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Overview

Processor basics

 RISC, pipelining, etc.

Energy optimizations

 inefficiencies

Going parallel

 the 4-D model

Going heterogeneous: why?

How far are we?

 some examples

Conclusions

 Research topics
ASCI 2017 HC (3)



Processor basics: How to build a RISC

RISC characteristics:

 Reduced number of instructions

 Limited addressing modes 

 load-store architecture

 enables pipelining

 Large, uniform register set

 One instruction size (32 bits)

 know directly where the following instruction starts

 Limited number of instruction formats

 Memory alignment restrictions

 ..... keep it simple ....

 Based on quantitative analysis

 " the famous MIPS one percent rule": don't even think about it when its not 

used more than one percent
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Instruction types: only 3 classes !!

 Arithmetic

 Integer arithmetic/logic instructions

 ADD, SUB, MULT, ADDU, ........

 OR, AND, NOR, NAND, ......

 Floating point instructions

 FADD, FMUL, FDIV

 Memory transfer

 Loads and Stores

 TEST-and-SET, and SWAP

 various operand sizes: bytes, half-words, words, doubles, etc.

 Control instructions

 Branches, Jumps, Returns, Exceptions
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MIPS assembly language

Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants

load w ord lw  $s1, 100($s2) $s1 = Memory[$s2 + 100]Word from memory to register

store w ord sw  $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb  $s1, 100($s2) $s1 = Memory[$s2 + 100]Byte from memory to register

store byte sb  $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory

load upper 

immediate

lui $s1, 100 $s1 = 100 * 2
16 Loads constant in upper 16 bits

branch on equal beq  $s1, $s2, 25 if  ($s1 == $s2) go to             

PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne  $s1, $s2, 25 if  ($s1 != $s2) go to             

PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt  $s1, $s2, $s3 if  ($s2 < $s3)  $s1 = 1;          

else $s1 = 0

Compare less than; for beq, bne

set less than 

immediate

slti  $s1, $s2, 100 if  ($s2 < 100)  $s1 = 1;          

else $s1 = 0

Compare less than constant

jump j    2500 go to 10000 Jump to target address

Uncondi- jump register jr   $ra go to $ra For sw itch, procedure return

tional jump jump and link jal  2500 $ra = PC + 4; go to 10000 For procedure call
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MIPS: 3 addressing modes
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Pipelining

Why: Ideal speedup = number of stages

Do we achieve this?      NO!   HAZARDS

Let’s look at Pipeline implementation (= processor 

organization) 
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Pipelining
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Datapath with Control
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New Hazard Symbols
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Hazards: problems due to pipelining

What is CPI (average # cycles / instruction) ?

Hazard types:

 Structural

 same resource is needed multiple times in the same cycle

 Data

 data dependencies limit pipelining

 Control

 next executed instruction may not be the next specified instruction
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3 Data dependences types: 

RaW, WaR, WaW

Examples:

add r1, r2, 5   ; r1 := r2+5 

sub r4, r1, r3  ; RaW of r1

add r1, r2, 5 

sub r2, r4, 1  ; WaR of r2

add r1, r2, 5 

sub r1, r1, 1 ; WaW of r1 

st r1, 5(r2) ; M[r2+5] := r1

ld  r5, 0(r4) ; RaW if 5+r2 = 0+r4



Forwarding example
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IM Reg

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

sub $2, $1, $3

Program

execution order

(in instructions)

and $12, $2, $5
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or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Value of register $2 :
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Use forwarding hardware

- Do not wait till the result is in the register file

ALU

from register file

from register file

to register file

Note: not all Processors implement Forwarding: why / why not??



Superpipelined CPU 

Some stages can be further pipelined

 To increase the clock rate

 Clock is 2x as fast (hopefully)

 Here if, EX, and Memory (ME) are now 2 pipeline stages

 Not “free”

 Branch penalty when taken is now 3 clocks

 Latencies in clock are higher
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Superscalar CPU: multi issue 

 Fetch, decode and execute e.g. up to 2 instructions per clock

 Same clock rate as basic pipeline

 Issue a pair of instructions 
• Pair must be integer/branch/memory and FP pair (compiler)

• Instructions in pair must be independent

 Today: Typical upto 4-issue

5/29/2017 18ECA H Corporaal
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Power versus Energy

Power P = fCVdd
2

  switching activity (<1); f frequency; C switching 
capacitance, Vdd supply voltage

 heat / temperature constraint

 wear-out

 peak power delivery constraint

Energy E = P*t or, for time varying P:  P(t).dt

 battery life

 cost: electricity bill

Note: lowering f reduces P, but not necessarily E; 
E may even increase due to leakage (static power 
dissipation)
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Computational efficiency (Mops/mW): 

what do we need?

Woh e.a., ISCA 2009
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Energy, energy, energy: where does it go?

RISC @ 45 nm, 09 V

ADD op. 0.5 pJ out of 70 pJ for the ADD instruction

Overall efficiency 1 / 850 = 0.12 %
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Low end: How much energy in the air?

[Rabaey 2009]
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Reducing power @ all design levels

 Algoritmic level

 Compiler level

 Architecture level

 Organization level

 Circuit level

 Silicon level

 Important concepts:

 Lower Vdd and freq. (even if errors occur) / 

dynamically adapt Vdd and freq.

 Reduce circuit

 Exploit locality

 Reduce switching activity, glitches, etc.

P = α.f.C.Vdd
2

E= P.dt 

E/cycle = α.C.Vdd
2
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Algoritmic level

The best indicator for energy is …..

…. the number of cycles

Try alternative algorithms with lower complexity

 E.g. quick-sort, O(n log n)  bubble-sort, O (n2)

 … but be aware of the 'constant' : O(n log n)  c*(n log n)

Heuristic approach

 Go for a good solution, not the best !!

Biggest gains at this level !!
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Compiler level

 Source-to-Source transformations

 loop trafo's to improve locality

 Strength reduction

 E.g. replace Const * A with Add's and Shift's

 Replace Floating point with Fixed point

 Reduce register pressure / number of accesses to register file

 Use software bypassing

 Scenarios: current workloads are highly dynamic

 Determine and predict execution modes 

 Group execution modes into scenarios

 Perform special optimizations per scenario

 DFVS: Dynamic Voltage and Frequency Scaling

 More advanced loop optimizations

 Reorder instructions to reduce bit-transistions
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Architecture level

Going parallel

Going heterogeneous 

 tune your architecture, exploit SFUs (special function 

units)

 trade-off between flexibility / programmability / genericity 

and efficiency

Add local memories

 prefer scratchpad i.s.o. cache

Cluster FUs and register files (see next slide)

Reduce bit-width

 sub-word parallelism (SIMD)
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Organization (micro-arch.) level

Enabling Vdd reduction

 Super Pipelining 

 cheap way of parallelism

 Enabling lower freq.  lower Vdd

 Note 1: don't pipeline if you don't need the performance

 Note 2: don't exaggerate (like the 31-stage Pentium 4)

Reduce register traffic

 avoid unnecessary reads and write

 make bypass registers visible
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Circuit level

 Clock gating

 Power gating

 Multiple Vdd modes

 Reduce glitches: balancing digital path's

 Exploit Zeros

 Special SRAM cells

 normal SRAM can not scale below Vdd = 0.7 - 0.8 Volt

 Razor method; replay

 Allow errors and add redundancy to architectural invisible 
structures

 branch predictor

 caches

 .. and many more ..
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Silicon level

 Higher Vt (V_threshold)
 Back Biasing control

 see thesis Maurice Meijer (2011)

 Sub/Near-threshold Vdd

 SOI (Silicon on Insulator)
 silicon junction is above an electric insulator (silicon dioxide)

 lowers parasitic device capacitance

 Better transistors: Finfet
 multi-gate

 reduce leakage (off-state curent)

 .. and many more
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Going parallel

 Running into the

 Frequency wall

 ILP wall

 Memory wall

 Energy wall

 Chip area enabler: Moore's law goes well below 14 nm

 What to do with all this area?

 Multiple processors fit easily on a single die

 Application demands 

 Cost effective 

 Reusue: just connect existing processors or processor cores

 Low power: parallelism may allow lowering Vdd
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Low power through parallelism

 Sequential Processor

 Switching capacitance C

 Frequency f

 Voltage V

 P1 = fCV2

 Parallel Processor (two times the number of units)

 Switching capacitance 2C

 Frequency f/2

 Voltage V’ < V

 P2 = f/2*2CV’2 = fCV’2 < P1

 Check yourself whether this works
for pipelining as well !

CPU

CPU1 CPU2
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4-D model of parallel architectures

How to speedup your favorite processor?

1. Super-pipelining

2. Powerful instructions

 MD-technique

 multiple data operands per operation

 MO-technique

 multiple operations per instruction

3. Multiple instruction issue

 Single stream: Superscalar 

 Multiple streams

 Single core, multiple threads: Simultaneously Multi-
Threading

 Multiple cores
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Architecture methods

1. Super pipelining

Superpipelining: 

 Split one or more of the critical pipeline stages

Superpipelining degree S:

*
Op I_set

S(architecture) =  f(Op) * lt (Op)

where:

f(op) is frequency of operation op

lt(op) is latency of operation op
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Architecture methods

2. Powerful Instructions (1)

MD-technique

 Multiple data operands per operation

 SIMD: Single Instruction Multiple Data

Vector instruction:

for (i=0, i++, i<64)

c[i] = a[i] + 5*b[i];

or

c = a + 5*b

Assembly:

set vl,64

ldv v1,0(r2)

mulvi v2,v1,5

ldv v1,0(r1)

addv  v3,v1,v2

stv v3,0(r3)
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Architecture methods

2. Powerful Instructions (1)

Sub-word parallelism

 SIMD on restricted scale:

 Used for Multi-media instructions

 Many processors support this

Examples

 MMX, SSE, SUN-VIS, HP MAX-2, 

AMD-K7/Athlon 3Dnow, Trimedia II

 Example: i=1..4 |ai-bi|

* * * *
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Architecture methods

2. Powerful Instructions (2)

MO-technique: multiple operations per instruction

Two options:

 CISC (Complex Instruction Set Computer)

 this is what we did in the 'old' days of microcoded 

processors

 VLIW (Very Long Instruction Word)

sub r8, r5, 3 and r1, r5, 12 mul r6, r5, r2 ld r3, 0(r5)

FU 1 FU 2 FU 3 FU 4field

instruction bnez r5, 13

FU 5

VLIW instruction example
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Exec

unit 1

Exec

unit 2

Exec

unit 3

Register file

Issue slot 1

Exec

unit 4

Exec

unit 5

Exec

unit 6

Exec

unit 7

Exec

unit 8

Exec

unit 9

Issue slot 2 Issue slot 3

Q: How many ports does the registerfile need for n-issue?

VLIW architecture: central Register File
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Clustered VLIW

 Clustering = Splitting up the VLIW data path

- same can be done for the instruction path –

 Exploit locality @ Level 0, for Instructions and Data

FU FU FU

loop buffer

register file

FU FU FU

loop buffer

register file

FU FU FU

loop buffer

register file

Level 1  Instruction Cache

Level 1  Data Cache

L
ev
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e
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Architecture methods

3. Multiple instruction issue (per cycle)

Who guarantees semantic correctness?

 can instructions be executed in parallel

User: he specifies multiple instruction streams

 Multi-processor: MIMD (Multiple Instruction Multiple 

Data)

HW: Run-time detection of ready instructions

 Superscalar, single instruction stream

Compiler: Compile into dataflow representation

 Dataflow processors

 Multi-threaded processors
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Four dimensional representation of the 

architecture design space <I, O, D, S>

Instructions/cycle ‘I’

Superpipelining 

Degree ‘S’

Operations/instruction ‘O’

Data/operation  ‘D’

Superscalar MIMD Dataflow

Superpipelined

RISC

VLIW

10 100

10
10

0.1

Vector

10

SIMD
100

CISC

Mpar = I*O*D*S

Op I_set

S(architecture) =  f(Op) * lt (Op)

You should exploit this 

amount of parallelism !!!
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Parallelism Everywhere

 SIMD / vector

 Xetal (320 PEs), Imap (128 PEs), AnySP (Michigan Univ), GPUs

 subword support (SSX, NEON, etc.)

 VLIW

 ADRES, TriMedia, Liquid, TTA, CGRA

 more dynamic: 

Itanium (static sched., rt mapping), TRIPS/EDGE (rt scheduling)

 Multi-threaded

 idea: hide long latencies

 Denelcor HEP (1982), SUN Niagara (2005), GPUs

 Multi-processor

 RaW, PicoChip, ARM, Intel/AMD, GRID, Farms, even GPUs

 Hybrid: actually, most are hybrid !!



Going Heterogeneous

Why would we do this?

 Energy Efficiency (pJ / operation or MOPS / Watt)

 Area Efficiency (MOPS / area)

Technology favors heterogeneous

 Why?
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A 20nm scenario (high end processor)

This means:

• a 2cm2 processor consumens 10 kW

• a bound of 100W requires only 1% to be active  dark silicon



Where are we?

3 examples

Multi-core: Intel KNL (Knight Landing)

Many-core: GPU

Dedicated: TPU
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Xeon Phi Knight Landing

 72 cores: Silvermont cores 

 4 Threads/core, 32KB L1 + 1MB L2, 16 way associative

 2D-mesh connected

 8 channels to Hybrid Cubes of Micron (DDR4)



KNL details



GPU: NVIDIA Volta V100  (GTC May 2017)
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• up to 80 cores, 5120 PEs (FP32), 20 MB register space 

• 815 mm2, 21.1 Btransistors, 12 nm, 300 W

• peak: 120 TFlops/s (FP16) => 2.5 pJ/op



1 SM core

Units:

 8 tensor cores/SM

 64 Int units

 64 FP32

 32 FP64

 32 Ld/St

 4 SFUs

128 LB L1 Data $

4 warp schedulers
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Tensor core operation
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D = AxB + C, all 4x4 matrices

64 floating point MAC operations per clock



GPU remarks

Ext memory Bandwith / Perf ratio low

Less cache space compared to m-CPUs

SIMD model => Divergence problem

average << peak performance

 see https://devblogs.nvidia.com/parallelforall/inside-volta/
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TPU: Tensor Processing Unit (Google)
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Google TPU, board and cloud usage



TPU details

Block diagram and Floor plan

work horse: systolic array of 256x256 8-bit MACs

 40 W, 28 nm

 92 TOPS/s => 0.43 pJ/8-bit Operation
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Conclusions

ASCI 2017 HC (54)



Key Observations

Energy and Performance are main design drivers

Moore still alive (although somewhat slower)

 Billions of transistors

 Where does it stop? And thereafter?

Power limit reached

 Frequency limited to ~3GHz

 Dark Silicon

Single thread performance hardly increases

Going multicore since 2005
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Conclusions
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Research

Architecture and implementation

 Flexibility : the CISC vs RISC debate is open again

 Why exact: Go approximate

 Near/Sub threshold

Compiler / Mapping

 Tiling, Fusion

 Partitioning

 Vectorization

 Using templates / species
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Research 

Programming related

 VM support

 Coherence

 Data Flow model 

 OpenMP4

New paradigms

 Near Memory Computing

 CIM: Computing In Memory

 Quantum

 and many others 

 Adiabatic, Nano, DNA, Optic, Analog...

THE SKY IS THE LIMIT
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Finally: Can we match your brain ???

Performance = 100 Billion (1011) Neurons * 1000 
(103) Connections/Neuron * 200 (2 * 102) Calculations 
Per Second Per Connection = 

2 * 10^16 Calculations Per Second

Memory = 100 Billion (1011) Neurons * 1000 (103) 
Connections/Neuron * 10 bytes (information about 
connection strength and adress of output neuron, type 
of synapse) = 1015 bytes = 1 PB = 1000 TB

How far off are we?

Brain needs only 20 Watt

and processors need MegaWatts

How come????


