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 Driving forces behind desire for energy efficient computing

 More bandwidth

 More processing
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 Driving forces

 More bandwidth

 More processing 

 Restricted footprint and power budget 
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 Driving forces

 More bandwidth

 More processing 

 Restricted footprint and power budget

 Context

 ADC bottleneck

 Moore’s law

 Providing more transistors per square mm

 No frequency increase

 No gain in power efficiency
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 Solutions

 Heterogeneous architectures with specialized cores

 Different cores exploit different techniques

 Digital becomes analog (low voltage computing)

 Signal processing tuned to precision that is actually required

(approximate computing)
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 Motivation:

 𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐 ∝ 𝑉𝑑𝑑
2

 Lowering voltage can increase energy efficiency even if additional hardware is

required to maintain the performance

 Types:

 Nominal / Super Threshold Voltage 0.55 to 1V:High - performance and Energy

 Near Threshold Voltage (NTV) 0.4 to 0.55V: Mod - performance and Energy

 Ultra Low Voltage (ULV) 0 to 0.4V: Low - performance and Energy

 DVFS: Dynamic voltage and frequency scaling aims at run time adjustment

 Heterogeneous Architectures: Multiple performance-energy tradeoffs because

of multiple, different cores [2]
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 Energy and Performance Trade-off for 32nm tech [3]

5/29/2017Computer Architectures for Embedded Systems 10

LOW VOLTAGE COMPUTING
DETERMINISTIC



 Energy Benefits:

 Vopt design showing number of cores parallelized across SPLASH-2

benchmarks has increased energy efficiency 4 times for 32nm tech [3]
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 Design Limiters [1]

 Leakage or static power – Tech specific 

 Amdahl’s overhead – App specific

 Architectural overhead – App specific
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 Adaptive Voltage Overscaling:

 Lowers voltage while leaving frequency unchanged

 Simulations for texture decompression algorithm ftc1 show energy

savings of 25% to 30% (1.2V to 1.8V operation) [4]

 Probabilistic Computing:

 Reducing Vdd below safe region w.r.t. frequency of operation =>

probabilistic behavior of circuit

 Safe region is also dependent on gate width and noise levels
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Probabilistic CMOS

 Operate PCMOS at various voltage levels below safe region

 This provides Energy- probability of correctness (E-p) tradeoff [6]
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Probabilistic CMOS

 Operate PCMOS at various voltage levels below safe region

 This provides Energy- probability of correctness (E-p) tradeoff [6]
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 Probabilistic switch, for instance an inverter, modeled with a noise 

coupled output as [7]

Where is the RMS noise
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Error propagation in PCMOS

 It is also important to calculate the error propagation within the

probabilistic system to find the total error, for example in ripple carry

adder

 M. Lau [8] calculated the propagation error within a 4-bit ripple carry 

adder for each sum and carry output 

Where pc and ps are the probabilities of correct outputs for carry and 

sum respectively 

 Simulations show the impact of delay propagation in addition to error 

propagation as modeled above
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Impact of delay propagation at NTV

 Inverter simulations (umc65 library in Cadence IC) at various noise

scales, gate widths and frequencies

 Approach: simulate 65nm technology with increased intrinsic noise

due to channel resistance to represent the much smaller future

transistors Parameters Value

MOS type Umc65ll N/P_12_llrvt

NMOS gate length 60nm

NMOS gate width 80nm

PMOS gate length 60nm

PMOS gate width 160nm

Vdd Range: 0-2V, 10mV steps

Cout 10fF

Temperature 27ºC

Noise amplification 50x/100x/200x/400x
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Impact of delay propagation

 Abrupt decrease in p can be observed at low voltages for various

noise levels and frequencies of operation
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 To show delay propagation in PCMOS systems, simulation of 4-bit

ripple carry adder in Cadence IC

 The theoretical curves are based on the assumption that the

propagation of error is only due to probability of correctness metric

 However, the delayed correct outputs of stage i can make the

probability of correctness worse for stage i+1
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Conclusions

 Simulations of an inverter and a 4-bit ripple carry adder in Cadence

show importance of including delay in modeling PCMOS

 Impact of delay propagation in a digital system composed of

probabilistic building blocks is investigated, which provides:

 A clear insight of timing delay

 Affecting the higher significant computational bits more than its

lower significant counterparts

 Hence contributing considerably to the total error
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Why Resilience is present in some applications?
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Vinay K. Chippa et al “Analysis and Characterization of Inherent Application Resilience for Approximate Computing” DAC 2013
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Approximate computing resilient applications example

 Texture decompression: 25% to 30% energy savings for various images

[4]
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Approximate computing

 Inexact Computing or Best Effort Computing

 Compute with bare minimum accuracy to save costs

 Energy efficiency increases beyond Vopt operation

 Quality vs Cost trade-off

 For error resilient applications like multimedia digital signal processing,

search engines and scientific computing
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 Techniques:

 Data size or width reduction

 Loop perforation

 Approximate memoization

 Logic simplification
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Rehman, S, et al. (2016). Architectural-space exploration of approximate multipliers. Proceedings of the 35th ICCAD, ACM

 Will be discussed on Thursday
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Accu-Mul Ax-Mul1 Ax-Mul2

Design Type Area Latency Power Error Rate Error Magnitude

Accu-Mul 6.88 0.1 543 0 0

Ax-Mul1 3.70 0.06 363 1/16 2

Ax-Mul2 4.94 0.1 262 3/16 1
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 Architectures:

 Approximate architectures

 Accuracy configurable architectures

 Heterogeneous architectures
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Error resilience analysis, why bother?

 Not every application is error-resilient

 Within a resilient application, not every kernel is error resilient

 Approximation (ax) techniques offer different error distributions

 Higher design space exploration requirements (ax alternatives)

 It is important to analyze applications in order to,

 Address the above problems

 Simulate the effects of approximations by applying corresponding

models
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Available tools for error resilience analysis

 Quality of Service (QoS) Profiling1: Loop perforation

 iACT2: precision scaling, ax memoization, noisy hardware effects

 Automatic Sensitivity Analysis (ASAC)3: Perturbation of program data

 ARC Framework: Characterizes the statistical distribution of error-

tolerance based on,

 Error Mean (EM)

 Error Predictability (EP)

 Error Rate (ER)
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1. Sasa Misailovic, et al. Quality of service profiling. ICSE 2010

2. Asit Mishra, et al. iACT: A software hardware framework for understanding the scope of approximate computing. WACAS 2014

3. Pooja Roy, et al. Asac: Automatic sensitivity analysis for approximate computing. ACM SIGPLAN 2014
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Vinay K. Chippa et al “Analysis and Characterization of Inherent Application Resilience for Approximate Computing” DAC 2013
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Profiling
• Distinguish Dominant 

Kernels

Identify Error 
Resilience

• Inject errors at outputs of Dominant Kernels

• Validate with relaxed quality function

Characterize Error 
Resilience

• Statistical ax model (SAM)

• Technique specific ax model 
(TSAM)

• Actual quality function validation
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Error Resilience analysis methodology
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Iterative workload
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 Iterative workloads are potential candidates of approximate computing

such as K-means1, GLVQ1 and Model Predictive Control2

 SAM analysis provides resilience profile based on error injection in

every iteration

 What if the application is not error resilient for all iterations, but can

utilize approximate computing for some iterations?

 Adaptive statistical profile is required that also quantifies the number of

approximate iterations

5/29/2017Computer Architectures for Embedded Systems

1. Jiayuan Meng, et al. Best-effort parallel execution framework for recognition and mining applications. IPDPS 2009 

2. Antonio et al. More flops or more precision? Accuracy parameterizable linear equation solvers for model predictive control. FCCM’09
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Model for Adaptive-SAM analysis for iterative workloads
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Advantages:

 Adaptive-SAM can apply statistical errors adaptively by selecting

Number of Approximate Iterations (NAI)

 This provides statistical error resilience profile of an iterative workload

by quantifying NAI in addition to EM, EP and ER

 The resultant profile can help to better exploit,

 Accuracy-configurable architectures

 Heterogeneous (having exact and ax cores) architectures
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Radio Astronomy Calibration Application*

 Radio astronomy studies celestial objects at radio frequencies

 Calibration algorithm (StEFCal) is a strict quality of service iterative

method

 StEFCal estimates complex antenna gains gp for the P sensors in a

radio telescope

 The algorithm computes gp vector based on visibility matrix (R) and

the model covariance matrix (M)
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Z= M ⦿ g[i-1]

* Stefano Salvini et al. Fast gain calibration in radio astronomy using alternating direction implicit methods: Analysis and applications.

Astronomy & Astrophysics 571 (2014), A97
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 The dominant kernels are element-wise product and dot product

 Quality criterion:

 Quality Acceptance Range is Satisfied (QARS) when both of above

satisfy
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StEFCal Algorithm
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 Initialization: g= norm(R)/norm(M) % 124x124x4 matrices

 for iter = 1:niter  % Until solution converges    

for j=1:n  % Loop over antennas

for ch=1:nch  % Loop over data samples

z = conj(gold).*b(:,j,ch); % Element-wise Product 

at=a(:,j,ch);

end

w = z'*z; % Dot Product outer loop

t = z'*at; % Dot Product outer loop 

g(j) = t/w;

end

end

 Convergence: dg = norm(g-gold,'fro')/norm(g,'fro')
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SAM analysis: Convergence reached 

for min EP and max ER

Adaptive-SAM analysis for min EP and 

max ER
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Simulation Results
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 To quantify statistical error resilience – QARS is achieved for:
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Approximation 

Model

EM (%) EP ER (%) NAI (%)

SAM 0.002 2.10-4 100 100

Adaptive-SAM 12 0.2 100 23
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 Apply approximation models Validate using quality function

 In iterative workloads, convergence metric is generally utilized to indicate

that no further precision can be achieved by computing more iterations

 However, in the error resilience analysis process, it can not be

guaranteed that the acceptable solution is achieved when converged

 Perhaps, the solution is precise but not accurate-enough

 In such cases, additional quality metric is to be defined (accuracy based)
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Significance of quality function reconsideration;

radio astronomy calibration simulation results
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Conclusions

 Statistical error analysis helps to reduce design space for ax computing

 Adaptive-SAM has shown improvements in the error resilience analysis

of iterative workloads by

 Quantifying the number of resilient iterations in addition to statistical parameters

 Better exploiting accuracy-configurable and heterogeneous architectures

 Quality function should be reconsidered in the error resilience analysis

process

 Precision based (convergence) criterion might not be necessarily sufficient

 Additional quality (accuracy based) metric may be required
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Beamforming:

 Weighted summation of signals

from multiple antennas to

 Enhance wanted signals

 Suppress unwanted signals

 Elements

 multiple receivers

 digital beamformer: Weighted 

Addition

 digital beamstearing: 

determine weights, based on 

received signals
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High Power consumption

High resolution processing

Sophisticated algorithms

can be used
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High resolution processing

Sophisticated algorithms

can be used

Can we reduce this

and still use this
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Full feature digital beamforming

High Power consumption
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Low Power consumption

Low resolution processing
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Digitally assisted analog beamformig
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Std. of angle estimate

follows theory

up to ~0 dB SNR

Quantization noise

becomes correlated

between different

antennas beyond

~0 dB SNR
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Effects of 1 bit quantization on root music angle estimate
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erroneous angle

estimation due to

quantization errors

Highly reduced

Estimation error

Due to van Vleck

correction
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Effects of Van Vleck correction in case of 1 bit quantization
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Conclusion

 Digital beamsteering can be combined with analog beamforming

 Results in efficient (low cost, low power, low everhead) solutions

 Key is the use of coarse quantization

 Effects of coarse quantization can be mitigated by digital postprocessing

 Shown by angle estimation using Root Music
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