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Radio Astronomy: Herculus A   (a.k.a. 3C 348) 

Image courtesy of NRAO/AUI  

“… optically invisible jets, one-and-a-half million light-years wide,  
dwarf the visible galaxy from which they emerge.” 



Kees van Berkel                                                                      page 2 

VLA radio telescope, New Mexico 

27 independent antennae (dishes), each with a diameter of 25m  
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NGC6946: where is the NH3? and how cold is it? 

20 million light years from earth 
(image about 50 arcsecs wide) 

Optical  + X-ray combined Radio: 24 GHz   (λ=12.5 mm)  

1.76 GB of “radio data” 
(a few fJ in total, a few B photons) 
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    640 channels of 500 kHz each 

„image cube”: (256 ×256 pixels) × 640 channels 

NH3 cloud 

19° Kelvin  

  

NGC6946: where is the NH3? and how cold is it? 
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Exascale Computing for Radio Astronomy: GPU or FPGA? 

Computing: 
 
•  what kind is needed?  

 
  

•  how much? 
 

    
•  in what form? 

 
•  accelerator / node? 

•  how to find out? 

•  for the Square Kilometer Array (y2022) 

•  2D-FFT, (de-)convolution, filters, 
de-dispersion, and a lot more 
  

•  “exa-scale”: 1018 FLOP/sec, 
i.e. 10×  fastest computer existing 

•  104.5 nodes × 104.5 ALUs × fc=109 Hz? 
 

•  GPU or FPGA? 

•  use rooflines as a tool,  
for modeling and for prediction 
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Interferometry 

2-element interferometer Output of the correlator: 
 
  
 
 
•  Eν(r1) is the electric field  

at position r1, 
 

•  ν the observation frequency, and 
 

•  * denotes complex conjugation 

baseline            correlator 
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Van Cittert–Zernike theorem [1934-38] 

Adding geometry (assuming “narrow field”): 
 
 
 
 
where (l, m) are sky-image coordinates 
and (u, v) are coordinates of the base-line vector 

sky intensity 

solid angle 

speed of light 

base line vector, 
separating the 2 antennae 
 

correlator output 

2D Fourier transform! 

[Tay99, Cla90, Tho01] 

quasi  
monochromatic 
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Van Cittert–Zernike theorem [1934-38] 

In principle: 
      

(u, v) coverage 
(A, φ) at (u,v) 

(l,m) image 
pixel intensity  

I-DFT 

DFT 

u  l  

m  
 v 
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Sampling Lucy in u-v domain with a disc 

× = 

* = 

u, v 

x, y 

IDFT DFT 
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DFT convolution theorem 

V ν (u,v) × S(u,v) = VSν (u,v)
! ! !

Iν (l,m) ∗ Bν (l,m) = I Dν (l,m)

 DFT 

 I-DFT 

convolution 

observed 
visibility 

        visibility sampling  
function 

complex 
(hermitian)  

dirty image 
dirty map 

image 
map 

dirty beam  
point spread function 

real  

“de-convolution” 
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DFT convolution : Lucy with 2 hours VLA time 

× = 

* = 

u, v 

x, y 

IDFT DFT 
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DFT convolution : Lucy with 12 hours VLA time 

× = 

* = 

u, v 

x, y 

IDFT DFT 
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DFT convolution: synthetic sky with 2 hours VLA time 

CLEAN 
“de-convolution” 

× = 

* = 

u, v 

x, y 

IDFT DFT 

I-DFT 



Kees van Berkel                                                                      page 14 

point source 

De-convolution (“imaging”) based on CLEAN 
sky model 

+ + visibilities 
V(u,v,w) 

sky image 
I(l,m) 

γ×PSF 
(dirty beam) 

clean 
beam 

− 

− 

image [real] visibilities [complex] 

3D 2D 

3×10 
iterations 

100× 

(W-projection/snapshot implicit) [Hög74]  

FFT 

G’ IFFT + 

+ 

residual image 

* 

* 

G-1 

EXT 

100× 
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SKA1-mid [South Africa]: science in 2020 

photograph 

artist impression 

SKA Organisation 
/Swinburne Astronomy Productions 

Towards a Square Kilometer Array 

[Dew13] 
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Imaging: compute load for SKA1-mid  

•  #operations/visibility/iteration depends on W-projection method 
•  calibration loop (3×) around imaging loop 

quantity unit 10log note 

# base lines 5+ 22 ×(#dishes)2 = (2×200)2  

dump rate s-1 1+ (integration time = 0.08s) -1 

observation time s 3  
# channels 5 “image cube” for spectral analysis 
# visibilities / observation 14.5 = input to imaging (≈ 1016 Byte) 
# op /visibility /iteration 4.5 convolution, matrix multiply, (I)FFT 

# major iterations 1.5 (3×calibration) × (10×major) 
# op /observation 20.5 
# op /sec Hz 17.5 ≈ 1 exaflop/ sec 

[Jon14, Ver15, Wijn14] 



Kees van Berkel                                                                      page 17 

EXAflops/sec in 2015? 

•  net SKA1-mid computation load “2020” versus 
•  gross (peak) compute performance “2015” 

Piz Daint (CH) 

SKA1-mid 

[Gre14] 

power budget =20 MW 

*   Tianhe-2,  #1 2016 
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NoC 

Mem MC NIC 

LOC LOC LOC TOC 
LOC LOC LOC LOC 

LOC LOC LOC SD 
RAM 

SoC 
N 

Exascale computing for radio astronomy 

Radio astronomy: 1017.5 flops 
 
with gridding (W-projection)  
and 2D-FFT as heavy kernels. 
 
 
Let’s map 2D-FFT on a node.  
 
Option 1: FPGA* 
 
Option 2: GPU 
 
 

* in same package (not same SoC) 
 
 
 

Exascale computing: 1018 flops 
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State-of-the-art GPU and FPGAs 

Nvidia	
GP100	

Intel/Altera	
Stra4x	10	

Xilinx	
VU13P	

cmos	 nm	 16	 14	 16	
clock	frequency	 MHz	 1328	 800	 *800	
scalar/dsp	processors	 3584	 11520	 11,904	
peak	throughput		 GFLOP/s	 9519	 9216	 7619	

data	type	[32b]	 float	 float	 fixed		
DRAM	interface	 HBM2	 #HBM2	 #HBM2	
DRAM	bandwidth	 GB/s	 256	 256	 256	
power	consump4on	 W	 300	 126	
GfFLOP/W	 32	 73	

*assumption, no data found 
#HBM2 (High Bandwidth Memory) interface to 3D stacked DRAM is an option. 
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1D-FFT basics (Cooley Tukey [1965]) 

log2(N) stages 
 
½N butterflies per stage 
 
W16

0 = “twiddle factor” 
(N complex √ of 1) 
 
 
N outputs  
(complex numbers, 
in bit-reversed order) 
 
 
½N × log2(N) butterflies 
10 operations each 
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1D-DFT and 2D-DFT in matrix-vector form 

Let x and X be complex vectors of length N. 
 
 
 
Where FN is the twiddle factor matrix, 
 
 
 
 
 
In 2 dimensions: 
 
Where Y and X are matrices of size M×N.  

  :  apply M-point 1D-DFT to each column of matrix X. 
 

XT = FN ⋅ x
T or X0,X1,XN−1( )T = FN ⋅ x0, x1, xN−1( )T

ω = e2πi/N

Y = FM ⋅X ⋅FN

FM ⋅X
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The arithmetic intensity IA = amount of compute per unit problem size 
 
 
 
 
For a 2D-FFT of size N×N with complex input and output we have: 
 
 
 
 

       #butterflies/1D-FFT 
 
With 210 ≤ N ≤ 214  this amounts to   6.25 ≤ IA (N) ≤ 9.38. 
 

IA (N ) =
2×N × 1

2N log2(N ) butterflies
⎡
⎣

⎤
⎦× (10 ops / butterfly)

(1read +1write)× (N 2pixels)× (8 bytes / pixel)

2D-FFT: arithmetic intensity 

IA =
number _of _operations

size_of _(input +output) [bytes]

IA (N ) = 0.625 log2(N ) ops / byte
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2D-FFT: operational intensity 

The arithmetic intensity IA = amount of compute per unit problem size 
 
 
 
 
The operational intensity IOP = amount of compute per unit DRAM traffic 
 
 
 
 
IOP = IA   only if entire problem fits in on-chip memory. 
 

In practice  IOP  << IA   

and depends on algorithm choices and on available on-chip memory. 
 
 
 
 

IA =
number _of _operations

size_of _(input +output) [bytes]

IOP =
number _of _operations

amount _of _DRAM _ traffic (input +output) [bytes]
[Wil09] 
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Roofline = compute and memory bandwidth bounds 

ridge point 
x= 37 flops/byte 

[Wil09] 

operational intensity [op/byte] 

compute bound 2D-FFT 
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2D-FFT: “classical” row-column algorithm 

1.  apply 1D-FFT to individual rows 

2.  apply 1D-FFT to individual columns 
 
 
During 2.: with DRAM transaction size =B pixels,  
B-1 pixels are read/written without being used. 
If B>1 then memory bandwidth under utilized. 
 
 
 
 
1+B read-write passes to DRAM, hence: 

pass 1 
 
 
 

 
pass 2 
 
 

 

Iop, row−col N( ) = 1
1+B

IA N( ) << 0.31 log2(N ) ops / byte
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2D-FFT, using matrix transposition 

1.  apply 1D-FFT to individual rows; 

2.  transpose matrix block by block (size B×B)  
in on-chip memory;  

3.  apply 1D-FFT to individual transposed columns; 

4.  transpose matrix. 

 
On-chip memory: 2×max (B×B, N) pixels 
 
4 read-write passes to DRAM, hence: 

pass 1 
 
 
 

 
pass 2, 4 
 
 
 

 
pass 3 

Iop, transpose N( ) = 1
4 IA N( ) = 0.16 log2(N ) ops / byte
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2D-FFT by processing B rows/columns in ||  

1.  apply 1D-FFT to B rows rows in || 

2.  apply 1D-FFT to columns in || 
 

 
 
 
 
 
 
On-chip memory: (±2) × B × N  pixels 
 
2 read-write passes to DRAM, hence: 

pass 1 
 
 
 

 
pass 2 
 
 

 

Iop,B−row−col N( ) = 1
2 IA N( ) = 0.31 log2(N ) ops / byte
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2D-FFT by processing B  segmented columns in ||  

Columns: Cooley-Tukey factorized into 1b +2 
 

1.  a) apply 1D-FFT to NR rows in || 
    optimal: √B rows 
b) apply partial 1D-FFT  
    to NC columns in || 
 

2.  apply partial 1D-FFT  
to column segments in || 

 
On-chip memory:   (±2) × max(NR , √B) × N  pixels 
 
2 read-write passes to DRAM, hence: 
 
 
 

[Yu10] 

pass 1a 
 
 
 

 
pass 1b 
 
 
 

 
pass 2  
 

 
 

Iop, segm−col N( ) = 12 IA N( )
= 0.31 log2(N ) ops / byte
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2D-FFT on FPGA, based on pipelined 1D-FFT 

DRAM transactions (read|write) 
of size B pixels [8Byte]  
at rate fB  transactions/sec 

P   1D-FFT  pipelines  
with i/o rates of fP  pixels/sec 

…
 

 
 
 

off-chip 
 

DRAM 

 
 
 

fP 

P 

fB B 

Rate matching eqn: fB ×B = 2× fP ×P
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2D-FFT on FPGA: dimensioning 
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2D-FFT on FPGA: dimensioning 

DDR3         HBM2 
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2D-FFT  on FPGAs 

Stratix10:  
32b floating point; 
throughputs based 
on Iop, 20% margin. 
 
 
 
 
[Yu11]: 
16b fixed point; 
hence Iop 2× 
 
 
 
[Yu10]: 
32b fixed point 
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2D-FFT on GPU 

Based on [Won10], 2010: 
 “Demystifying GPU microarchitecture through micro-benchmarking” 

Nvidia GTX200, Tesla microarchitecture: 
•  30 Streaming Multi processor (SM)  
•  each SM contains 8 Scalar Processors (SP) 
•  each SP: 1 fused-multiply-add per clock cycle @ 1.35 GHz 

•  unit of execution flow in the SM is the warp comprising 32 threads 
•  “6 warps (192 threads) needed to hide register read-after-write latencies” 

•  register file: 64 kB per SM (max 128 registers per thread) 
•  register files combined: 2MB,  

exceeding on-chip “shared memory” (by 4x) and on-chip caches! 

30×8×2×1.35GHz 
= 648 GFlop/s/s 
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2D-FFT on  GPU 

Based on MicroSoft 2008 paper [Gov08, ≈ 300 citations]: 
“High Performance Discrete Fourier Transforms on Graphics Processors”. 
 

Parallelism: 1 thread = 1 butterfly 
“To maximize the reuse of data read from DRAM …,  it is best to use a large 
radix R. However, R is limited by the number of registers and the size of the 
shared memory on the multiprocessors… We use R=8”. 
 

With R=8, and N=4k, “only” 4k/8 threads per 1D-FFT stage.  
Hence, process M FFTs in parallel “to achieve full utilization of the SMs or to 
hide memory latency while accessing DRAMs.” 
 

After each radix-8 stage, the result is written back into the off-chip DRAM:
    

 Iop, R8−stage N( ) =
IA N( )

2 log8(N )⎡⎢ ⎤⎥
=

0.625log2(N )
2 log8(N )⎡⎢ ⎤⎥

= ± 0.87 ops / byte
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Measured 2D-FFT throughput on GTX280 GPU  

FFT size: 
•  Small               N ≤ 256  not enough threads. 
•  Medium  512   ≤ N ≤ 1024  data fits in on-chip shared memory 
•  Large   2048 ≤ N   on-chip shared memory too small … 

 

 … and throughput is limited by DRAM bandwidth for each 1D-FFT radix-8 stage! 

[Gov08] 
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2D-FFT on GPUs 

GP100:  
throughputs based 
on Iop, 20% margin. 
 
 
 
 
 
 
 
 
 
[Gov08]: 
outlier for N=1024: 
1D-FFT just fits in  
on-chip memory  
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Parallelism used for FFT on FPGAs vs GPUs 

Multi-stage  ||  (pipelined FFT): 
•  FPGA: simple and efficient; 
•  GPU: impractical (sync overhead, insufficient on-chip memory). 

Intra-stage ||   (multi-butterfly): 
•  FPGA: not needed; 
•  GPU: essential to obtain 

sufficiently many threads. 
 
 
 
Multiple FFT  ||:  
•  FPGA: used to match  

throughput of M pipelines       
with memory bandwidth; 

•  GPU: needed to obtain  
sufficiently many threads. 

 

M 
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Projected 2DFFT throughputs for GPU and FPGA 

Y2020 GPU  
numbers from  
Nvidia paper [Ore14]. 
 
Y2020 FPGA  
same “HBMx”; 
similar mix of on-chip 
resources assumed. 

5× 

5× 
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Large 2D-FFT: GPU or FPGA? 

State-of-the-art FPGAs and GPUS: similar {GFLOP/s, GB/s, ridge points} 

2D-FFT on FPGA: fairly good operational intensity (up to 5 op/byte): 
•  FPGAs support for pipelined 1D-FFTs and B (segmented) columns in ||. 

2D-FFT on GPU:            poor operational intensity (< 1 op/byte): 
•  requires many threads per scalar processor to hide pipeline and memory 

latencies; most die area is spent on register files; 
•  GPUs only support butterfly and multi-FFT parallelism. 
 

For 2D-FFT, with N in the range 4k-16k, FPGAs relative to GPUs:  
•  require  ≈   5× less DRAM read-write passes, 
•  offer   ≈   5× more throughput, 
•  and require   ≈ 10× less energy per 2D-FFT, … 

 … “on paper”. 
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FPGA as accelerator for exascale computing? 

FPGA for radio astronomy (science data processing)? 
•  “5× more throughput at 10× less power for 2D-FFT”  
•  … needs demo on HW, 
•  … and may just meet SKA power target (100 GFLOPs/s/W). 
•  How about other algorithms?   

gridding, w-snapshot, coherent de-dispersion, …? 

 
FPGA for exascale computing? 
•  Top 20 of top 500:   5× GPU (incl. #2 = Titan)  versus  0× FPGA. 
•  “Intel + Altera = Efficient HPC Co-processing”  (Altera website). 
•  Will “high-level programming model in OpenCL” deliver?  

•  FPGA for HPC momentum? 
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Several rooflines and 2D-FFT data points 
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