
Liquid Computing:
The Delft Reconfigurable

VLIW Processor

Stephan Wong, Fakhar Anjam, Anthony Brandon,

Joost Hoozemans, Roël Seedorf, and Jeroen van Straten

Computer Engineering Lab

Department of Computer Science and Engineering

Faculty of EEMCS

Delft University of Technology

The Netherlands

Analogy: Package Delivery vs. Processor Design

From: "Transistor Count and Moore's Law -
2011" by Wgsimon

Use the increasing amount
of “transistors” to build
better package delivery
systems:
• Larger packages
• Faster delivery
• More energy-efficient

4

Around 2005: Frequency & Power leveling off

From: www.tomshardware.com

• Dennard Scaling (power density remains constant) ended 2005-2007
• However, Moore’s Law (#transistors doubles every ~2 yrs) continued
• What was the effect??

5

Homogeneous Computing

2000 2010

Terminology (after 2005):
• Dual-core
• Quad-core
• Six-core
• 8-core
• 10-core
• 16-core
• “Just” more the same core

2005

Analogy: Use the same box (=processor)
to transport various sizes of packages
(=applications)

6

Heterogeneous Computing

• Example: in 2011 ARM Introduces big.LITTLE

Analogy: Use the different boxes
(=heterogeneous processors) to transport
various sizes of packages (=applications)

From: www.arm.com

7

Now What?

• How can we even more efficiently use the
transistors, minimize waste, and reduce
energy consumption?

 Liquid Computing

• First two intermezzo’s before I give definition

8

Intermezzo: 3D Printing

From: http://www.makerbot.com/uses/for-professionals

• Continuing analogy  build the best container for each package

• This means: build the best processor for your application
•  Field-Programmable Gate Arrays (FPGAs) is now best candidate

9

Intermezzo: IKEA

From: www.ikea.com

• Continuing analogy: reconfigure a kitchen drawer (=reconfigurable
processor) for different kitchen utensils (=applications)

•  Parameterized reconfigurable processors

• (NOTE: One single design and not necessarily using FPGAs)

10

Liquid Computing: A definition

• Run-time adaptivity of computing systems
(processors, memories, network-on-chips) to
meet changing requirements of applications
being executed in different environments

• Analogy: Versatile and flexible package delivery system that can cope with any
type and size of packages to be transported in all (weather) conditions at any time

• The predecessor to LC was the ERA project

11

Embedded Reconfigurable Architectures

Partners

Technische

Universiteit Delft
(TUD) – NL (Coordinator)

Industrial Systems

Institute
(ISI) – GR

Universita' degli Studi

di Siena
(UNISI) – IT

Chalmers University
(CHALMERS) – SE

University of

Edinburgh
(UEDIN) – UK

Evidence
(EVI) – IT

STMICRO
(STMICRO) – IT

IBM
(IBM) – IL

Universidade do Rio

Grande do Sul
(UFRGS) – BR

Uppsala University
(UU) – SE

Contract:

INFSO-ICT-249059

EU Funding:

2.8 MEuro

Start - End:

01-2010 – 03-2013

Dynamic adaptation
to software
requirements &
operating environment

Dynamic adaptation
in performance, power
/ energy, and resources

Dynamic reconfiguration
of processor cores, caches,
and NoCs

Mainstream Processors

Programs:
• General-purpose programs (think: desktop, office)
• Domain-specific programs (think: embedded)
• Different characteristics (e.g., parallelism)

Compiler:
• Targets fixed processor
• Match characteristics with processor capabilities

Will programs run efficiently on the processor in most cases?
• for general-purpose computing: YES
• for domain-specific computing: NO
Why not?
• fixed nature of processor - not tuned for applications

Single processor:
• General-purpose
• Fixed (parallel) functionality
• Complex hardware to fully utilize parallel

hardware (= power hungry)

Programs:
• General-purpose programs (think: desktop, office)
• Domain-specific programs (think: embedded)
• Different characteristics (e.g., parallelism)

Compiler:
• Targets reconfigurable & parameterized

processor
• Match characteristics with processor capabilities

Many datapaths:
• Can be combined to form different processors
• Reconfigurable & parameterized processor(s)
• Adaptive functionality
• Adaptive behavior based on resources, power

budget, and target performance (self-
optimization)

What do we do in the ERA project?
• Parameterization of processor designs
• Match processor designs to the applications (through parameters)
• Perform switching of processor cores dynamically (at run-time)
• Self-optimize based on available resources and power budget

*: moved the complex
instruction scheduling
to the compiler (=
VLIW processor
concept)

Embedded Reconfigurable Architectures

A B C

Program A wants to run on the ERA platform

Instantiate a core capable of running program A

Run program A on the new core

Program B wants to run on the ERA platform

Instantiate a core capable of running program B

Run program B on the new core

Program C wants to run on the ERA platform

Instantiate a core capable of running program C

Run program C on the new core

An Example (1/3)

A B C

Program A finishes

The related core is gated off to save power

Program B utilizes more resources to improve
performance

Program C finishes

The related core is gated off to save power

An Example (2/3)

B D

Program D wants to run on the ERA platform

Program D’s preferred core size is not available

Reduce the core size executing program B

Instantiate a core capable of running program D

Run program D on the new core

Instantiate a non-preferred core on the remaining
resources and execute program D on that core; OR

An Example (3/3)

How about the network-on-chip (NoC) and memory
hierarchy?

We apply the same concepts illustrated by the processor
example to the NoC and memories!!

From multiple programs to a single program

Slot utilization

Time

• Applications have different phases in which different processor organizations

are more suited  Dynamically adapt the hardware to suit these phases

Energy savingsWhat if there is a “spike” here?

• We already have the tools and hardware support (e.g., “generic” binary,

interrupt, reconfigurable issue width cores) to make this a reality

Penalty in energy

and performance

• Now: a real-life example

4

3

2

1

TLP vs. ILP

• Leverage reconfigurable multi-core to adapt
resources from TLP to ILP or fault-tolerance

• Key ideas:
• Add direct pair-wise fine-grain communication

support to interconnect and ISA
• Compiler manages ILP through advanced

clustering techniques

Energy/Performance Trade-offs

• Higher ILP applications favor wider issue cores

• Higher TLP favors “more & smaller” cores

Recent Past Developments for ρ-VEX
Binary compatibility for dynamic issue-width adaptivity:
• Definition of the “generic binary” [presented at DATE 2013]

• Approach:

• Compile for 8-issue and address them as 2-issue bundles

• Fix false dependencies, skip NOPs-only bundles

• Simple hardware change in “update PC” & “skip NOPs”

Average slowdown (4-way): 1.1 times (10%)

1.25x

• Advantages (over code
versioning):

• Interruptability

• Dynamic switching of issue
width (controlled by
application designer,
compiler, hardware
scheduler, and/or OS
scheduler)

• Disadvantage  performance
loss (measured: avg. 30%,
projected: 10%)

• NEW RESULTS: avg. 5%

Past Developments for ρ-VEX

VEX V1.0 [presented at FPT 2008]

Dynamically Reconfigurable Register File for ρ-VEX [presented at DATE 2010]

Multi-ported register file design using BRAMs [presented at FPT 2010]

VEX V2.0 & extensions: [presented at WRC 2012 (2 papers)]

• Paper 1: Pipelined, forwarding logic, Paper 2: Support for traps (interrupts, exceptions)

Run-time task migration [presented at ARC 2012]

Dynamic issue-width reconfiguration: [presented at FPT 2010, DATE 2011]

• Dynamic adaptation of issue slots

Dynamic issue-width and 1st level I-cache reconfiguration: [pres. at SAMOS 2012]

• Simultaneous reconfiguration of core issue width and I-cache parameters

Binary compatibility for dynamic issue-width adaptivity [presented at DATE 2013]

Dynamic support for fault-tolerance [presented at ARC 2013]

Redesigned Dynamic -VEX core (2015)

• Dynamic reconfiguration (5 cycles), multiple context support, cache resizing, snooping cache
• Precise interrupts, configuration via memory-mapped registers, dynamic trace unit, support for

breakpoints and single stepping through application codes, gdb support, Linux (2.0) running.

66

Scenario 1 (responsiveness)

67

Program A (yellow) is executing in the 8-way mode
Program B (red) needs some execution time
 Resources for program A are scaled down for a while (to 4-way)
Program A continues without interruption from program B
Bottomline: Program A was always executing and responsive

Scenario 2 (fault-tolerance)

68

Program A (yellow) is executing in the 8-way mode
Program A encounters a critical code section
 Code is being triplicated on run (slower) on multiple smaller cores
 Moving code from 2-way core to another is completely transparent
Program A continues as usual in 8-way mode
Bottomline: Program A utilizes redundancy to increase fault coverage

Scenario 3 (context switching)

69

4 programs running in parallel (4 contexts are present)
1 program can be given more resources by halting other program(s)
 Contexts of other programs remain inside core (i.e., no memory transfers)
 Restarting of other programs do not require expensive context switching
4 programs continue running in parallel (albeit at different cores)
Bottomline: Switching modes and execution cores required zero context switches

Some more recent developments

• Adding a benchmark takes 15-30 minutes -->
running on actual hardware

• Powerstone, MiBench, SPECint 2006 running

• Tracing takes 15 minutes + 30 minutes post-
processing resulting in ˜4 GB

• MMU being finalized --> Porting recent Linux

• Student project to work on robots

• Many (technical) details skipped

• Invitation to drop by our lab and see our demos,
which includes a playable version of DOOMtm

74

Analogy cont’d: An Army of Delivery
Drones

76

Liquid Computing:
• Run-time adaptivity
• Efficient computing
• Fault-tolerance
• Efficient HW utilization
• Energy-efficient computing
• Many exciting ideas to

explore!!

Like having an army of delivery
drones of all sizes flowing
through our campus!

• Harsh environment requires run-time adaptability,
e.g., fault-tolerance

• Certain control systems need responsiveness

We are working to bring Liquid Computing into SPACE!

Delfi-C3 from TU Delft

Liquid Computing in Space

77

Thank you!

Questions
???

Contact information:
Stephan Wong
J.S.S.M.Wong@tudelft.nl
http://www.ce.ewi.tudelft.nl/wong/

