

Accelerators and Coarse Grained
Reconfigurable Architectures

Mark Wijtvliet
m.wijtvliet@tue.nl

General purpose processors

● Run mixed application types
– Operating system

– Webserver

– Games

– Office applications

● Cheap
– E.g. Raspberry Pi's

Broadcom processor

– Many others

● Generally easy to program
– Well developed compilers and

tool-flow.

– Programming model hardly changed
over the years.

General purpose processors

● They work great
● So why this accelerator talk?

[XKCD.com]

Example: mobile phones

● Typically a power budget of 1 Watt (1 J/Sec).
● Modern communication systems (4G) require

1000 GOPS
● That requires a compute efficiency of 1 pJ/OP

[Multicore for Mobile Phones, Kees van Berkel]

Example: mobile phones

● (Older) ARM11: 200 pJ/OP (65nm)
● A modern ARM, in 28nm

– Scaling is 1/(S^2)

– Should be around 37 pJ/OP

– Numbers not public

Example: mobile phones

● Another problem:
– Quad-core ARM at 2 GHz: approx. 8 GOPS

– Orders of magnitude too low performance

– … And it would be nice if your phone can do
something else than just 4G.

Example: mobile phones

● Quick summary:
– Compute efficiency is (at least) one order of

magnitude off from 1 pJ/OP.

– Performance is off by several orders of magnitude.

Inefficiencies in processors

[Understanding sources of inefficiency in General-Purpose Chips, Hameed et al.]

Inefficiencies in processors

[Understanding sources of inefficiency in General-Purpose Chips, Hameed et al.]

● Instruction fetching and decoding
● Communication (register file, caches, etc.)
● Hardware reconfiguration (in processor pipeline)

Inefficiencies in processors

● Factor 500 difference to ASIC in energy.
– For H.264 encoding

– For a 2.8 GHz Pentium 4 and a Tensilica Micro-
processor.

Instruction fetching and decoding

● Where does the overhead come from?
– Addressing and loading the instruction word from

memory.

– Instruction caches.

– Decoding the instruction to decoded instruction
bits that control the processing pipeline.

Data transport

● Where does the overhead come from?
– Register file access

● How do processors reduce this?

– Data caches

Data transport

● Where does the overhead come from?
– Register file access

● How do processors reduce this?

– Data caches

Multiply

Accumulate

Hardware reconfiguration

● Mostly multiplexers

General purpose processors

● Lessons learned:
– Reduce instruction fetching and decoding

– Reduce cycle-based hardware reconfiguration.

– Reduce data transport to and from memories and
RF.

– Still needs to be programmable

Hardware acceleration

Static control

CF

A[0...N]

B[0...N]

C[0...N]

● Loops are the best candidate for static control
– Do the same thing many times

for i = 0 to N
A
B
C

Static control

for i = 0 to N
A
B
C

● Loops are the best candidate for static control
– Do the same thing many times

● Software pipelining

CF

A0

A1

A[2...N]

B0

B[1...N-1]

B2

C[0...N-2]

C1

C2

PE 1 PE 2 PE 3 PE 4

Very Long Instruction Word
processors (VLIW)

● Processor with multiple issue-slots
● One long instruction controlling them all

Very Long Instruction Word
processors (VLIW)

● If we have a 4-issue VLIW we can do our loop
in a single cycle.

for i = 0 to N
A
B
C

CF

A0

A1

A[2...N]

B0

B[1...N-1]

B2

C[0...N-2]

C1

C2

Slot 1 Slot 2 Slot 3 Slot 4

Very Long Instruction Word
processors (VLIW)

● But once the VLIW is manufactured the
number (and functionality) of the issue slots is
fixed.

● Problem ...

for i = 0 to N
A
B
C
D

ASICs

● The application is completely software
pipelined and implemented ('hard coded') in
hardware.

● No more instruction fetching and decoding
● But cannot be changed anymore after production

● But ASICs can do something about RF and
memory accesses...

Spatial layout

RF

Compute: (A+B) * 2

+

RF *

General purpose VLIW

C
yc

le
 N

C
yc

le
 N

+
1

Spatial layout

2

Spatial layout

RF

Compute: (A+B) * 2

+

RF *

RF + *

RF + *

General purpose VLIW

C
yc

le
 N

C
yc

le
 N

+
1

Spatial layout

2 2

2

2 times the throughput!

Spatial layout

RF

Compute: (A+B) * 2

+

RF *

RF + *

RF + *

General purpose VLIW

C
yc

le
 N

C
yc

le
 N

+
1

RF + *

2

Spatial layout

2 2

2

RF + *

2

2 times the throughput! 2 times the throughput!

Spatial layout

● Essentially a software pipelined loop with direct
connections between functional units.

● Specialized ASICs, e.g. dedicated H.264 decoders.
– You probably have one in your smart-phone

● Example: H.264 decoding 1080p @ 30fps
– ASIC: 186 mW (180nm) → 2.78mW (22nm)

– i5 4300M: 2.84 W (22nm)

Spatial layout

● Essentially a software pipelined loop with direct
connections between functional units.

● Specialized ASICs, e.g. dedicated H.264 decoders.
– You probably have one in your smart-phone

● Example: H.264 decoding 1080p @ 30fps
– ASIC: 186 mW (180nm) → 2.78mW (22nm)

– i5 4300M: 2.84 W (22nm)

ASICs

● Very efficient
– (Almost) no control

● Some configuration registers
● Fully software-pipelined hardware implementation

– Reduce memory accesses
● With spatial layout many register file (and memory)

accesses can be avoided

● Very inflexible
– Highly optimized for a very small application set

Reconfigurable hardware

Field Programmable Gate Arrays

● Chip full of configurable logic blocks/cells

[fpgacentral.com]

Field Programmable Gate Arrays

● What is in a logic block
– Look-up tables

– Full adder

– Flip-Flop

– Some multiplexers

[fpgacentral.com]

Field Programmable Gate Arrays

● With the exception of specialized blocks most
FPGAs contain gate-level blocks.

● Allows you to build arbitrary hardware
– Like a box full of logic gates to build circuits.

● These blocks can be connected together via
the interconnect.

[chipsetc.com]

Field Programmable Gate Arrays

● The interconnect on a FPGA is static:
– Configured at application level (typically when you

power-up the FPGA).

– Connections are (usually) fixed after that

Switchbox

Field Programmable Gate Arrays

● By configuring the interconnect and the logic
blocks arbitrary (digital) circuits are possible.

● This allows for building specialized circuits that
implement your algorithm with:
– Spatial layout

– Static control

– Or a processor that runs software if you like to...

Field Programmable Gate Arrays

● Spatial mapping and static control
● Reconfigurable
● … no such thing as a free lunch ...

 36

Spatial Layout in FPGA

FPGA Configures at gate level, which incurs large
overheads:
– Large configuration memory (SRAM leakage: high static power)

– Complex routing network (many long wires: high dynamic power)

Image Source: www.ni.com

Field Programmable Gate Arrays

● Each configurable item has some configuration
memory cells attached that configure it.

● Often several megabits

● Memory cells have leakage

● … Many cells have more leakage …

● Not trivial to program

[xkcd.com]

What have we learned so far?

SIMD

GPU

CPU

ASIC

VLIW

DSP

E
n

er
gy

 E
ffi

ci
e

nc
y

FPGA

Flexibility

● Quite flexible
● Low efficiency
● Often lack performance.

● Improve efficiency by giving up
 some flexibility

● More application specific

● Very efficient
● Not flexible

● More efficient due to spatial
 layout

● High static control cost

Coarse Grained Reconfigurable Architecture

CGRA

Temporal granularity

cy
cle

re
gio

n

ke
rn

el

ap
pli

ca
tio

n

Des
ign

-ti
m

e
gate

Multi-bit gate

Fixed-op. FU

Multi-op. FU

Core

Chip

FPGA
Context

 switching FPGA
Partial rec.

FPGA

VLIW
with loop

 buffer

S
p

at
ia

l
g

ra
n

u
la

ri
ty

CPU
ASIC

Compute

Interconnect

Memories

Res
ourc

e
ty

pe

Coarse Grained Reconfigurable Architecture

 41

Spatial Layout on the Cheap

Gate-level granularity is often not required
digital signal processing

What our architecture does:
– Configure at functional unit level

– Statically route data-path (spatial layout) but allow
instructions.

A specialized FPGA to build processors

 42

Global data memory

LS

FU FU

FU FU

FU FU

FU FU

FU FU

FU FU

FU FU

FU FU

FU RF

FU RF

FU RF

FU RF

Local
Mem.

LS LS LS LS LS

Local
Mem.

Local
Mem.

Local
Mem.

Local
Mem.

Local
Mem.

Host

Instruction
memory

ID

ID

ID

ID

IF

IF

IF

IF

IDIF

CGRA

 43

Global data memory

LS

FU FU

FU FU

FU FU

FU FU

FU FU

FU FU

FU FU

FU FU

FU RF

FU RF

FU RF

FU RF

Local
Mem.

LS LS LS LS LS

Local
Mem.

Local
Mem.

Local
Mem.

Local
Mem.

Local
Mem.

Host

Instruction
memory

ID

ID

ID

ID

IF

IF

IF

IF

IDIF

SIMD construction

 44

Global data memory

LS

FU FU

FU FU

FU FU

FU FU

FU FU

FU FU

FU FU

FU FU

FU RF

FU RF

FU RF

FU RF

Local
Mem.

LS LS LS LS LS

Local
Mem.

Local
Mem.

Local
Mem.

Local
Mem.

Local
Mem.

Host

Instruction
memory

ID

ID

ID

ID

IF

IF

IF

IF

IDIF

VLIW construction

 45

Building Blocks

● Instruction Fetch/Decode (IF/ID)
● Load Store Units (LSU)
● Register Files (RF)
● Memories (MEM)
● Functional Units (FU)

– Add, subtract, bitlevel operations

– Multiplication

– Accumulator

– …

● Switchboxes

ID

LS

FU

IF

MEM

RF

 46

Building a processor

IDIF
Instruction
memory

 47

Building a processor

IDIF
Instruction
memory ABU

 48

Building a processor

IDIF
Instruction
memory ABU

IDIF
Instruction
memory

 49

Building a processor

IDIF
Instruction
memory ABU

IDIF
Instruction
memory ALU

 50

Building a processor

IDIF
Instruction
memory ABU

IDIF
Instruction
memory ALU ALU ALU ALU

 51

Building a processor

IDIF
Instruction
memory ABU

IDIF
Instruction
memory ALU ALU ALU ALU

IDIF
Instruction
memory LSU LSU LSU LSU

 52

Local
Mem.

Local
Mem.

Local
Mem.

Local
Mem.

Building a processor

IDIF
Instruction
memory ABU

IDIF
Instruction
memory ALU ALU ALU ALU

IDIF
Instruction
memory LSU LSU LSU LSU

Global data memory

 53

Local
Mem.

Local
Mem.

Local
Mem.

Local
Mem.

Building a processor

IDIF
Instruction
memory ABU

IDIF
Instruction
memory ALU ALU ALU ALU

IDIF
Instruction
memory LSU LSU LSU LSU

Global data memory

 54

Building a processor

● We can have multiple ABUs
– What does this mean?

 55

Building a processor

● Architecture is specified with XML file
● Two versions:

– Static: all connections are fixed at design time

– Dynamic: connections can be configured at runtime

● The assignment will use the static version

 56

Dynamic CGRA

● Connections can be changed at run-time
– Very similar to FPGA

FU

FU

FU

FU

LS LS

 57

Local
Mem.

Local
Mem.

Local
Mem.

Local
Mem.

Dynamic CGRA

IDIF
Instruction
memory ABU

IDIF
Instruction
memory ALU ALU ALU ALU

IDIF
Instruction
memory LSU LSU LSU LSU

Global data memory

 58

Functional units

● As mentioned before, we have several:
– ALU Arithmetic Logic Unit

– RF Register File

– LSU Load-Store Unit

– ABU Accumulate Branch Unit

– MUL Multiplier

– IU Immediate Unit

 59

Functional units

● Most units have 4 inputs and 2 outputs

A

in0 in1 in2 in3

B

in0 in1 in2 in3

Output register(s)

sourceA sourceB

destination

 60

Functional units

● Source inputs and destination outputs specified
in instruction.

● Instruction usually in the form:
opcode dest, inA, inB

● Each output register is a source on the network.

 61

Using the CGRA

● Two things are required:
– Architecture description

– Program

 62

Architecture description

 63

Programming

● We would liked to give you a compiler...
– Still in development.

– Works but not yet using the architecture very
efficiently.

● Programming is done in an assembler dialect
– We call it PASM: Parallel Assembler

Some results

Benchmark Architecture Cycles Power [mW] Energy [nJ]

Binarization Cortex-M0 115007 1.57 1806

CGRA scalar 8209 1.07 88

CGRA vector 4 2069 2.34 48

FIR Cortex-M0 665618 0.98 6523

CGRA 2224 9.48 211

● Post place & route results for 2 benchmark
applications
– 40nm commercial library
– Targeted at 100 MHz

37x

31x

Reconfigurable architectures

● Lower static control power than FPGA
– Higher granularity means less control bits

– Reconfiguration is faster

● Can adapt better to the application than VLIW
– Only use the number of issue slots really required

– Support spatial mapping and single-cycle loops

– Unused units can be switched off.

● High number of operations per cycle
– But as much as possible: the same instruction

Current developments

● Single cycle loop support
● Debug support
● Approximate compute platform
● Compiler (LLVM, Roel Jordans, talk tomorrow)

● Tape-out plans:
– Small design in October

– More complex/optimized design in May 2018.

The assignment

● You will get a naive implementation for a Gaussian
blur convolution kernel.

● Your job is to make a trade-off between energy,
area and performance

Your assignment

● You can:
– Modify the architecture:

● Implement data-level parallelism
● Implement instruction-level parallelism
● Use bypassing
● Use other nice hardware features

– Modify the application:
● There are algorithm level optimizations possible
● To make use of the architecture changes

Your assignment

● The assignment document will describe
everything in more detail.
– Additional documentation and files can be found on

asci.cgra.nl

● Tools are available to make energy, area and
performance estimates.

One more thing...
● This is a research architecture…

– Bugs will be present.

– You will be among the first users.

Want to do the assignment?

 Mark Wijtvliet (m.wijtvliet@tue.nl)
(or register at the forum at asci.cgra.nl and start directly)

mailto:m.wijtvliet@tue.nl

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

