
Introduction to
Heterogenous Computing Systems

Henk Corporaal
www.ics.ele.tue.nl/~heco

ASCI Spring School

Soesterberg, May 29 - June 1, 2017

http://www.ics.ele.tue.nl/~heco

ASCI 2017 HC (2)

Overview

Processor basics

 RISC, pipelining, etc.

Energy optimizations

 inefficiencies

Going parallel

 the 4-D model

Going heterogeneous: why?

How far are we?

 some examples

Conclusions

 Research topics
ASCI 2017 HC (3)

Processor basics: How to build a RISC

RISC characteristics:

 Reduced number of instructions

 Limited addressing modes

 load-store architecture

 enables pipelining

 Large, uniform register set

 One instruction size (32 bits)

 know directly where the following instruction starts

 Limited number of instruction formats

 Memory alignment restrictions

 keep it simple

 Based on quantitative analysis

 " the famous MIPS one percent rule": don't even think about it when its not

used more than one percent

ASCI 2017 HC (4)

MIPS_3000

Instruction types: only 3 classes !!

 Arithmetic

 Integer arithmetic/logic instructions

 ADD, SUB, MULT, ADDU,

 OR, AND, NOR, NAND,

 Floating point instructions

 FADD, FMUL, FDIV

 Memory transfer

 Loads and Stores

 TEST-and-SET, and SWAP

 various operand sizes: bytes, half-words, words, doubles, etc.

 Control instructions

 Branches, Jumps, Returns, Exceptions

5/29/2017 5

6

MIPS assembly language

Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants

load w ord lw $s1, 100($s2) $s1 = Memory[$s2 + 100]Word from memory to register

store w ord sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100]Byte from memory to register

store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory

load upper

immediate

lui $s1, 100 $s1 = 100 * 2
16 Loads constant in upper 16 bits

branch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to

PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to

PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1;

else $s1 = 0

Compare less than; for beq, bne

set less than

immediate

slti $s1, $s2, 100 if ($s2 < 100) $s1 = 1;

else $s1 = 0

Compare less than constant

jump j 2500 go to 10000 Jump to target address

Uncondi- jump register jr $ra go to $ra For sw itch, procedure return

tional jump jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call

7

MIPS: 3 addressing modes

B y te H a lfw ord W o rd

R eg is te rs

M e m o r y

R eg is ter

R e gister

1 . Im m e diate a dd re ssing

2. R eg is ter ad dre ss in g

3. B ase ad dress in g

o p rs r t

o p rs r t

o p rs r t A d dress

rd . . . fu nc t

Im m ed ia te

+

8

Pipelining

Why: Ideal speedup = number of stages

Do we achieve this? NO! HAZARDS

Let’s look at Pipeline implementation (= processor

organization)

9

Pipelining

Improve performance by increasing instruction

throughput

Instruction

fetch
Reg ALU

Data

access
Reg

8 ns
Instruction

fetch
Reg ALU

Data

access
Reg

8 ns
Instruction

fetch

8 ns

Tim e

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 4 6 8 10 12 14 16 18

2 4 6 8 10 12 14

...

Program

execution

order

(in instructions)

Instruction

fetch
Reg ALU

Data

access
Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 ns
Instruction

fetch
Reg ALU

Data

access
Reg

2 ns
Instruction

fetch
Reg ALU

Data

access
Reg

2 ns 2 ns 2 ns 2 ns 2 ns

P rogram

execution

order

(in instructions)

10

Datapath with Control

PC

Instruction
memory

In
st

r u
ct

io
n

Add

Instruction
[20– 16]

M
e
m

to
R

e
g

ALUOp

Branch

RegDst

ALUSrc

4

16 32Instruction
[15–0]

0

0

M
u
x

0

1

Add
Add

result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2

R
e
g
W

r i
te

MemRead

Control

ALU

Instruction
[15– 11]

6

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

M
e
m

W
r i
te

Address

Data
memory

Address

11

New Hazard Symbols

12

Hazards: problems due to pipelining

What is CPI (average # cycles / instruction) ?

Hazard types:

 Structural

 same resource is needed multiple times in the same cycle

 Data

 data dependencies limit pipelining

 Control

 next executed instruction may not be the next specified instruction

13

3 Data dependences types:

RaW, WaR, WaW

Examples:

add r1, r2, 5 ; r1 := r2+5

sub r4, r1, r3 ; RaW of r1

add r1, r2, 5

sub r2, r4, 1 ; WaR of r2

add r1, r2, 5

sub r1, r1, 1 ; WaW of r1

st r1, 5(r2) ; M[r2+5] := r1

ld r5, 0(r4) ; RaW if 5+r2 = 0+r4

Forwarding example

14

IM Reg

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

sub $2, $1, $3

Program

execution order

(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Value of register $2 :

DM Reg

Reg

Reg

Reg

X X X – 20 X X X X XVa lue of EX/M EM :

X X X X – 20 X X X XValue of M EM /W B :

DM

15

Use forwarding hardware

- Do not wait till the result is in the register file

ALU

from register file

from register file

to register file

Note: not all Processors implement Forwarding: why / why not??

Superpipelined CPU

Some stages can be further pipelined

 To increase the clock rate

 Clock is 2x as fast (hopefully)

 Here if, EX, and Memory (ME) are now 2 pipeline stages

 Not “free”

 Branch penalty when taken is now 3 clocks

 Latencies in clock are higher

5/29/2017 17ECA H Corporaal

Superscalar CPU: multi issue

 Fetch, decode and execute e.g. up to 2 instructions per clock

 Same clock rate as basic pipeline

 Issue a pair of instructions
• Pair must be integer/branch/memory and FP pair (compiler)

• Instructions in pair must be independent

 Today: Typical upto 4-issue

5/29/2017 18ECA H Corporaal

ASCI 2017 HC (19)

Power versus Energy

Power P = fCVdd
2

  switching activity (<1); f frequency; C switching
capacitance, Vdd supply voltage

 heat / temperature constraint

 wear-out

 peak power delivery constraint

Energy E = P*t or, for time varying P: P(t).dt

 battery life

 cost: electricity bill

Note: lowering f reduces P, but not necessarily E;
E may even increase due to leakage (static power
dissipation)

ASCI 2017 HC (20)

Computational efficiency (Mops/mW):

what do we need?

Woh e.a., ISCA 2009

1

10

100

1000

10000

0.1 1 10 100

SODA
(65nm)

SODA
(90nm)

TI C6X

Imagine

VIRAM Pentium M

IBM Cell

P
e

r f
o

rm
a

n
c
e

(G
o

p
s
)

Power (Watts)

3G Wireless

4G Wireless

Mobile HD

Video

This means

1 pJ / operation

or 1 TeraOp/Watt

Energy, energy, energy: where does it go?

RISC @ 45 nm, 09 V

ADD op. 0.5 pJ out of 70 pJ for the ADD instruction

Overall efficiency 1 / 850 = 0.12 %

ASCI 2017 HC (21)

ASCI 2017 HC (22)

Low end: How much energy in the air?

[Rabaey 2009]

ASCI 2017 HC (23)

Reducing power @ all design levels

 Algoritmic level

 Compiler level

 Architecture level

 Organization level

 Circuit level

 Silicon level

 Important concepts:

 Lower Vdd and freq. (even if errors occur) /

dynamically adapt Vdd and freq.

 Reduce circuit

 Exploit locality

 Reduce switching activity, glitches, etc.

P = α.f.C.Vdd
2

E= P.dt 

E/cycle = α.C.Vdd
2

ASCI 2017 HC (24)

Algoritmic level

The best indicator for energy is …..

…. the number of cycles

Try alternative algorithms with lower complexity

 E.g. quick-sort, O(n log n)  bubble-sort, O (n2)

 … but be aware of the 'constant' : O(n log n)  c*(n log n)

Heuristic approach

 Go for a good solution, not the best !!

Biggest gains at this level !!

ASCI 2017 HC (25)

Compiler level

 Source-to-Source transformations

 loop trafo's to improve locality

 Strength reduction

 E.g. replace Const * A with Add's and Shift's

 Replace Floating point with Fixed point

 Reduce register pressure / number of accesses to register file

 Use software bypassing

 Scenarios: current workloads are highly dynamic

 Determine and predict execution modes

 Group execution modes into scenarios

 Perform special optimizations per scenario

 DFVS: Dynamic Voltage and Frequency Scaling

 More advanced loop optimizations

 Reorder instructions to reduce bit-transistions

ASCI 2017 HC (26)

Architecture level

Going parallel

Going heterogeneous

 tune your architecture, exploit SFUs (special function

units)

 trade-off between flexibility / programmability / genericity

and efficiency

Add local memories

 prefer scratchpad i.s.o. cache

Cluster FUs and register files (see next slide)

Reduce bit-width

 sub-word parallelism (SIMD)

ASCI 2017 HC (27)

Organization (micro-arch.) level

Enabling Vdd reduction

 Super Pipelining

 cheap way of parallelism

 Enabling lower freq.  lower Vdd

 Note 1: don't pipeline if you don't need the performance

 Note 2: don't exaggerate (like the 31-stage Pentium 4)

Reduce register traffic

 avoid unnecessary reads and write

 make bypass registers visible

ASCI 2017 HC (28)

Circuit level

 Clock gating

 Power gating

 Multiple Vdd modes

 Reduce glitches: balancing digital path's

 Exploit Zeros

 Special SRAM cells

 normal SRAM can not scale below Vdd = 0.7 - 0.8 Volt

 Razor method; replay

 Allow errors and add redundancy to architectural invisible
structures

 branch predictor

 caches

 .. and many more ..

ASCI 2017 HC (29)

Silicon level

 Higher Vt (V_threshold)
 Back Biasing control

 see thesis Maurice Meijer (2011)

 Sub/Near-threshold Vdd

 SOI (Silicon on Insulator)
 silicon junction is above an electric insulator (silicon dioxide)

 lowers parasitic device capacitance

 Better transistors: Finfet
 multi-gate

 reduce leakage (off-state curent)

 .. and many more

ASCI 2017 HC (30)

Going parallel

 Running into the

 Frequency wall

 ILP wall

 Memory wall

 Energy wall

 Chip area enabler: Moore's law goes well below 14 nm

 What to do with all this area?

 Multiple processors fit easily on a single die

 Application demands

 Cost effective

 Reusue: just connect existing processors or processor cores

 Low power: parallelism may allow lowering Vdd

ASCI 2017 HC (31)

Low power through parallelism

 Sequential Processor

 Switching capacitance C

 Frequency f

 Voltage V

 P1 = fCV2

 Parallel Processor (two times the number of units)

 Switching capacitance 2C

 Frequency f/2

 Voltage V’ < V

 P2 = f/2*2CV’2 = fCV’2 < P1

 Check yourself whether this works
for pipelining as well !

CPU

CPU1 CPU2

ASCI 2017 HC (32)

4-D model of parallel architectures

How to speedup your favorite processor?

1. Super-pipelining

2. Powerful instructions

 MD-technique

 multiple data operands per operation

 MO-technique

 multiple operations per instruction

3. Multiple instruction issue

 Single stream: Superscalar

 Multiple streams

 Single core, multiple threads: Simultaneously Multi-
Threading

 Multiple cores

ASCI 2017 HC (33)

Architecture methods

1. Super pipelining

Superpipelining:

 Split one or more of the critical pipeline stages

Superpipelining degree S:

*
Op I_set

S(architecture) =  f(Op) * lt (Op)

where:

f(op) is frequency of operation op

lt(op) is latency of operation op

ASCI 2017 HC (34)

Architecture methods

2. Powerful Instructions (1)

MD-technique

 Multiple data operands per operation

 SIMD: Single Instruction Multiple Data

Vector instruction:

for (i=0, i++, i<64)

c[i] = a[i] + 5*b[i];

or

c = a + 5*b

Assembly:

set vl,64

ldv v1,0(r2)

mulvi v2,v1,5

ldv v1,0(r1)

addv v3,v1,v2

stv v3,0(r3)

ASCI 2017 HC (35)

Architecture methods

2. Powerful Instructions (1)

Sub-word parallelism

 SIMD on restricted scale:

 Used for Multi-media instructions

 Many processors support this

Examples

 MMX, SSE, SUN-VIS, HP MAX-2,

AMD-K7/Athlon 3Dnow, Trimedia II

 Example: i=1..4 |ai-bi|

* * * *

ASCI 2017 HC (36)

Architecture methods

2. Powerful Instructions (2)

MO-technique: multiple operations per instruction

Two options:

 CISC (Complex Instruction Set Computer)

 this is what we did in the 'old' days of microcoded

processors

 VLIW (Very Long Instruction Word)

sub r8, r5, 3 and r1, r5, 12 mul r6, r5, r2 ld r3, 0(r5)

FU 1 FU 2 FU 3 FU 4field

instruction bnez r5, 13

FU 5

VLIW instruction example

ASCI 2017 HC (37)

Exec

unit 1

Exec

unit 2

Exec

unit 3

Register file

Issue slot 1

Exec

unit 4

Exec

unit 5

Exec

unit 6

Exec

unit 7

Exec

unit 8

Exec

unit 9

Issue slot 2 Issue slot 3

Q: How many ports does the registerfile need for n-issue?

VLIW architecture: central Register File

ASCI 2017 HC (38)

Clustered VLIW

 Clustering = Splitting up the VLIW data path

- same can be done for the instruction path –

 Exploit locality @ Level 0, for Instructions and Data

FU FU FU

loop buffer

register file

FU FU FU

loop buffer

register file

FU FU FU

loop buffer

register file

Level 1 Instruction Cache

Level 1 Data Cache

L
ev

el 2
 (sh

ared
) C

ach
e

ASCI 2017 HC (39)

Architecture methods

3. Multiple instruction issue (per cycle)

Who guarantees semantic correctness?

 can instructions be executed in parallel

User: he specifies multiple instruction streams

 Multi-processor: MIMD (Multiple Instruction Multiple

Data)

HW: Run-time detection of ready instructions

 Superscalar, single instruction stream

Compiler: Compile into dataflow representation

 Dataflow processors

 Multi-threaded processors

ASCI 2017 HC (40)

Four dimensional representation of the

architecture design space <I, O, D, S>

Instructions/cycle ‘I’

Superpipelining

Degree ‘S’

Operations/instruction ‘O’

Data/operation ‘D’

Superscalar MIMD Dataflow

Superpipelined

RISC

VLIW

10 100

10
10

0.1

Vector

10

SIMD
100

CISC

Mpar = I*O*D*S

Op I_set

S(architecture) =  f(Op) * lt (Op)

You should exploit this

amount of parallelism !!!

ASCI 2017 HC (41)

Parallelism Everywhere

 SIMD / vector

 Xetal (320 PEs), Imap (128 PEs), AnySP (Michigan Univ), GPUs

 subword support (SSX, NEON, etc.)

 VLIW

 ADRES, TriMedia, Liquid, TTA, CGRA

 more dynamic:

Itanium (static sched., rt mapping), TRIPS/EDGE (rt scheduling)

 Multi-threaded

 idea: hide long latencies

 Denelcor HEP (1982), SUN Niagara (2005), GPUs

 Multi-processor

 RaW, PicoChip, ARM, Intel/AMD, GRID, Farms, even GPUs

 Hybrid: actually, most are hybrid !!

Going Heterogeneous

Why would we do this?

 Energy Efficiency (pJ / operation or MOPS / Watt)

 Area Efficiency (MOPS / area)

Technology favors heterogeneous

 Why?

ASCI 2017 HC (42)

ASCI 2017 HC (43)

A 20nm scenario (high end processor)

This means:

• a 2cm2 processor consumens 10 kW

• a bound of 100W requires only 1% to be active  dark silicon

Where are we?

3 examples

Multi-core: Intel KNL (Knight Landing)

Many-core: GPU

Dedicated: TPU

ASCI 2017 HC (44)

Xeon Phi Knight Landing

 72 cores: Silvermont cores

 4 Threads/core, 32KB L1 + 1MB L2, 16 way associative

 2D-mesh connected

 8 channels to Hybrid Cubes of Micron (DDR4)

KNL details

GPU: NVIDIA Volta V100 (GTC May 2017)

ASCI 2017 HC (48)

• up to 80 cores, 5120 PEs (FP32), 20 MB register space

• 815 mm2, 21.1 Btransistors, 12 nm, 300 W

• peak: 120 TFlops/s (FP16) => 2.5 pJ/op

1 SM core

Units:

 8 tensor cores/SM

 64 Int units

 64 FP32

 32 FP64

 32 Ld/St

 4 SFUs

128 LB L1 Data $

4 warp schedulers

ASCI 2017 HC (49)

Tensor core operation

ASCI 2017 HC (50)

D = AxB + C, all 4x4 matrices

64 floating point MAC operations per clock

GPU remarks

Ext memory Bandwith / Perf ratio low

Less cache space compared to m-CPUs

SIMD model => Divergence problem

average << peak performance

 see https://devblogs.nvidia.com/parallelforall/inside-volta/

ASCI 2017 HC (51)

TPU: Tensor Processing Unit (Google)

ASCI 2017 HC (52)

Google TPU, board and cloud usage

TPU details

Block diagram and Floor plan

work horse: systolic array of 256x256 8-bit MACs

 40 W, 28 nm

 92 TOPS/s => 0.43 pJ/8-bit Operation
ASCI 2017 HC (53)

Conclusions

ASCI 2017 HC (54)

Key Observations

Energy and Performance are main design drivers

Moore still alive (although somewhat slower)

 Billions of transistors

 Where does it stop? And thereafter?

Power limit reached

 Frequency limited to ~3GHz

 Dark Silicon

Single thread performance hardly increases

Going multicore since 2005

ASCI 2017 HC (55)

Conclusions

ASCI 2017 HC (56)

Research

Architecture and implementation

 Flexibility : the CISC vs RISC debate is open again

 Why exact: Go approximate

 Near/Sub threshold

Compiler / Mapping

 Tiling, Fusion

 Partitioning

 Vectorization

 Using templates / species

ASCI 2017 HC (57)

Research

Programming related

 VM support

 Coherence

 Data Flow model

 OpenMP4

New paradigms

 Near Memory Computing

 CIM: Computing In Memory

 Quantum

 and many others

 Adiabatic, Nano, DNA, Optic, Analog...

THE SKY IS THE LIMIT

ASCI 2017 HC (58)

ASCI 2017 HC (59)

Finally: Can we match your brain ???

Performance = 100 Billion (1011) Neurons * 1000
(103) Connections/Neuron * 200 (2 * 102) Calculations
Per Second Per Connection =

2 * 10^16 Calculations Per Second

Memory = 100 Billion (1011) Neurons * 1000 (103)
Connections/Neuron * 10 bytes (information about
connection strength and adress of output neuron, type
of synapse) = 1015 bytes = 1 PB = 1000 TB

How far off are we?

Brain needs only 20 Watt

and processors need MegaWatts

How come????

