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Analogy: Package Delivery vs. Processor Design

From: "Transistor Count and Moore's Law -
2011" by Wgsimon

Use the increasing amount 
of  “transistors” to build 
better package delivery 
systems:
• Larger packages
• Faster delivery
• More energy-efficient
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Around 2005: Frequency & Power leveling off

From: www.tomshardware.com

• Dennard Scaling (power density remains constant) ended 2005-2007
• However, Moore’s Law (#transistors doubles every ~2 yrs) continued
• What was the effect??
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Homogeneous Computing

2000 2010

Terminology (after 2005):
• Dual-core
• Quad-core
• Six-core
• 8-core
• 10-core
• 16-core
• “Just” more the same core

2005

Analogy: Use the same box (=processor) 
to transport various sizes of packages 
(=applications)
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Heterogeneous Computing

• Example: in 2011 ARM Introduces big.LITTLE

Analogy: Use the different boxes 
(=heterogeneous processors) to transport 
various sizes of packages (=applications)

From: www.arm.com
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Now What?

• How can we even more efficiently use the 
transistors, minimize waste, and reduce 
energy consumption?

 Liquid Computing

• First two intermezzo’s before I give definition
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Intermezzo: 3D Printing

From: http://www.makerbot.com/uses/for-professionals

• Continuing analogy  build the best container for each package

• This means: build the best processor for your application
•  Field-Programmable Gate Arrays (FPGAs) is now best candidate
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Intermezzo: IKEA

From: www.ikea.com

• Continuing analogy: reconfigure a kitchen drawer (=reconfigurable 
processor) for different kitchen utensils (=applications)

•  Parameterized reconfigurable processors 

• (NOTE: One single design and not necessarily using FPGAs)
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Liquid Computing: A definition

• Run-time adaptivity of computing systems 
(processors, memories, network-on-chips) to 
meet changing requirements of applications
being executed in different environments

• Analogy: Versatile and flexible package delivery system that can cope with any 
type and size of packages to be transported in all (weather) conditions at any time

• The predecessor to LC was the ERA project
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Embedded Reconfigurable Architectures
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Mainstream Processors

Programs:
• General-purpose programs (think: desktop, office)
• Domain-specific programs (think: embedded)
• Different characteristics (e.g., parallelism)

Compiler:
• Targets fixed processor
• Match characteristics with processor capabilities

Will programs run efficiently on the processor in most cases?
• for general-purpose computing: YES
• for domain-specific computing: NO
Why not?
• fixed nature of processor - not tuned for applications

Single processor:
• General-purpose 
• Fixed (parallel) functionality
• Complex hardware to fully utilize parallel 

hardware (= power hungry)



Programs:
• General-purpose programs (think: desktop, office)
• Domain-specific programs (think: embedded)
• Different characteristics (e.g., parallelism)

Compiler:
• Targets reconfigurable & parameterized

processor
• Match characteristics with processor capabilities

Many datapaths:
• Can be combined to form different processors
• Reconfigurable & parameterized processor(s) 
• Adaptive functionality
• Adaptive behavior based on resources, power 

budget, and target performance (self-
optimization)

What do we do in the ERA project?
• Parameterization of processor designs
• Match processor designs to the applications (through parameters)
• Perform switching of processor cores dynamically (at run-time)
• Self-optimize based on available resources and power budget

*: moved the complex 
instruction scheduling 
to the compiler (= 
VLIW processor 
concept)

Embedded Reconfigurable Architectures



A B C

Program A wants to run on the ERA platform

Instantiate a core capable of running program A

Run program A on the new core

Program B wants to run on the ERA platform

Instantiate a core capable of running program B

Run program B on the new core

Program C wants to run on the ERA platform

Instantiate a core capable of running program C

Run program C on the new core

An Example (1/3)



A B C

Program A finishes

The related core is gated off to save power

Program B utilizes more resources to improve 
performance

Program C finishes

The related core is gated off to save power

An Example (2/3)



B D

Program D wants to run on the ERA platform

Program D’s preferred core size is not available

Reduce the core size executing program B

Instantiate a core capable of running program D

Run program D on the new core

Instantiate a non-preferred core on the remaining 
resources and execute program D on that core; OR

An Example (3/3)

How about the network-on-chip (NoC) and memory 
hierarchy?

We apply the same concepts illustrated by the processor 
example to the NoC and memories!!



From multiple programs to a single program

Slot utilization

Time

• Applications have different phases in which different processor organizations 

are more suited  Dynamically adapt the hardware to suit these phases

Energy savingsWhat if there is a “spike” here?

• We already have the tools and hardware support (e.g., “generic” binary, 

interrupt, reconfigurable issue width cores) to make this a reality

Penalty in energy 

and performance 

• Now: a real-life example
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TLP vs. ILP

• Leverage reconfigurable multi-core to adapt 
resources from TLP to ILP or fault-tolerance

• Key ideas:
• Add direct pair-wise fine-grain communication 

support to interconnect and ISA
• Compiler manages ILP through advanced 

clustering techniques



Energy/Performance Trade-offs

• Higher ILP applications favor wider issue cores

• Higher TLP favors “more & smaller” cores



Recent Past Developments for ρ-VEX
Binary compatibility for dynamic issue-width adaptivity:
• Definition of the “generic binary” [presented at DATE 2013]

• Approach: 

• Compile for 8-issue and address them as 2-issue bundles

• Fix false dependencies, skip NOPs-only bundles

• Simple hardware change in “update PC” & “skip NOPs”

Average slowdown (4-way): 1.1 times (10%)

1.25x

• Advantages (over code 
versioning):

• Interruptability

• Dynamic switching of issue 
width (controlled by 
application designer, 
compiler, hardware 
scheduler, and/or OS 
scheduler)

• Disadvantage  performance 
loss (measured: avg. 30%, 
projected: 10%)

• NEW RESULTS: avg. 5%



Past Developments for ρ-VEX

VEX V1.0 [presented at FPT 2008]

Dynamically Reconfigurable Register File for ρ-VEX [presented at DATE 2010]

Multi-ported register file design using BRAMs [presented at FPT 2010]

VEX V2.0 & extensions: [presented at WRC 2012 (2 papers)]

• Paper 1: Pipelined, forwarding logic, Paper 2: Support for traps (interrupts, exceptions)

Run-time task migration [presented at ARC 2012]

Dynamic issue-width reconfiguration: [presented at FPT 2010, DATE 2011]

• Dynamic adaptation of issue slots

Dynamic issue-width and 1st level I-cache reconfiguration: [pres. at SAMOS 2012]

• Simultaneous reconfiguration of core issue width and I-cache parameters

Binary compatibility for dynamic issue-width adaptivity [presented at DATE 2013]

Dynamic support for fault-tolerance [presented at ARC 2013]



Redesigned Dynamic -VEX core (2015)

• Dynamic reconfiguration (5 cycles), multiple context support, cache resizing, snooping cache
• Precise interrupts, configuration via memory-mapped registers, dynamic trace unit, support for 

breakpoints and single stepping through application codes, gdb support, Linux (2.0) running.
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Scenario 1 (responsiveness)
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Program A (yellow) is executing in the 8-way mode
Program B (red) needs some execution time
 Resources for program A are scaled down for a while (to 4-way)
Program A continues without interruption from program B
Bottomline: Program A was always executing and responsive



Scenario 2 (fault-tolerance)
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Program A (yellow) is executing in the 8-way mode
Program A encounters a critical code section
 Code is being triplicated on run (slower) on multiple smaller cores
 Moving code from 2-way core to another is completely transparent
Program A continues as usual in 8-way mode
Bottomline: Program A utilizes redundancy to increase fault coverage



Scenario 3 (context switching)
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4 programs running in parallel (4 contexts are present)
1 program can be given more resources by halting other program(s)
 Contexts of other programs remain inside core (i.e., no memory transfers)
 Restarting of other programs do not require expensive context switching
4 programs continue running in parallel (albeit at different cores)
Bottomline: Switching modes and execution cores required zero context switches



Some more recent developments

• Adding a benchmark takes 15-30 minutes --> 
running on actual hardware

• Powerstone, MiBench, SPECint 2006 running

• Tracing takes 15 minutes + 30 minutes post-
processing resulting in ˜4 GB

• MMU being finalized --> Porting recent Linux 

• Student project to work on robots

• Many (technical) details skipped

• Invitation to drop by our lab and see our demos, 
which includes a playable version of DOOMtm
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Analogy cont’d: An Army of Delivery 
Drones
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Liquid Computing:
• Run-time adaptivity
• Efficient computing
• Fault-tolerance
• Efficient HW utilization
• Energy-efficient computing
• Many exciting ideas to 

explore!!

Like having an army of delivery 
drones of all sizes flowing 
through our campus!



• Harsh environment requires run-time adaptability, 
e.g., fault-tolerance

• Certain control systems need responsiveness

We are working to bring Liquid Computing into SPACE!

Delfi-C3 from TU Delft

Liquid Computing in Space
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Thank you!

Questions
???

Contact information:
Stephan Wong 
J.S.S.M.Wong@tudelft.nl
http://www.ce.ewi.tudelft.nl/wong/


