Introduction to
Heterogenous Computing Systems

Henk Corporaal
www.ics.ele.tue.nl/~heco

ASCI Spring School
Soesterberg, May 29 - June 1, 2017

i

http://www.ics.ele.tue.nl/~heco

40 Years of Microprocessor Trend Data

7
10 ! ! ' ' Transistors
108 _ ____________________________ ________________________ :‘:‘tA ___________ | (thousands)
Yol
10° T ST AU o ‘i:ﬁ‘: e | Single-Thread
N e S ™ Performance
VR IS IS SO L. Lo | (SpecINT x 10°)
41 o, 5
: . AAaa ﬁ‘; l*‘“‘ Frequency (MHz)
103 _AAAA..GO “ll T S -
s e gl Typical Power
10° e ® .. ----- "r-v:v;rV‘%&’v'v‘"? ----------- -4 (Watts)
1 - = “u® "'vvv! 3"' vy o::o'i Number of
100 = ® A $e e | Logical Cores
i g R v Yviv vv . *8
Ol oo o .) . L eee e 5 p _
10 ‘ L 2 0' L 00‘50- “MWOO i
i ! | |
1970 1980 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp

ASCI 2017

HC (2

Overview

& Processor basics
m RISC, pipelining, etc.

€ Energy optimizations
m inefficiencies

¢ Going parallel
m the 4-D model

€ Going heterogeneous: why?

& How far are we?
m some examples

4 Conclusions
m Research topics

ASCI 2017 HC (3)

RO0C000000000000000000C00000000000000000

Processor basics: How to build a RIS

RISC characteristics:
€ Reduced number of instructions

€ Limited addressing modes
m |oad-store architecture
m enables pipelining

TR . -1 ¢

€ Large, uniform register set

€ One instruction size (32 bits)
m know directly where the following instruction starts MIPS_3000
€ Limited number of instruction formats
€ Memory alignment restrictions
* ... keep it simple

€ Based on quantitative analysis

m " the famous MIPS one percent rule": don't even think about it when its not
used more than one percent

ASCI 2017 HC (@)

Instruction types: only 3 classes !!

€ Arithmetic
m [nteger arithmetic/logic instructions
e ADD, SUB, MULT, ADDU,
e OR, AND, NOR, NAND,
m Floating point instructions
e FADD, FMUL, FDIV

¢ Memory transfer
m Loads and Stores
m TEST-and-SET, and SWAP
m various operand sizes: bytes, half-words, words, doubles, etc.

€ Control instructions
m Branches, Jumps, Returns, Exceptions

5/29/2017

MIPS assembly language

Category Instruction Example Meaning Comments
add add $sl1, $s2, $s3 |$sl = $s2 + $s3 Three operands; data in registers
Arithmetic subtract sub $sl, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers
add immediate addi $sl1, $s2, 100 [$sl = $s2 + 100 Used to add constants
load word lw $s1, 100($s2) $s1 = Memory[$s2 + 100|Word from memory to register
store word sw S$s1, 100($s2) Memory[$s2 + 100] = $s1 [Word from register to memory
Data transfer [load byte 1b $s1, 100($s2) $s1 = Memory[$s2 + 100|Byte from memory to register
store byte sb $s1, 100(S$s2) Memory[ss2 + 100] = $s1 |Byte fromregister to memory
load upper lui $s1, 100 $s1 =100 * 2%° Loads constant in upper 16 bits
immediate
branch on equal beq $s1, $s2, 25 if (5s1 == $s2)goto Equal test; PC-relative branch
PC+4 +100
branch on notequal [bne $s1, $s2, 25 if (5s1 != $s2)goto Not equal test; PC-relative
Conditional PC+4+100
branch set on less than slt $sl, $s2, $s3 |if($s2 < $s3) $s1=1; [Compare less than; for beq, bne
else $s1 =0
set less than slti $sl1, $s2, 100|if($s2 < 100) $s1=1; [Compare less than constant
immediate else $s1 =0
jump j 2500 go to 10000 Jump to target address
Uncondi- jump register jr Sra goto Sra For switch, procedure return
tional jump |[jump and link jal 2500 Sra =PC +4; go to 10000|For procedure call

MIPS: 3 addressing modes

1. Immediate addressing

op rs rt Immediate
2. Register addressing

op rs rt rd funct Registers

I > Register

3. Base addressing

op rs rt Address Memory

[
Register ®—. Byte Halfword Word

Pipelining

€ Why: Ideal speedup = number of stages
& Do we achieve this? NO! HAZARDS

@ Let's look at Pipeline implementation (= processor
organization)

Pi

Im

nelining

throughput

Program
execution
order

(in instructions)

lw $1, 100($0)

Time

w $2, 200($0)

lw $3, 300($0)

Program
execution
order

(in instructions)

lw $1, 100($0)

Time

lw $2, 200($0)

lw $3, 300($0)

v

prove performance by increasing instruction

2 4 6 8 10 12 14 16 18
T T T T T T T >
Instruction Data
Re ALU Re
fetch 9 access 9
< > Instruction Data
Re ALU Re
8 ns fetch g access 9
< 5 > Instruction
ns fetch
4___ -
8 ns
2 4 6 8 10 12 14
|-
| [I [I v
Instruction Data
Re ALU Re
fetch 9 access g
Instruction Data
2 ns fetch Reg ALU access Reg
<+—¥||nstruction Data
2 ns Reg ALU Reg
fetch access

2 ns 2 ns

2 ns

2 ns

Pt Pt P Pp4+————Pp
2 ns

Datapath with Control

RegDst

PCSrc
—/0 IDIEX
M]
’L‘l e EX/MEM
s]
Control M WB wEMANB
IF/ID EX M WB%
> Add — \ .
> Add
! e >Add result
% Shift Branch
& left 2 o
ALUSrc ;
S ¢——| Read E
PC Address b= register 1 Read \ -
=}
2 ’ Readt 2 . Zero > I
Instruction = register 2.
memory — _ Registers Read 0 >ALU ALU e
»| Write data 2 result Address ead[| |,
register M - o
u
| Write X memory
data 1
| Write
data
I[nstrutl:tion 16 2 6
15-0 N Sign |\ \
N extgnd \ A MemRead
Instruction
[20- 16]
0
M
Instruction u
[15-11] 1x

MemtoReg

Oxeczr

10

Current CHIP Hazard Symbols vaiid until 1st June 2015

Physical Hazards

le Liquids

New Hazard Symbols

SOOO

Oxidizing Liquids

Compressed Gases

Corrosive to Metals

Health Hazards

SOOP

Acute
Taxicty

Skin Corrosion

Skin Irration

CMR®, STOT?,
Aspieation Hazard

Env. Hazards

&

Hazardous to the
Aquatic Environment

Hazards: problems due to pipelining

What is CPI (average # cycles / instruction) ?

Hazard types:
4

m same resource is needed multiple times in the same cycle

¢

m data dependencies limit pipelining

L 4

m next executed instruction may not be the next specified instruction

12

3 Data dependences types:

RaW, WaR, WaW

Examples:

add
sub

add
sub

add
sub

st
1d

rl,
r4d,

rl,
r2,

rl,
rl,

rl,
r5,

r2, 5
rl, r3
r2, 5
rd, 1
r2, 5
rl, 1
5(r2)

0(r4d)

' rl := r2+45
: RaW of rl

: WaR of r2

+ WaWw of rl

; M[r2+5] := rl
; RaW if 5+4r2 =

O+r4

13

Forwarding example

Time (in clock cycles)

v

CC1 CC 2 CC3 CcC4 CC5 CC6 CCc7 cC 8 CC 9

Value of register $2 : 10 10 10 10 10/-20 -20 -20 -20 -20

Value of EXIMEM : X X X -20 X X X X X

Value of MEM/WB : X X X X - 20 X X X X

Program

execution order

(in instructions) []]]

sub $2, $1, $3 IM Reg| | _|: DM |

and $12, $2, $5 m L[B DM — {Rgg
[T

or $13, $6, M

h
|
|

|

pu)

D

(@]

add $14, $2, IM — X ~|: DM - IReg
sw $15, 100 IM | — Ll: DM Reg
v —

Use forwarding hardware

- Do not wait till the result is in the register file

buf

from register file

buf

—®—> to register file

from register file

buf

AN
N ALY |—4—
v

Note: not all Processors implement Forwarding: why / why not??

15

5/29/2017

Superpipelined CPU

IF1

€ Some stages can be further pipelined
m To increase the clock rate

e Clock is 2x as fast (hopefully)

m Here if, EX, and Memory (ME) are now 2 pipeline stages

m Not “free”

e Branch penalty when taken is now 3 clocks
e Latencies in clock are higher

> IF2

» ID

EX1 ;| EX2
A

\1—* FP PIPELINE(s) —

ME1

A 4

\ 4

ME2 —

WB

ECA H Corporaal

17

Superscalar CPU: multi issue

A\ 4

ME

\ 4

IF | {l ID EX

WB

F L] ID

™ FP1{s{ FP21> FP3J

\ 4

v

FP4

v

A 4

FP5

A 4

€ Fetch, decode and execute e.g. up to 2 instructions per clock
m Same clock rate as basic pipeline

e Issue a pair of instructions
* Pair must be integer/branch/memory and FP pair (compiler)

* Instructions in pair must be independent

€ Today: Typical upto 4-issue

5/29/2017 ECA H Corporaal 18

Power versus Energy

¢ Power P = afCV 44

e o switching activity (<1); f frequency; C switching
capacitance, V44 supply voltage

m heat / temperature constraint
m Wwear-out
m peak power delivery constraint

@ Energy E = P*t or, for time varying P: [P(t).dt
m battery life
m cost: electricity bill

® Note: lowering f reduces P, but not necessatrily E;
E may even increase due to leakage (static power
dissipation)

ASCI 2017 HC (19)

Computational efficiency (Mops/mW):

10000

Performance (Gops)

ASCI 2017

what do we need?

o
o
o

100-

=
o

This means
1 pJ / operation
or 1 TeraOp/Watt
IBM Cell
‘\/ =
Video
SOBA (90nm) I | %
65 magine
(65nm) ® "EoA %
Bt ® ® ‘9;%%,
® VIRAM Pentium M ’o;)
TI C6X &
0.1 1 iO 1’OO

Power (Watts)

Woh e.a., ISCA 2009

HC (20)

Energy, energy, energy:. where does it go?

D-cache I-cache Register
access access access

Control ALU

'\
LD
_ Overhead
instructions
LD
/
ADD 32-bit ADD
= 0.5p)
ST
_ Overhead
instructions
BR

¢ RISC @ 45 nm, 09 V
& ADD op. 0.5 pJ out of 70 pJ for the ADD instruction
& Overall efficiency 1 /850 = 0.12 %

ASCI 2017 HC (21)

Low end: How much energy in the air?

o e

ASCI 2017

Vibrations
Solar
(outdoor)
Air flow 380
Human 330
power
Vibration 200
Temperature | 40
Pressure Var. | 17
Solar (indoor) | 10

[Rabaey 2009]

Air Flow

HC

(22)

Reducing power @ all design levels

€ Algoritmic level P= a'f'C'VddZ
¢ Compiler level

€ Architecture level E:I Pdt =

4 Organization level E/cycle — (X.C.Vddz

& Circuit level

€ Silicon level

4 Important concepts:

m Lower Vdd and freq. (even if errors occur) /
dynamically adapt Vdd and freq.

m Reduce circuit
m Exploit locality
m Reduce switching activity, glitches, etc.

ASCI 2017 HC (23)

Algoritmic level

€ The best indicator for energy is
.... the number of cycles

& Try alternative algorithms with lower complexity
m E.g. quick-sort, O(n log n) < bubble-sort, O (n?)
m ... but be aware of the 'constant’' : O(n log n) = c*(n log n)

€ Heuristic approach
m Go for a good solution, not the best !

Biggest gains at this level !

ASCI 2017 HC (24)

Compiler level

€ Source-to-Source transformations
m |oop trafo's to improve locality

€ Strength reduction
m E.g. replace Const * A with Add's and Shift's
m Replace Floating point with Fixed point

€ Reduce register pressure / number of accesses to register file
m Use software bypassing

€ Scenarios: current workloads are highly dynamic
m Determine and predict execution modes
m Group execution modes into scenarios
m Perform special optimizations per scenario

e DFVS: Dynamic Voltage and Frequency Scaling
e More advanced loop optimizations

€ Reorder instructions to reduce bit-transistions

ASCI 2017

HC (25)

Architecture level

€ Going parallel

€ Going heterogeneous

m tune your architecture, exploit SFUs (special function
units)

m trade-off between flexibility / programmability / genericity
and efficiency

€ Add local memories
m prefer scratchpad i.s.o0. cache

& Cluster FUs and register files (see next slide)

€ Reduce bit-width
m sub-word parallelism (SIMD)

ASCI 2017 HC (26)

Organization (micro-arch.) level

4 Enabling Vdd reduction
m Super Pipelining
e cheap way of parallelism
m Enabling lower freq. = lower Vg

m Note 1: don't pipeline if you don't need the performance
m Note 2: don't exaggerate (like the 31-stage Pentium 4)

€ Reduce register traffic
m avoid unnecessary reads and write
m make bypass registers visible

ASCI 2017 HC (27)

Circult level

€ Clock gating

€ Power gating

4 Multiple Vdd modes

€ Reduce glitches: balancing digital path's
€ Exploit Zeros

€ Special SRAM cells
m normal SRAM can not scale below Vdd = 0.7 - 0.8 VoIt

€ Razor method; replay

€ Allow errors and add redundancy to architectural invisible
structures

m branch predictor
m caches

4 .. and many more ..

ASCI 2017 HC (28)

Silicon level

€ Higher V, (V_threshold)

m Back Biasing control
e see thesis Maurice Meijer (2011)

€ Sub/Near-threshold Vvdd

€ SOl (Silicon on Insulator)
m silicon junction is above an electric insulator (silicon dioxide)
m |lowers parasitic device capacitance source

€ Better transistors: Finfet
= multi-gate drain “fin"
m reduce leakage (off-state curent)

¢ .. and many more

ASCI 2017 HC (29)

Going parallel

€ Running into the
m Frequency wall
m [LP wall
m Memory wall
m Energy wall

€ Chip area enabler: Moore's law goes well below 14 nm
m What to do with all this area?
m Multiple processors fit easily on a single die

€ Application demands

& Cost effective
m Reusue: just connect existing processors or processor cores

€ Low power: parallelism may allow lowering Vdd

ASCI 2017 HC (30)

Low power through parallelism

€ Sequential Processor

m Switching capacitance C
m Frequency f
|
|

Voltage V
P, = afCV?

& Parallel Processor (two times the number of units)
Switching capacitance 2C

Frequency f/2

Voltage V' <V

P, = af/2*2CV'? = afCV?2 < P, o

€ Check yourself whether this works
for pipelining as well ! i

ASCI 2017 HC (31)

4-D model of parallel architectures

How to speedup your favorite processor?
1. Super-pipelining

2. Powerful instructions
m MD-technique
e multiple data operands per operation
m MO-technique
e multiple operations per instruction

3. Multiple instruction issue
m Single stream: Superscalar

m Multiple streams

e Single core, multiple threads: Simultaneously Multi-
Threading

e Multiple cores

ASCI 2017 HC (32)

Architecture methods
1. Super pipelining

€ Superpipelining:
m Split one or more of the critical pipeline stages

€ Superpipelining degree S:

N\

S(architecture) = 2, fiOp) * It (Op)
VOp €l set
where:
f(op) is frequency of operation op
It(op) Is latency of operation op

ASCI 2017 HC (33)

Architecture methods
2. Powerful Instructions (1)

€ MD-technique
m Multiple data operands per operation
m SIMD: Single Instruction Multiple Data

ASCI 2017 HC (34)

Architecture methods
2. Powerful Instructions (1)

€ Sub-word parallelism
m SIMD on restricted scale:
m Used for Multi-media instructions
m Many processors support this

€ Examples

m MMX, SSE, SUN-VIS, HP MAX-2,
AMD-K7/Athlon 3Dnow, Trimedia Il

m Example: X, 4 [a-by) \’ \’ \’ \’

ASCI 2017

HC (35)

Architecture methods
2. Powerful Instructions (2)

¢ MO-technigue: multiple operations per instruction

€ Two options:

m CISC (Complex Instruction Set Computer)

e this is what we did in the 'old' days of microcoded
pProcessors

m VLIW (Very Long Instruction Word)

field — FU1 FU 2 FU 3 FU 4 FU 5

instruction — | subr8,r5,3 | andrl, 5,12 | mulr6, r5, r2 Id r3, O(r5) bnez r5, 13

VLIW instruction example

ASCI 2017

HC (36)

VLIW architecture: central Register File

Register file
S N /. N\ X N S~/ AN
Exec || Exec || Exec Exec || Exec Exec || Exec
unit 1{{unit 2{|{unit 3 unit 5({unit 6 unit 8{{unit 9
A * A L A L
Issue slot 1 Issue slot 2 Issue slot 3

Q: How many ports does the registerfile need for n-issue?

ASCI 2017

HC (37)

Clustered VLIW

¢ Clustering = Splitting up the VLIW data path
- same can be done for the instruction path —

€ Exploit locality @ Level 0, for Instructions and Data

Level 1 Instruction Cache

I

I

I

loop buffer

FU

FU

FU

register file

loop buffer

loop buffer

FU

FU

FU

FU

FU

FU

register file

register file

Level 1 Data Cache

]

ASCI 2017

ayae) (paJeys) z |99

HC

(38)

Architecture methods
3. Multiple instruction issue (per cycle)

€ Who guarantees semantic correctness?
m can instructions be executed in parallel

€ User: he specifies multiple instruction streams

m Multi-processor: MIMD (Multiple Instruction Multiple
Data)

€ HW: Run-time detection of ready instructions
m Superscalar, single instruction stream

& Compiler: Compile into dataflow representation
m Dataflow processors
m Multi-threaded processors

ASCI 2017 HC (39)

Four dimensional representation of the
architecture design space <lI, O, D, S>

S(architecture) =), f(Op) * It (Op)
T_ 100 VOp €l set

Mpar = I*O*D*S

Data/operation ‘D’

| 10n
You should exploit this
amount of parallelism !!!
eammmmmmmm oo Vector
cisc - MO
' ! Superscalar! MIMD Dataflow
° : I ° o
10 100

: Instructions/cycle I
. Superpipglined

10

PR N

Operations/instruction ‘O’ Superpipelining

Degree ‘S’

ASCI 2017 HC (40)

Parallelism Everywhere

€ SIMD / vector
m Xetal (320 PEs), Imap (128 PEs), AnySP (Michigan Univ), GPUs
m subword support (SSX, NEON, etc.)

¢ VLIW
m ADRES, TriMedia, Liquid, TTA, CGRA

m more dynamic:
Itanium (static sched., rt mapping), TRIPS/EDGE (rt scheduling)

¢ Multi-threaded
m idea: hide long latencies
m Denelcor HEP (1982), SUN Niagara (2005), GPUs

€ Multi-processor
m RaW, PicoChip, ARM, Intel/AMD, GRID, Farms, even GPUs

€ Hybrid: actually, most are hybrid !

ASCI 2017

HC (41)

Going Heterogeneous

¢ Why would we do this?
m Energy Efficiency (pJ / operation or MOPS / Watt)
m Area Efficiency (MOPS / area)

€ Technology favors heterogeneous
m Why?

ASCI 2017 HC (42)

A 20nm scenario (high end processor)

Assume Vpp=1.2V
s FO4 delay <5 ps

» Assuming no architectural changes, digital circuits could
be run at 30 GHz

» | eading to power density of 20 kW/cm? (?7?)

Reduce Vppt0 0.6 V

= FO4 delay =~ 10 ps

s The clock frequency is lowered to 10 GHz

» Power density reduces to 5 kW/cm? (still way too high)

[Ref: S. Borkar, Intel]

This means:
* a 2cm? processor consumens 10 kW
 a bound of 100W requires only 1% to be active = dark silicon

ASCI 2017 HC (43)

Where are we?

€ 3 examples

€ Multi-core: Intel KNL (Knight Landing)
¢ Many-core: GPU

¢ Dedicated: TPU

ASCI 2017 HC (44)

Xeon Phi Knight Landing

€ /2 cores: Silvermont cores
m 4 Threads/core, 32KB L1 + 1MB L2, 16 way associative

€ 2D-mesh connected
4 8 channels to Hybrid Cubes of Micron (DDR4)

e e 'L "!)1
{4 ;"‘ [N, | "‘ ¥

: i

! ‘\1 ‘\! '21 ‘ 4 d .

7?“

) ! »
! 4 . 4 l" “
TR TRER TR (S T e w ‘:} t&
' AT = k.
‘ i |

7))))
\) ",I'l,' =

(NI RA AN RS L B)
) M..H'ul'.dll
o o gt

KNL detalls

2x16 X4
MCTRAM . m‘ : Chip: 36 Tiles interconnected by 2D Mesh

Tile: 2 Cores + 2 VPU/core + 1 MB L2

Memory: MCDRAM: 16 GB on-package; High BW
DDR4: 6 channels @ 2400 up to 384GB

36 Tiles 10: 36 lanes PCle Gen3. 4 lanes of DMI for chipset

connected by Node: 1-Socket only
2D Mesh Fabric: Omni-Path on-package (not shown)

Interconnect
Vector Peak Perf: 3+TF DP and 6+TF SP Flops
Scalar Perf: ~3x over Knights Corner
Streams Triad (GB/s): MCDRAM : 400+; DDR: 90+

S«m_ld:t mmmmm;uanmwnmu -

MrEmMZ2Z2>»IIT N
Wrm222>»IxIT N

Omni-path not shown

GPU: NVIDIA Volta V100 (GTC May 2017)

PCI Express 3.0 Host Interface

Memory Controller
J1ajjonuo) Aiowap

Memory Controller
Jajjonu0) Aiowsap

2 5
3 o
g 3
g g
=]

Memory Controller
J1ajjo3u0) Kiowapy

NVLink NVLink NVLink

e up to 80 cores, 5120 PEs (FP32), 20 MB register space
e 815 mm?, 21.1 Btransistors, 12 nm, 300 W
o Peak: 120 TFlops/s (FP16) => 2.5 pJ/op

1 SM core

¢ Units:
8 tensor cores/SM
64 Int units
64 FP32
32 FP64
32 Ld/St
4 SFUs

¢ 128 LB L1 Data $

€ 4 warp schedulers

ASCI 2017

L1 Instruction Cache

LO Instruction Cache

LO Instruction Cache

FP64

FP64

FP64

FP64

FP64

FP64

FP64

FP64

LD/ LD/
ST ST

Warp Scheduler (32 threadiclk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT |FP32 FP32
INT FP32 FP32
INT FP32 FP32

INT FP32 FP32 TENSOR

INT FP32 FP32 GORE

INT FP32 FP32
INT FP32 FP32

INT FP32 FP32

LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST

TENSOR
CORE

FP64

FP64

FP64

FP64

FP64

FP64

FP64

FP64

LD/ LD/
ST ST

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT FP32 FP32

INT INT FP32 FP32

INT INT |FP32 FP32

INT INT FP32 FP32

TENSOR

CORE

INT INT FP32 FP32

INT INT FP32 FP32
INT INT FP32 FP32

INT [FP32 FP32

LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST

TENSOR
CORE

FP64

FP64

FP64

FP64

FP64

FP64

FP64

FP64

LD/ LD/
ST ST

LO Instruction Cache

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT [FP32 FP32

INT INT FP32 FP32

INT INT [FP32 FP32

INT INT FP32 FP32

TENSOR

CORE

INT INT FP32 FP32

INT INT FP32 FP32

INT INT FP32 FP32

INT INT FP32 FP32

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST

TENSOR
CORE

SFU

FP64

FP64

FP64

FP64

FP64

FP64

FP64

FP64

LD/ LD/
ST ST

L0 Instruction Cache

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT FP32 FP32

INT INT FP32 FP32

INT INT FP32 FP32

INT INT FP32 FP32

TENSOR

CORE

INT INT FP32 FP32

INT INT FP32 FP32

INT INT FP32 FP32

INT INT FP32 FP32

Lb/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST

TENSOR
CORE

SFU

128KB L1 Data Cache / Shared Memory

Tex

Tex

Tensor core operation

¢ D = AxB + C, all 4x4 matrices
¢ 64 floating point MAC operations per clock

D = +

FP16 or FP32

FP16 or FP32

Sum with
FP16 Full precision FP32 Convert to
storage/input product accumulator FP32 result

ASCI 2017 HC (50)

GPU remarks

€ Ext memory Bandwith / Perf ratio low

@ Less cache space compared to m-CPUs
€ SIMD model => Divergence problem

€ average << peak performance

& see https://devblogs.nvidia.com/parallelforall/inside-volta/
X; Y;
if (threadidx.x < 4) {
A;
B;
} else {
X3
\&
} . R. .
Z. AJ BJ Z,

)
on
i
)
>
=
O
O
Q
—

ASCI 2017 HC (51)

TPU: Tensor Processing Unit (Google)

')

20 1 B 1 E o

)
bista)
.y

"
’
*
.'.
"
—l
. 8
“-e
2ol
>
©\-

‘-
<338
gt b

- W
.uu,") «
» - i of »

¢ Google TPU, board and cloud usage

ASCI 2017 HC (52)

TPU detalls

= — [jbﬁb_ﬁaﬂ_jﬂnﬂ—l—]
50 ooaz-zfzamm 0GB (" weightFiro |
i
=
~ | T . Local Unified Buffer for Matrix Multiply Unit
- o T Activations (256x256x8b=64K MAC)
e gg womn| § | Aoess e | pmiic e (96Kx256x8b = 24 MiB) 24%
<.__I(; g< <:'> ; ;‘f;ﬁv'-":ﬂ'uo)n Lol (aiper cycle) | 29% of chip
= orage, !
g
: - 4 D Host . Accumulators D
L} B Interf. 2% | | (4Kx256x32b =4 MiB) 6% |
B 167 GiBls : S
EI— 5 p'grt - Activation Pipeline 6% |~ » p'gn
B o a3 | —py o — | dars
Ez::.:::auon L (— ——— 3% E ‘:- |nterfacz 3% : .:-l.. Misc. I/O 1% it
® Block diagram and Floor plan
€ work horse: systolic array of 256x256 8-bit MACs
m 40 W, 28 nm
m 92 TOPS/s => 0.43 pJ/8-bit Operation
HC (83)

ASCI 2017

Conclusions

40 Years of Microprocessor Trend Data

7
10 | ! ! ' Transistors
108 b - - - WS (thousands)
10° S ST AU o fi:‘;.‘.‘_: e | Single-Thread
s e ™ Performance
VR IS IS SO L. L | (SpecINT x 10°)
24 "C?
s . AL a4 ; l*‘“‘ Frequency (MHz
103 e AL by ..e;h'l‘l -
s e gl Typical Power
10° BRI oA o .. """ "-v;v;}v;;‘ﬁ¥"v“'{' """"""" - (Watts)
s = Y vV Ll 24} Number of
{1 I S R L A0 A0 A ' et | Number o
10 L A S Ly MV B Logical Cores
0 A m v v v v:' vv : . ‘
10 _‘..’ ‘’.E’.“wm”. E —
| | | |
1970 1980 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp

v v

Key Observations

€ Energy and Performance are main design drivers

€ Moore still alive (although somewhat slower)
m Billions of transistors
m Where does it stop? And thereafter?

¢ Power limit reached
m Frequency limited to ~3GHz
m Dark Silicon

® Single thread performance hardly increases

€ Going multicore since 2005

ASCI 2017 HC (55)

Conclusions

Workload-
optimized

Core
scaling

Device
scaling

More active transistors.

hiches £ .

Performance / energy-efficiency

More active transistors,
higher frequency

1970s ~2004 ~2015 2025 (7

ASCI 2017 HC (56)

Research

€ Architecture and implementation

m Flexibility : the CISC vs RISC debate is open again

m Why exact: Go approximate
m Near/Sub threshold

& Compiler / Mapping
m Tiling, Fusion
m Partitioning
m Vectorization
m Using templates / species

ASCI 2017

JUST
FOR
YOU

HC (57)

Research

€ Programming related
m VM support
m Coherence
m Data Flow model
m OpenMP4

€ New paradigms
m Near Memory Computing
m CIM: Computing In Memory
m Quantum

m and many others
e Adiabatic, Nano, DNA, Optic, Analog...

¢ THE SKY IS THE LIMIT

ASCI 2017 HC (58)

Finally: Can we match your brain ?7?

& Performance = 100 Billion (10*!) Neurons * 1000
(10%) Connections/Neuron * 200 (2 * 10%) Calculations
Per Second Per Connection =

2 *10M16 Calculations Per Second

& VMemory = 100 Billion (10'1) Neurons * 1000 (10°%)
Connections/Neuron * 10 bytes (information about

connection strength and adress of output neuron, type
of synapse) = 10*° bytes =1 PB = 1000 TB

How far off are we?
Brain needs only 20 Watt
and processors need MegaWatts

How come??7??

ASCI 2017 HC (59)

