
Exascale Computing for Radio
Astronomy: GPU or FPGA?

Kees van Berkel

MPSoC 2016, Nara, Japan, 2016 July 14

Mini-symposium “Exascale computing”
Eindhoven, 2016 Sep. 20

ASCI spring-school, Soest, 2017 May 31

Kees van Berkel page 1

Radio Astronomy: Herculus A (a.k.a. 3C 348)

Image courtesy of NRAO/AUI

“… optically invisible jets, one-and-a-half million light-years wide,
dwarf the visible galaxy from which they emerge.”

Kees van Berkel page 2

VLA radio telescope, New Mexico

27 independent antennae (dishes), each with a diameter of 25m

Kees van Berkel page 3

NGC6946: where is the NH3? and how cold is it?

20 million light years from earth
(image about 50 arcsecs wide)

Optical + X-ray combined Radio: 24 GHz (λ=12.5 mm)

1.76 GB of “radio data”
(a few fJ in total, a few B photons)

Kees van Berkel page 4

 640 channels of 500 kHz each

„image cube”: (256 ×256 pixels) × 640 channels

NH3 cloud

19° Kelvin

NGC6946: where is the NH3? and how cold is it?

Kees van Berkel page 5

Exascale Computing for Radio Astronomy: GPU or FPGA?

Computing:

•  what kind is needed?

•  how much?

•  in what form?

•  accelerator / node?

•  how to find out?

•  for the Square Kilometer Array (y2022)

•  2D-FFT, (de-)convolution, filters,
de-dispersion, and a lot more

•  “exa-scale”: 1018 FLOP/sec,
i.e. 10× fastest computer existing

•  104.5 nodes × 104.5 ALUs × fc=109 Hz?

•  GPU or FPGA?

•  use rooflines as a tool,
for modeling and for prediction

Kees van Berkel page 6

Interferometry

2-element interferometer Output of the correlator:

•  Eν(r1) is the electric field

at position r1,

•  ν the observation frequency, and

•  * denotes complex conjugation

baseline correlator

Kees van Berkel page 7

Van Cittert–Zernike theorem [1934-38]

Adding geometry (assuming “narrow field”):

where (l, m) are sky-image coordinates
and (u, v) are coordinates of the base-line vector

sky intensity

solid angle

speed of light

base line vector,
separating the 2 antennae

correlator output

2D Fourier transform!

[Tay99, Cla90, Tho01]

quasi
monochromatic

Kees van Berkel page 8

Van Cittert–Zernike theorem [1934-38]

In principle:

(u, v) coverage
(A, φ) at (u,v)

(l,m) image
pixel intensity

I-DFT

DFT

u l

m
 v

Kees van Berkel page 9

Sampling Lucy in u-v domain with a disc

× =

* =

u, v

x, y

IDFT DFT

Kees van Berkel page 10

DFT convolution theorem

V ν (u,v) × S(u,v) = VSν (u,v)
! ! !

Iν (l,m) ∗ Bν (l,m) = I Dν (l,m)

 DFT

 I-DFT

convolution

observed
visibility

 visibility sampling
function

complex
(hermitian)

dirty image
dirty map

image
map

dirty beam
point spread function

real

“de-convolution”

Kees van Berkel page 11

DFT convolution : Lucy with 2 hours VLA time

× =

* =

u, v

x, y

IDFT DFT

Kees van Berkel page 12

DFT convolution : Lucy with 12 hours VLA time

× =

* =

u, v

x, y

IDFT DFT

Kees van Berkel page 13

DFT convolution: synthetic sky with 2 hours VLA time

CLEAN
“de-convolution”

× =

* =

u, v

x, y

IDFT DFT

I-DFT

Kees van Berkel page 14

point source

De-convolution (“imaging”) based on CLEAN
sky model

+ + visibilities
V(u,v,w)

sky image
I(l,m)

γ×PSF
(dirty beam)

clean
beam

−

−

image [real] visibilities [complex]

3D 2D

3×10
iterations

100×

(W-projection/snapshot implicit) [Hög74]

FFT

G’ IFFT +

+

residual image

*

*

G-1

EXT

100×

Kees van Berkel page 15

SKA1-mid [South Africa]: science in 2020

photograph

artist impression

SKA Organisation
/Swinburne Astronomy Productions

Towards a Square Kilometer Array

[Dew13]

Kees van Berkel page 16

Imaging: compute load for SKA1-mid

•  #operations/visibility/iteration depends on W-projection method
•  calibration loop (3×) around imaging loop

quantity unit 10log note

base lines 5+ 22 ×(#dishes)2 = (2×200)2

dump rate s-1 1+ (integration time = 0.08s) -1

observation time s 3
channels 5 “image cube” for spectral analysis
visibilities / observation 14.5 = input to imaging (≈ 1016 Byte)
op /visibility /iteration 4.5 convolution, matrix multiply, (I)FFT

major iterations 1.5 (3×calibration) × (10×major)
op /observation 20.5
op /sec Hz 17.5 ≈ 1 exaflop/ sec

[Jon14, Ver15, Wijn14]

Kees van Berkel page 17

EXAflops/sec in 2015?

•  net SKA1-mid computation load “2020” versus
•  gross (peak) compute performance “2015”

Piz Daint (CH)

SKA1-mid

[Gre14]

power budget =20 MW

* Tianhe-2, #1 2016

Kees van Berkel page 18

NoC

Mem MC NIC

LOC LOC LOC TOC
LOC LOC LOC LOC

LOC LOC LOC SD
RAM

SoC
N

Exascale computing for radio astronomy

Radio astronomy: 1017.5 flops

with gridding (W-projection)
and 2D-FFT as heavy kernels.

Let’s map 2D-FFT on a node.

Option 1: FPGA*

Option 2: GPU

* in same package (not same SoC)

Exascale computing: 1018 flops

Kees van Berkel page 19

State-of-the-art GPU and FPGAs

Nvidia	
GP100	

Intel/Altera	
Stra4x	10	

Xilinx	
VU13P	

cmos	 nm	 16	 14	 16	
clock	frequency	 MHz	 1328	 800	 *800	
scalar/dsp	processors	 3584	 11520	 11,904	
peak	throughput		 GFLOP/s	 9519	 9216	 7619	

data	type	[32b]	 float	 float	 fixed		
DRAM	interface	 HBM2	 #HBM2	 #HBM2	
DRAM	bandwidth	 GB/s	 256	 256	 256	
power	consump4on	 W	 300	 126	
GfFLOP/W	 32	 73	

*assumption, no data found
#HBM2 (High Bandwidth Memory) interface to 3D stacked DRAM is an option.

Kees van Berkel page 20

1D-FFT basics (Cooley Tukey [1965])

log2(N) stages

½N butterflies per stage

W16

0 = “twiddle factor”
(N complex √ of 1)

N outputs
(complex numbers,
in bit-reversed order)

½N × log2(N) butterflies
10 operations each

Kees van Berkel page 21

1D-DFT and 2D-DFT in matrix-vector form

Let x and X be complex vectors of length N.

Where FN is the twiddle factor matrix,

In 2 dimensions:

Where Y and X are matrices of size M×N.

 : apply M-point 1D-DFT to each column of matrix X.

XT = FN ⋅ x
T or X0,X1,XN−1()T = FN ⋅ x0, x1, xN−1()T

ω = e2πi/N

Y = FM ⋅X ⋅FN

FM ⋅X

Kees van Berkel page 22

The arithmetic intensity IA = amount of compute per unit problem size

For a 2D-FFT of size N×N with complex input and output we have:

 #butterflies/1D-FFT

With 210 ≤ N ≤ 214 this amounts to 6.25 ≤ IA (N) ≤ 9.38.

IA (N) =
2×N × 1

2N log2(N) butterflies
⎡
⎣

⎤
⎦× (10 ops / butterfly)

(1read +1write)× (N 2pixels)× (8 bytes / pixel)

2D-FFT: arithmetic intensity

IA =
number _of _operations

size_of _(input +output) [bytes]

IA (N) = 0.625 log2(N) ops / byte

Kees van Berkel page 23

2D-FFT: operational intensity

The arithmetic intensity IA = amount of compute per unit problem size

The operational intensity IOP = amount of compute per unit DRAM traffic

IOP = IA only if entire problem fits in on-chip memory.

In practice IOP << IA

and depends on algorithm choices and on available on-chip memory.

IA =
number _of _operations

size_of _(input +output) [bytes]

IOP =
number _of _operations

amount _of _DRAM _ traffic (input +output) [bytes]
[Wil09]

Kees van Berkel page 24

Roofline = compute and memory bandwidth bounds

ridge point
x= 37 flops/byte

[Wil09]

operational intensity [op/byte]

compute bound 2D-FFT

Kees van Berkel page 25

2D-FFT: “classical” row-column algorithm

1.  apply 1D-FFT to individual rows

2.  apply 1D-FFT to individual columns

During 2.: with DRAM transaction size =B pixels,
B-1 pixels are read/written without being used.
If B>1 then memory bandwidth under utilized.

1+B read-write passes to DRAM, hence:

pass 1

pass 2

Iop, row−col N() = 1
1+B

IA N() << 0.31 log2(N) ops / byte

Kees van Berkel page 26

2D-FFT, using matrix transposition

1.  apply 1D-FFT to individual rows;

2.  transpose matrix block by block (size B×B)
in on-chip memory;

3.  apply 1D-FFT to individual transposed columns;

4.  transpose matrix.

On-chip memory: 2×max (B×B, N) pixels

4 read-write passes to DRAM, hence:

pass 1

pass 2, 4

pass 3

Iop, transpose N() = 1
4 IA N() = 0.16 log2(N) ops / byte

Kees van Berkel page 27

2D-FFT by processing B rows/columns in ||

1.  apply 1D-FFT to B rows rows in ||

2.  apply 1D-FFT to columns in ||

On-chip memory: (±2) × B × N pixels

2 read-write passes to DRAM, hence:

pass 1

pass 2

Iop,B−row−col N() = 1
2 IA N() = 0.31 log2(N) ops / byte

Kees van Berkel page 28

2D-FFT by processing B segmented columns in ||

Columns: Cooley-Tukey factorized into 1b +2

1.  a) apply 1D-FFT to NR rows in ||
 optimal: √B rows
b) apply partial 1D-FFT
 to NC columns in ||

2.  apply partial 1D-FFT
to column segments in ||

On-chip memory: (±2) × max(NR , √B) × N pixels

2 read-write passes to DRAM, hence:

[Yu10]

pass 1a

pass 1b

pass 2

Iop, segm−col N() = 12 IA N()
= 0.31 log2(N) ops / byte

Kees van Berkel page 29

2D-FFT on FPGA, based on pipelined 1D-FFT

DRAM transactions (read|write)
of size B pixels [8Byte]
at rate fB transactions/sec

P 1D-FFT pipelines
with i/o rates of fP pixels/sec

…

off-chip

DRAM

fP

P

fB B

Rate matching eqn: fB ×B = 2× fP ×P

Kees van Berkel page 30

2D-FFT on FPGA: dimensioning

Kees van Berkel page 31

2D-FFT on FPGA: dimensioning

DDR3 HBM2

Kees van Berkel page 32

2D-FFT on FPGAs

Stratix10:
32b floating point;
throughputs based
on Iop, 20% margin.

[Yu11]:
16b fixed point;
hence Iop 2×

[Yu10]:
32b fixed point

Kees van Berkel page 33

2D-FFT on GPU

Based on [Won10], 2010:
 “Demystifying GPU microarchitecture through micro-benchmarking”

Nvidia GTX200, Tesla microarchitecture:
•  30 Streaming Multi processor (SM)
•  each SM contains 8 Scalar Processors (SP)
•  each SP: 1 fused-multiply-add per clock cycle @ 1.35 GHz

•  unit of execution flow in the SM is the warp comprising 32 threads
•  “6 warps (192 threads) needed to hide register read-after-write latencies”

•  register file: 64 kB per SM (max 128 registers per thread)
•  register files combined: 2MB,

exceeding on-chip “shared memory” (by 4x) and on-chip caches!

30×8×2×1.35GHz
= 648 GFlop/s/s

Kees van Berkel page 34

2D-FFT on GPU

Based on MicroSoft 2008 paper [Gov08, ≈ 300 citations]:
“High Performance Discrete Fourier Transforms on Graphics Processors”.

Parallelism: 1 thread = 1 butterfly
“To maximize the reuse of data read from DRAM …, it is best to use a large
radix R. However, R is limited by the number of registers and the size of the
shared memory on the multiprocessors… We use R=8”.

With R=8, and N=4k, “only” 4k/8 threads per 1D-FFT stage.
Hence, process M FFTs in parallel “to achieve full utilization of the SMs or to
hide memory latency while accessing DRAMs.”

After each radix-8 stage, the result is written back into the off-chip DRAM:

 Iop, R8−stage N() =
IA N()

2 log8(N)⎡⎢ ⎤⎥
=

0.625log2(N)
2 log8(N)⎡⎢ ⎤⎥

= ± 0.87 ops / byte

Kees van Berkel page 35

Measured 2D-FFT throughput on GTX280 GPU

FFT size:
•  Small N ≤ 256 not enough threads.
•  Medium 512 ≤ N ≤ 1024 data fits in on-chip shared memory
•  Large 2048 ≤ N on-chip shared memory too small …

 … and throughput is limited by DRAM bandwidth for each 1D-FFT radix-8 stage!

[Gov08]

Kees van Berkel page 36

2D-FFT on GPUs

GP100:
throughputs based
on Iop, 20% margin.

[Gov08]:
outlier for N=1024:
1D-FFT just fits in
on-chip memory

Kees van Berkel page 37

Parallelism used for FFT on FPGAs vs GPUs

Multi-stage || (pipelined FFT):
•  FPGA: simple and efficient;
•  GPU: impractical (sync overhead, insufficient on-chip memory).

Intra-stage || (multi-butterfly):
•  FPGA: not needed;
•  GPU: essential to obtain

sufficiently many threads.

Multiple FFT ||:
•  FPGA: used to match

throughput of M pipelines
with memory bandwidth;

•  GPU: needed to obtain
sufficiently many threads.

M

Kees van Berkel page 38

Projected 2DFFT throughputs for GPU and FPGA

Y2020 GPU
numbers from
Nvidia paper [Ore14].

Y2020 FPGA
same “HBMx”;
similar mix of on-chip
resources assumed.

5×

5×

Kees van Berkel page 39

Large 2D-FFT: GPU or FPGA?

State-of-the-art FPGAs and GPUS: similar {GFLOP/s, GB/s, ridge points}

2D-FFT on FPGA: fairly good operational intensity (up to 5 op/byte):
•  FPGAs support for pipelined 1D-FFTs and B (segmented) columns in ||.

2D-FFT on GPU: poor operational intensity (< 1 op/byte):
•  requires many threads per scalar processor to hide pipeline and memory

latencies; most die area is spent on register files;
•  GPUs only support butterfly and multi-FFT parallelism.

For 2D-FFT, with N in the range 4k-16k, FPGAs relative to GPUs:
•  require ≈ 5× less DRAM read-write passes,
•  offer ≈ 5× more throughput,
•  and require ≈ 10× less energy per 2D-FFT, …

 … “on paper”.

Kees van Berkel page 40

FPGA as accelerator for exascale computing?

FPGA for radio astronomy (science data processing)?
•  “5× more throughput at 10× less power for 2D-FFT”
•  … needs demo on HW,
•  … and may just meet SKA power target (100 GFLOPs/s/W).
•  How about other algorithms?

gridding, w-snapshot, coherent de-dispersion, …?

FPGA for exascale computing?
•  Top 20 of top 500: 5× GPU (incl. #2 = Titan) versus 0× FPGA.
•  “Intel + Altera = Efficient HPC Co-processing” (Altera website).
•  Will “high-level programming model in OpenCL” deliver?

•  FPGA for HPC momentum?

Kees van Berkel page 41

Several rooflines and 2D-FFT data points

Kees van Berkel page 42

References (1)

[Aki12] Berkin Akın et al, Memory Bandwidth Efficient Two-Dimensional Fast Fourier Transform
 Algorithm and Implementation for Large Problem Sizes, 2012 IEEE 20th Annual Int.
 Symp. on Field-Programmable Custom Computing Machines (FCCM), pp. 188 – 191.

[Bar13] R. F. Barret et al, On the Role of Co-design in High Performance Computing,
 Transition of HPC Towards Exascale Computing, IOS Press, 2013, pp 141-155.

[Cla90] B.G. Clark, Coherence in Radio Astronomy, pp. 1-10 in [Tay99].
[Dew13] P.E. Dewdney et al., SKA1 System Baseline Design, tech. report SKA-TEL-SKO-DD-001,

 SKA, Mar. 2013; www. skatelescope.org/?attachment id=5400.
[fftw16] http://www.fftw.org/speed/CoreDuo-3.0GHz-icc/
[Gov08] N.K. Govindaraju et al, High Performance Discrete Fourier Transforms on Graphics

 Processors, Proc. of the 2008 ACM/IEEE conference on Supercomputing, article No. 2.
[Gre14] The Green500 List - November 2014, http://www.green500.org.
[Hög74] Jan Högbom, Aperture Synthesis with a Non-Regular Distribution of Interferometer

 Baselines, Astronomy and Astrophysics Supplement, 19974Vol. 15, pp. 417-426.
[Jon14] R. Jongerius, S. Wijnholds, R. Nijboer, and H. Corporaal, “End-to-end compute model

 of the Square Kilometre Array,” IEEE Computer, Sept. 2014, pp. 48-54.
[Loa92] C. Van Loan, Computational frameworks for the fast Fourier transform. SIAM, 1992
[Ore14] Oreste Villa et al, Scaling the Power Wall: A Path to Exascale, SC14: Intl Conf. for High

 Performance Computing, Networking, Storage and Analysis, pp. 830-841.

Kees van Berkel page 43

References (2)

[Tay99] G.B. Taylor, C.L. Carilli, and R.A. Perly (eds.), Synthesis Imaging in Radio Astronomy II,
 ASP Conf Series, Vol. 180, 1999.

[Tho01] Thompson, A., Moran, J., & Swenson, G. 2001, Interferometry and synthesis in radio
 astronomy, Wiley, New York.

[Ver15] Erik Vermij et al, “Challenges in exascale radio astronomy: Can the SKA ride the techn-
 ology wave? Intl. Journal of High Performance Computing Applications 2015, Vol. 29(1),
 pp. 37-50.

[Wijn14] S. J. Wijnholds, A.-J. van der Veen, F. De Stefani, E. La Rosa, A. Farina, Signal
 Processing Challenges for Radio Astronomical Arrays, 2014 IEEE ICASSP, pp. 5382-86.

[Wil09] Samuel Williams, Roofline: an insightful visual performance model for multicore
 architectures, Comm. of the ACM, Volume 52 Issue 4, April 2009, pp. 65-76.

[Won10] H. Wong et al, Demystifying GPU microarchitecture through micro-benchmarking,
 2010 IEEE Intel. Symp. on Performance Analysis of Systems & Software (ISPASS),
 pp. 235 – 246.

[Yu10] Chi-Li Yu et al, Bandwidth-intensive FPGA architecture for multi-dimensional DFT, 2010
 IEEE Intl. Conf. on Acoustics, Speech and Signal Processing, pp. 1486 – 1489.

[Yu11] Chi-Li Yu et al, FPGA Architecture for 2D Discrete Fourier Transform Based on 2D
 Decomposition for Large-sized Data, Journal of Signal Processing Systems, July 2011,
 Volume 64, Issue 1, pp. 109-122.

