pass filter using 
estimation approach – 15% power, 10% area 
savings for 0.0005% error

Case Study – High Pass Filter
75
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 5 Pareto optimal points chosen for each module
 Estimation on distinct points run for entire system
 5 Pareto optimal designs finally chosen for simulation

Case Study – Heuristic for entire system
76
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 None of the inexact designs missed a QRS signal
 Able to achieve good output with up to 15% power 

savings and 6% area savings

Case Study – Exact vs Inexact design

Design Power 
savings (%)

Area savings
(%)

Relative Error 
(%)

Number of 
QRS signals 
missed

Exact design 0 0 0 0

Pareto optimal 
1

12.6 4.5 0.18 0

Pareto optimal 
2

14.6 4.9 0.96 0

Pareto optimal 
3

12 5.3 1.92 0

Pareto optimal 
4

12.8 5.9 3.03 0
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QRS Peak detection with app. adders
78
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QRS Peak detection with app. adders
79
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 The error in estimation increases with the number of 
components although the trend remains the same –
have better heuristics for estimation

 Heuristic for automated Pareto point selection rather 
than human input

 Designing co-efficient specific components for filters

Limitations and future works
80
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 Proposed overall design flow for constructing inexact 
systems using individual modules

 Heuristics to reduce search space 

 Quick estimation of overall design parameters 
including relative error

 Case study with QRS detection flow shows the 
effectiveness of the overall design flow 

Conclusions
81

© Akash Kumar

Challenges

 Determine the precision
 Application designers are the best approximators!
 Defining the approx. metric for an application
 Which level to apply? Across the stack? Need a 

whole flow compatible with existing tools
 Run-time variation of the accuracy in the flow
 H/w support necessary
 Runtime reconf. approx. hardware
 Can we use the remaining hardware?
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Approx. Addition of images 
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Approx. Addition Result
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Summary

 Modern device/system level challenges forces us to
rethink the design principles

 Approximate Computing is not new, but surely opens
a new door

 Various mechanisms in various layers proposed to
address the challenges and save power

 Can be applied at all levels, but the higher the
layer, the bigger the gains
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Questions and Answers

Email: akash.kumar@tu-dresden.de
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