Exascale Computing for Radio Astronomy: GPU or FPGA?

Kees van Berkel

MPSoC 2016, Nara, Japan, 2016 July 14

Mini-symposium "Exascale computing" Eindhoven, 2016 Sep. 20

ASCI spring-school, Soest, 2017 May 31

Where innovation starts

Radio Astronomy: Herculus A (a.k.a. 3C 348)

"... optically invisible jets, one-and-a-half million light-years wide, dwarf the visible galaxy from which they emerge."

Image courtesy of NRAO/AUI

VLA radio telescope, New Mexico

27 independent antennae (dishes), each with a diameter of 25m

Technische Universiteit
Eindhoven
University of Technology

NGC6946: where is the NH₃? and how cold is it?

Optical + X-ray combined

20 million light years from earth (image about 50 arcsecs wide)

Radio: 24 GHz (λ =12.5 mm)

1.76 GB of "radio data" (a few fJ in total, a few B photons)

NGC6946: where is the NH₃? and how cold is it?

"image cube": (256 ×256 pixels) × 640 channels

Exascale Computing for Radio Astronomy: GPU or FPGA?

Computing:

what kind is needed?

how much?

- in what form?
- accelerator / node?
- how to find out?

- for the Square Kilometer Array (y2022)
- 2D-FFT, (de-)convolution, filters, de-dispersion, and a lot more
- "exa-scale": 10¹⁸ FLOP/sec,
 i.e. 10× fastest computer existing
- $10^{4.5}$ nodes × $10^{4.5}$ ALUs × $f_c = 10^9$ Hz?
- GPU or FPGA?
- use rooflines as a tool, for modeling and for prediction

Interferometry

2-element interferometer

Output of the correlator:

$$V_{\nu}(\mathbf{r_1}, \mathbf{r_2}) = \langle \mathbf{E}_{\nu}(\mathbf{r_1}) \mathbf{E}_{\nu}^*(\mathbf{r_2}) \rangle$$

- $E_v(r_1)$ is the electric field at position r_1 ,
- v the observation frequency, and
- * denotes complex conjugation

Van Cittert–Zernike theorem [1934-38]

Adding geometry (assuming "narrow field"):

$$V_{
u}(u,v) = \int \int I_{
u}(l,m)e^{-2\pi i(ul+vm)} dl dm$$

2D Fourier transform!

where (*I*, *m*) are sky-image coordinates and (*u*, *v*) are coordinates of the base-line vector

[Tay99, Cla90, Tho01]

Van Cittert–Zernike theorem [1934-38]

Sampling Lucy in u-v domain with a disc

Technische Universiteit Eindhoven University of Technology

DFT convolution theorem

visibility

sampling function

observed visibility

complex (hermitian)

"de-convolution"

image map dirty beam point spread function

dirty image dirty map

real

DFT convolution: Lucy with 2 hours VLA time

Technische Universiteit
Eindhoven
University of Technology

DFT convolution: Lucy with 12 hours VLA time

Technische Universiteit
Eindhoven
University of Technology

DFT convolution: synthetic sky with 2 hours VLA time

De-convolution ("imaging") based on CLEAN

SKA1-mid [South Africa]: science in 2020

Towards a Square Kilometer Array

artist impression

SKA Organisation /Swinburne Astronomy Productions

[Dew13]

Imaging: compute load for SKA1-mid

quantity	unit	¹⁰ log	note
# base lines		5+	$2^2 \times (\#dishes)^2 = (2 \times 200)^2$
dump rate	s ⁻¹	1+	(integration time = 0.08s) ⁻¹
observation time	S	3	
# channels		5	"image cube" for spectral analysis
# visibilities / observation		14.5	= input to imaging (≈ 10¹6 Byte)
# op /visibility /iteration		4.5	convolution, matrix multiply, (I)FFT
# major iterations		1.5	(3×calibration) × (10×major)
# op /observation		20.5	
# op /sec	Hz	17.5	≈ 1 exaflop/ sec

- #operations/visibility/iteration depends on W-projection method
- calibration loop (3×) around imaging loop

[Jon14, Ver15, Wijn14]

EXAflops/sec in 2015?

net SKA1-mid computation load "2020" versus

[Gre14]

• gross (peak) compute performance "2015"

Exascale computing for radio astronomy

Exascale computing: 10¹⁸ flops

Radio astronomy: 10^{17.5} flops

with gridding (*W*-projection) and 2D-FFT as heavy kernels.

Let's map 2D-FFT on a node.

Option 1: FPGA*

Option 2: GPU

* in same package (not same SoC)

State-of-the-art GPU and FPGAs

		Nvidia GP100	Intel/Altera Stratix 10	Xilinx VU13P
cmos	nm	16	14	16
clock frequency	MHz	1328	800	*800
scalar/dsp processors		3584	11520	11,904
peak throughput	GFLOP/s	9519	9216	7619
data type [32b]		float	float	fixed
DRAM interface		НВМ2	#HBM2	#HBM2
DRAM bandwidth	GB/s	256	256	256
power consumption	W	300	126	
GfFLOP/W		32	73	

^{*}assumption, no data found

Technische Universiteit
Eindhoven
University of Technolog

[#]HBM2 (High Bandwidth Memory) interface to 3D stacked DRAM is an option.

1D-FFT basics (Cooley Tukey [1965])

 $log_2(N)$ stages

1/2N butterflies per stage

 W_{16}^{0} = "twiddle factor" ($N \text{ complex } \sqrt{\text{ of 1}}$)

N outputs (complex numbers, in bit-reversed order)

 $\frac{1}{2}N \times log_2(N)$ butterflies 10 operations each

1D-DFT and 2D-DFT in matrix-vector form

Let x and X be complex vectors of length N.

$$X^{T} = F_{N} \cdot x^{T}$$
 or $(X_{0}, X_{1}, X_{N-1})^{T} = F_{N} \cdot (x_{0}, x_{1}, x_{N-1})^{T}$

Where F_N is the twiddle factor matrix,

$$\omega = e^{2\pi i/N}$$

$$F_2 = \left(egin{array}{ccc} 1 & 1 \ 1 & -1 \end{array}
ight), \ F_4 = \left(egin{array}{ccc} 1 & 1 & 1 & 1 & 1 \ 1 & i & -1 & -i \ 1 & -1 & 1 & -1 \ 1 & -i & -1 & i \end{array}
ight), \ F_n = \left(egin{array}{cccc} 1 & 1 & \cdots & 1 \ 1 & \omega & \cdots & \omega^{n-1} \ \vdots & \vdots & \cdots & \vdots \ 1 & \omega^{n-1} & \cdots & \omega^{(n-1)^2} \end{array}
ight)$$

In 2 dimensions:
$$Y = F_M \cdot X \cdot F_N$$

Where Y and X are matrices of size $M \times N$.

 $F_M \cdot X$: apply *M*-point 1D-DFT to each column of matrix *X*.

2D-FFT: arithmetic intensity

The arithmetic intensity I_A = amount of compute per unit problem size

$$I_{A} = \frac{number_of_operations}{size_of_(input + output)[bytes]}$$

For a 2D-FFT of size *N*×*N* with complex input and output we have:

$$I_{A}(N) = \frac{2 \times N \times 1/2 N \log_{2}(N) butterflies}{(1read + 1write) \times (N^{2} pixels) \times (8 bytes / pixel)}$$

$$I_A(N) = 0.625 \log_2(N)$$
 ops/byte

#butterflies/1D-FFT

With $2^{10} \le N \le 2^{14}$ this amounts to $6.25 \le I_A(N) \le 9.38$.

2D-FFT: operational intensity

The arithmetic intensity I_A = amount of compute per unit problem size

$$I_{A} = \frac{number_of_operations}{size_of_(input + output)[bytes]}$$

The operational intensity I_{OP} = amount of compute per unit DRAM traffic

$$I_{OP} = \frac{number_of_operations}{amount_of_DRAM_traffic\ (input+output)\ [bytes]}$$
[Wil09]

 $I_{OP} = I_A$ only if entire problem fits in on-chip memory.

In practice $I_{OP} \ll I_A$ and depends on algorithm choices and on available on-chip memory.

Roofline = compute and memory bandwidth bounds

2D-FFT: "classical" row-column algorithm

1. apply 1D-FFT to individual rows

pass 1

- 2. apply 1D-FFT to individual columns
- During 2.: with DRAM transaction size =B pixels, B-1 pixels are read/written without being used. If B>1 then memory bandwidth under utilized.

pass 2

1+B read-write passes to DRAM, hence:

$$I_{op,row-col}(N) = \frac{1}{1+B}I_A(N) \ll 0.31\log_2(N) \quad ops/byte$$

2D-FFT, using matrix transposition

apply 1D-FFT to individual rows;

pass 1

- 2. transpose matrix block by block (size B×B) in on-chip memory;
- 3. apply 1D-FFT to individual transposed columns;

pass 2, 4

4. transpose matrix.

On-chip memory: 2×max (B×B, N) pixels

pass 3

4 read-write passes to DRAM, hence:

$$I_{op, transpose}(N) = \frac{1}{4}I_A(N) = 0.16 \log_2(N)$$
 ops/byte

2D-FFT by processing B rows/columns in ||

- 1. apply 1D-FFT to *B* rows rows in ||
- 2. apply 1D-FFT to columns in ||

pass 1

pass 2

On-chip memory: $(\pm 2) \times B \times N$ pixels

2 read-write passes to DRAM, hence:

$$I_{op,B-row-col}(N) = \frac{1}{2}I_A(N) = 0.31 \log_2(N)$$
 ops/byte

2D-FFT by processing B segmented columns in ||

Columns: Cooley-Tukey factorized into 1b +2

- 1. a) apply 1D-FFT to N_R rows in \parallel optimal: \sqrt{B} rows
 - b) apply partial 1D-FFT to N_C columns in ||
- apply partial 1D-FFT to column segments in ||

On-chip memory: $(\pm 2) \times \max(N_R, \sqrt{B}) \times N$ pixels

2 read-write passes to DRAM, hence:

$$\begin{split} I_{op,segm-col}(N) &= \frac{1}{2}I_A(N) \\ &= 0.31\log_2(N) \quad ops/byte \end{split}$$
 [Yu10]

pass 1a

pass 1b

pass 2

2D-FFT on FPGA, based on pipelined 1D-FFT

DRAM transactions (read|write) of size B pixels [8Byte] at rate f_B transactions/sec

P 1D-FFT pipelines with i/o rates of f_P pixels/sec

Rate matching eqn:

$$f_B \times B = 2 \times f_P \times P$$

2D-FFT on FPGA: dimensioning

В	DRAM transaction size (max burst)	[pixel=8B]

 f_B transaction rate [MHz]

P numer of 1D-FFT pipelines of size N

 f_P pixel rate per pipeline [MHz]

M on-chip memory [kpixel=8kB]

N image side, image= N×N

 N_R number of rows processed in $| \cdot |$

 N_c number of columns processed in | |

rate-matching constraint $2 \times P \times f_P \ge B \times f_B$

hence $P > (B \times f_B)/(2 \times f_P)$

parallelism constraint $N_R \ge P$

 $N_C \ge P$

DRAM transaction constraint $N_c \ge B$

on-chip memory constraint $M \ge 3 \times max(N_R, N_C) \times N$

alternative, segmented columns $M \ge 3 \times max(N_R, min(VB, N_C)) \times N$

2D-FFT on FPGA: dimensioning

			[Yu10]	Stratix10
			DDR3	HBM2
В	DRAM transaction size (max burst)	[pixel=8B]	32	32
$f_{\scriptscriptstyle B}$	transaction rate	[MHz]	25	1000
Р	numer of 1D-FFT pipelines of size N		5	24
$f_{\scriptscriptstyle P}$	pixel rate per pipeline	[MHz]	80	800
M	on-chip memory	[kpixel=8kB]	68	1152
Ν	image side, image= N×N		4096	16384
N_R	number of rows processed in		5	24
N_{C}	number of columns processed in		32	24
	rate-matching constraint	$2 \times P \times f_P \ge B \times f_B$		
	hence	$P > (B \times f_B)/(2 \times f_P)$	5	20.0
	parallelism constraint	$N_R \ge P$	5	24
		$N_C \ge P$		24
	DRAM transaction constraint	$N_C \ge B$	32	
	on-chip memory constraint	$M \ge 3 \times max(N_R, N_C) \times N$	384	1152
	alternative, segmented columns	$M \ge 3 \times max(N_R, min(VB, N_C)) \times N$	68	1152

Technische Universiteit
Eindhoven
University of Technology

2D-FFT on FPGAs

Stratix10:

32b floating point; throughputs based on I_{op} , 20% margin.

[Yu11]: 16b fixed point; hence I_{op} 2×

[Yu10]: 32b fixed point

2D-FFT on GPU

Based on [Won10], 2010:

"Demystifying GPU microarchitecture through micro-benchmarking"

Nvidia GTX200, Tesla microarchitecture:

30×8×2×1.35GHz

= 648 GFlop/s/s

- 30 Streaming Multi processor (SM)
- each SM contains 8 Scalar Processors (SP)
- each SP: 1 fused-multiply-add per clock cycle @ 1.35 GHz
- unit of execution flow in the SM is the warp comprising 32 threads
- "6 warps (192 threads) needed to hide register read-after-write latencies"
- register file: 64 kB per SM (max 128 registers per thread)
- register files combined: 2MB,
 exceeding on-chip "shared memory" (by 4x) and on-chip caches!

2D-FFT on GPU

Based on MicroSoft 2008 paper [Gov08, ≈ 300 citations]:

"High Performance Discrete Fourier Transforms on Graphics Processors".

Parallelism: 1 thread = 1 butterfly

"To maximize the reuse of data read from DRAM ..., it is best to use a large radix R. However, R is limited by the number of registers and the size of the shared memory on the multiprocessors... We use R=8".

With *R*=8, and *N*=4k, "only" 4k/8 threads per 1D-FFT stage. Hence, process *M* FFTs in parallel "to achieve full utilization of the SMs or to hide memory latency while accessing DRAMs."

After each radix-8 stage, the result is written back into the off-chip DRAM:

$$I_{op,R8-stage}(N) = \frac{I_A(N)}{2\lceil \log_8(N) \rceil} = \frac{0.625 \log_2(N)}{2\lceil \log_8(N) \rceil} = \pm 0.87 \text{ ops/byte}$$

Measured 2D-FFT throughput on GTX280 GPU

[Gov08]

FFT size:

Small N ≤ 256 not enough threads.

Medium 512 ≤ N ≤ 1024 data fits in on-chip shared memory

Large 2048 ≤ N on-chip shared memory too small ...

... and throughput is limited by DRAM bandwidth for each 1D-FFT radix-8 stage!

Technische Universiteit
Eindhoven
University of Technology

2D-FFT on GPUs

GP100:

throughputs based on I_{op} , 20% margin.

[Gov08]: outlier for *N*=1024: 1D-FFT just fits in on-chip memory

Parallelism used for FFT on FPGAs vs GPUs

Multi-stage || (pipelined FFT):

FPGA: simple and efficient;

Kees van Berkel

GPU: impractical (sync overhead, insufficient on-chip memory).

Intra-stage || (multi-butterfly):

- FPGA: not needed;
- GPU: essential to obtain sufficiently many threads.

Multiple FFT ||:

- FPGA: used to match throughput of M pipelines with memory bandwidth;
- GPU: needed to obtain sufficiently many threads.

page 37

Projected 2DFFT throughputs for GPU and FPGA

Y2020 GPU

numbers from Nvidia paper [Ore14].

Y2020 FPGA same "HBMx"; similar mix of on-chip resources assumed.

Large 2D-FFT: GPU or FPGA?

State-of-the-art FPGAs and GPUS: similar {GFLOP/s, GB/s, ridge points}

2D-FFT on FPGA: fairly good operational intensity (up to 5 op/byte):

FPGAs support for pipelined 1D-FFTs and B (segmented) columns in ||.

2D-FFT on GPU: poor operational intensity (< 1 op/byte):

- requires many threads per scalar processor to hide pipeline and memory latencies; most die area is spent on register files;
- GPUs only support butterfly and multi-FFT parallelism.

For 2D-FFT, with *N* in the range 4k-16k, FPGAs relative to GPUs:

- require ≈ 5× less DRAM read-write passes,
- offer ≈ 5× more throughput,
- and require ≈ 10× less energy per 2D-FFT, ...

... "on paper".

FPGA as accelerator for exascale computing?

FPGA for radio astronomy (science data processing)?

- "5× more throughput at 10× less power for 2D-FFT"
- ... needs demo on HW,
- ... and may just meet SKA power target (100 GFLOPs/s/W).
- How about other algorithms?
 gridding, w-snapshot, coherent de-dispersion, ...?

FPGA for exascale computing?

- Top 20 of top 500: 5× GPU (incl. #2 = Titan) versus 0× FPGA.
- "Intel + Altera = Efficient HPC Co-processing" (Altera website).
- Will "high-level programming model in OpenCL" deliver?
- FPGA for HPC momentum?

Several rooflines and 2D-FFT data points

Technische Universiteit

References (1)

- [Aki12] Berkin Akın et al, Memory Bandwidth Efficient Two-Dimensional Fast Fourier Transform Algorithm and Implementation for Large Problem Sizes, 2012 IEEE 20th Annual Int. Symp. on Field-Programmable Custom Computing Machines (FCCM), pp. 188 191.
- [Bar13] R. F. Barret et al, On the Role of Co-design in High Performance Computing, Transition of HPC Towards Exascale Computing, IOS Press, 2013, pp 141-155.
- [Cla90] B.G. Clark, Coherence in Radio Astronomy, pp. 1-10 in [Tay99].
- [Dew13] P.E. Dewdney et al., SKA1 System Baseline Design, tech. report SKA-TEL-SKO-DD-001, SKA, Mar. 2013; www. skatelescope.org/?attachment id=5400.
- [fftw16] http://www.fftw.org/speed/CoreDuo-3.0GHz-icc/
- [Gov08] N.K. Govindaraju et al, High Performance Discrete Fourier Transforms on Graphics Processors, Proc. of the 2008 ACM/IEEE conference on Supercomputing, article No. 2.
- [Gre14] The Green500 List November 2014, http://www.green500.org.
- [Hög74] Jan Högbom, Aperture Synthesis with a Non-Regular Distribution of Interferometer Baselines, Astronomy and Astrophysics Supplement, 19974Vol. 15, pp. 417-426.
- [Jon14] R. Jongerius, S. Wijnholds, R. Nijboer, and H. Corporaal, "End-to-end compute model of the Square Kilometre Array," *IEEE Computer*, Sept. 2014, pp. 48-54.
- [Loa92] C. Van Loan, Computational frameworks for the fast Fourier transform. SIAM, 1992
- [Ore14] Oreste Villa et al, Scaling the Power Wall: A Path to Exascale, SC14: Intl Conf. for High Performance Computing, Networking, Storage and Analysis, pp. 830-841.

References (2)

- [Tay99] G.B. Taylor, C.L. Carilli, and R.A. Perly (eds.), Synthesis Imaging in Radio Astronomy II, ASP Conf Series, Vol. 180, 1999.
- [Tho01] Thompson, A., Moran, J., & Swenson, G. 2001, Interferometry and synthesis in radio astronomy, Wiley, New York.
- [Ver15] Erik Vermij et al, "Challenges in exascale radio astronomy: Can the SKA ride the technology wave? Intl. Journal of High Performance Computing Applications 2015, Vol. 29(1), pp. 37-50.
- [Wijn14] S. J. Wijnholds, A.-J. van der Veen, F. De Stefani, E. La Rosa, A. Farina, Signal Processing Challenges for Radio Astronomical Arrays, 2014 IEEE ICASSP, pp. 5382-86.
- [Wil09] Samuel Williams, Roofline: an insightful visual performance model for multicore architectures, Comm. of the ACM, Volume 52 Issue 4, April 2009, pp. 65-76.
- [Won10] H. Wong et al, Demystifying GPU microarchitecture through micro-benchmarking, 2010 IEEE Intel. Symp. on Performance Analysis of Systems & Software (ISPASS), pp. 235 246.
- [Yu10] Chi-Li Yu et al, Bandwidth-intensive FPGA architecture for multi-dimensional DFT, 2010 IEEE Intl. Conf. on Acoustics, Speech and Signal Processing, pp. 1486 1489.
- [Yu11] Chi-Li Yu et al, FPGA Architecture for 2D Discrete Fourier Transform Based on 2D Decomposition for Large-sized Data, Journal of Signal Processing Systems, July 2011, Volume 64, Issue 1, pp. 109-122.

Technische Universiteit
Eindhoven
University of Technolog