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Loop Distribution
L: for (int i = 1; i < 100; ++i) {

A[i] = f(i);
B[i] = A[i] + A[i - 1];

}

Can this loop be parallelized?

Requirement:
writes of iteration do not conflict with reads/writes of other iteration
Lr1s: W pAr1sq RpAr1sq RpAr0sq W pBr1sq
Lr2s: W pAr2sq RpAr2sq RpAr1sq W pBr2sq

Loop distribution

changes meaning!

L1: for (int i = 1; i < 100; ++i)
A[i] = f(i);

L2: for (int i = 1; i < 100; ++i)
B[i] = A[i] + A[i - 1];
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No conflicts between iterations of L2 ñ can be run in parallel
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Loop Distribution
L: for (int i = 1; i < 100; ++i) {

A[i] = f(i);
B[i] = A[i] + A[i + 1];

}

Can this loop be parallelized?

Requirement:
writes of iteration do not conflict with reads/writes of other iteration
Lr1s: W pAr1sq RpAr1sq RpAr2sq W pBr1sq
Lr2s: W pAr2sq RpAr2sq RpAr3sq W pBr2sq

Loop distribution changes meaning!

L1: for (int i = 1; i < 100; ++i)
A[i] = f(i);

L2: for (int i = 1; i < 100; ++i)
B[i] = A[i] + A[i + 1];

before distribution, Lr1s reads Ar2s value written before code fragment
after distribution, L2r1s reads Ar2s value written by L1r2s
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Loop Fusion
L1: for (int i = 0; i < 100; ++i)

A[i] = f(i);
L2: for (int i = 0; i < 100; ++i)

B[i] = g(A[i]);

Assume A does not fit in the cache
ñ elements get evicted and reloaded for use in L2

Loop fusion

(changes execution order ñ may not preserve meaning)

for (int i = 0; i < 100; ++i) {
A[i] = f(i);
B[i] = g(A[i]);

}
ñ elements of A get reused immediately
ñ better locality

If A not needed outside code fragment
ñ array can be replaced by a scalar
ñ memory compaction
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Loop Tiling [17, 35]

L1: for (int i = 0; i < 8; ++i)
L2: for (int j = 0; j < 8; ++j)

C[i][j] = A[i] * B[j];

Assume B does not fit in the cache
ñ elements get (re)loaded and evicted in every iteration of L1

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4
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ñ elements get (re)loaded and evicted in every iteration of L1

Loop tiling (changes execution order ñ may not preserve meaning)

for (int ti = 0; ti < 8; ti += 4)
for (int tj = 0; tj < 8; tj += 4)

for (int i = ti; i < ti + 4; ++i)
for (int j = tj; j < tj + 4; ++j)

C[i][j] = A[i] * B[j];

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4
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Motivation

Computer architectures are becoming more difficult to program
efficiently

§ multiple levels of parallelism
§ non-uniform memory architectures

ñ Advanced compiler optimizations are required
§ hierarchical partitioning and reordering of operations
(e.g., parallelization, loop fusion, . . . )

§ mapping to different processing units
§ memory transfers between processing units

ñ Global view of individual operations is required
ñ Polyhedral Model
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Polyhedral Compilation — Example
for (t = 0; t < T; t++)

for (i = 1; i < N - 1; i++)
A[(t+1)%2][i] = A[t%2][i-1] + A[t%2][i+1];

t

i

ñ

1 1 1

3 3 3

5 5 5

0 0 0

2 2 2

4 4 4

6 6 6

t

i

1 Extract polyhedral model
ñ each dynamic instance represented by pt, iq pair

2 Compute dependences

ñ iteration t “ 2, i “ 3 depends on iteration t “ 1, i “ 4

3 Compute schedule respecting dependences

ñ tiles with same number can be executed in parallel
ñ rows within tiles can be executed in parallel
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Polyhedral Model [27]

Key features
instance based
ñ statement instances
ñ array elements

compact representation based on polyhedra or similar objects
ñ Presburger sets and relations

defined by Presburger formula

ñ . . .
Main constituents of program representation

Instance Set
ñ the set of all statement instances

Access Relations
ñ the array elements accessed by a statement instance

Dependences
ñ the statement instances that depend on a statement instance

Schedule
ñ the relative execution order of statement instances

Context
ñ constraints on parameters
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Polyhedral Model — Example

for (i = 0; i < 3; ++i)
S: B[i] = f(A[i]);
for (i = 0; i < 3; ++i)
T: C[i] = g(B[2 - i]);

S[], T[]

S[0],S[1],S[2] T[0],T[1],T[2]

S[0]

T[0]

B[0]

S[1]

T[1]

B[1]

S[2]

T[2]

B[2]

for (c = 0; c < 3; ++c) {
B[c] = f(A[c]);
C[2 - c] = g(B[c]);

}

S[0]T[2],S[1]T[1],S[2]T[0]

S[], T[]

input code input execution order

model

new code new execution order
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t Sris u, t Tris u
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Polyhedral Model [27]

Key features
instance based
ñ statement instances
ñ array elements

compact representation based on polyhedra or similar objects
ñ Presburger sets and relations

defined by Presburger formula

ñ . . .
Main constituents of program representation

Instance Set
ñ the set of all statement instances

Access Relations
ñ the array elements accessed by a statement instance

Dependences
ñ the statement instances that depend on a statement instance

Schedule
ñ the relative execution order of statement instances

Context
ñ constraints on parameters



Polyhedral Compilation Polyhedral Model May 30, 2017 13 / 82

Polyhedral Model [27]

Key features
instance based
ñ statement instances
ñ array elements

compact representation based on polyhedra or similar objects
ñ Presburger sets and relations defined by Presburger formula
ñ . . .

Main constituents of program representation
Instance Set
ñ the set of all statement instances

Access Relations
ñ the array elements accessed by a statement instance

Dependences
ñ the statement instances that depend on a statement instance

Schedule
ñ the relative execution order of statement instances

Context
ñ constraints on parameters



Polyhedral Compilation Polyhedral Model May 30, 2017 13 / 82

Polyhedral Model [27]

Key features
instance based
ñ statement instances
ñ array elements

compact representation based on polyhedra or similar objects
ñ Presburger sets and relations defined by Presburger formula
ñ . . .

quasi-

affine expression

(no multiplication)

§ variable
§ constant integer number
§ constant symbol
§ addition (`), subtraction (´)

§ integer division by integer constant d (t¨{du)
Presburger formula

§ true
§ quasi-affine expression
§ less-than-or-equal relation (ď)
§ equality (“)
§ first order logic connectives: ^, _,  , D, @

Main constituents of program representation
Instance Set
ñ the set of all statement instances

Access Relations
ñ the array elements accessed by a statement instance

Dependences
ñ the statement instances that depend on a statement instance

Schedule
ñ the relative execution order of statement instances

Context
ñ constraints on parameters



Polyhedral Compilation Polyhedral Model May 30, 2017 13 / 82

Polyhedral Model [27]

Key features
instance based
ñ statement instances
ñ array elements

compact representation based on polyhedra or similar objects
ñ Presburger sets and relations defined by Presburger formula
ñ . . .
quasi-affine expression

(no multiplication)

§ variable
§ constant integer number
§ constant symbol
§ addition (`), subtraction (´)
§ integer division by integer constant d (t¨{du)

Presburger formula
§ true
§ quasi-affine expression
§ less-than-or-equal relation (ď)
§ equality (“)
§ first order logic connectives: ^, _,  , D, @

Main constituents of program representation
Instance Set
ñ the set of all statement instances

Access Relations
ñ the array elements accessed by a statement instance

Dependences
ñ the statement instances that depend on a statement instance

Schedule
ñ the relative execution order of statement instances

Context
ñ constraints on parameters



Polyhedral Compilation Polyhedral Model May 30, 2017 13 / 82

Polyhedral Model [27]

Key features
instance based
ñ statement instances
ñ array elements

compact representation based on polyhedra or similar objects
ñ Presburger sets and relations defined by Presburger formula
ñ . . .
quasi-affine expression (no multiplication)

§ variable
§ constant integer number
§ constant symbol
§ addition (`), subtraction (´)
§ integer division by integer constant d (t¨{du)

Presburger formula
§ true
§ quasi-affine expression
§ less-than-or-equal relation (ď)
§ equality (“)
§ first order logic connectives: ^, _,  , D, @

Main constituents of program representation
Instance Set
ñ the set of all statement instances

Access Relations
ñ the array elements accessed by a statement instance

Dependences
ñ the statement instances that depend on a statement instance

Schedule
ñ the relative execution order of statement instances

Context
ñ constraints on parameters



Polyhedral Compilation Polyhedral Model May 30, 2017 13 / 82

Polyhedral Model [27]

Key features
instance based
ñ statement instances
ñ array elements

compact representation based on polyhedra or similar objects
ñ Presburger sets and relations defined by Presburger formula
ñ . . .
quasi-affine expression (no multiplication)

§ variable
§ constant integer number
§ constant symbol
§ addition (`), subtraction (´)
§ integer division by integer constant d (t¨{du)

Presburger formula
§ true
§ quasi-affine expression
§ less-than-or-equal relation (ď)
§ equality (“)
§ first order logic connectives: ^, _,  , D, @

Main constituents of program representation
Instance Set
ñ the set of all statement instances

Access Relations
ñ the array elements accessed by a statement instance

Dependences
ñ the statement instances that depend on a statement instance

Schedule
ñ the relative execution order of statement instances

Context
ñ constraints on parameters



Polyhedral Compilation Polyhedral Model May 30, 2017 14 / 82

Parametric Example: Matrix Multiplication
for (int i = 0; i < M; i++)

for (int j = 0; j < N; j++) {
S1: C[i][j] = 0;

for (int k = 0; k < K; k++)
S2: C[i][j] = C[i][j] + A[i][k] * B[k][j];

}

Instance Set (set of statement instances)

t S1ri , js : 0 ď i ă M ^ 0 ď j ă N;

S2ri , j , ks : 0 ď i ă M ^ 0 ď j ă N ^ 0 ď k ă K u

Access Relations (accessed array elements; W : write, R : read)

W “ t S1ri , js Ñ Cri , js; S2ri , j , ks Ñ Cri , js u

R “ t S2ri , j , ks Ñ Cri , js; S2ri , j , ks Ñ Ari , ks; S2ri , j , ks Ñ Brk , js u
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Schedule Representation [30]

Schedule S keeps track of relative execution order of statement instances

ñ for each pair of statement instances i and j, schedule determines
§ i executed before j (i ăS j),
§ i executed after j (j ăS i), or
§ i and j may be executed simultaneously

Schedule trees form a combined hierarchical schedule representation
Main constructs:

§ affine schedule: instances are executed according to affine function

§ band: nested sequence of affine functions called its members;
combined multi-dimensional affine function is called
the partial schedule of the band

§ sequence: partitions instances through child filters executed in order

Order of instances determined by outermost node that separates them
Deriving schedule tree from AST

§ for loop ñ affine schedule corresponding to loop iterator
§ compound statement ñ sequence
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S1ri , js Ñ rjs; S2ri , j , ks Ñ rjs

sequence

S1ri , js

S1ri , js Ñ r0s

S2ri , j , ks

S2ri , j , ks Ñ rks

filters

affine functions
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Named Presburger Relation Schedules

Schedule tree with single (band) node

Flattening a schedule tree
two nested band nodes
ñ replace by single band node with concatenated partial schedule

sequence with as children either leaves or
trees consisting of a single band node
ñ treat leaves as zero-dimensional band nodes
ñ pad lower-dimensional bands (e.g., with zero)
ñ construct one-dimensional band assigning increasing values to children
ñ combine one-dimensional band with children
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S1ri , js Ñ rjs; S2ri , j , ks Ñ rjs

sequence

S1ri , js

S1ri , js Ñ r0s

S2ri , j , ks

S2ri , j , ks Ñ rks
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Loop Transformations and the Polyhedral Model

Loop transformations result in
different execution order of statement instances
ñ different schedule

Polyhedral model can be used to
evaluate a schedule and/or
construct a schedule

Polyhedral schedules can represent (combinations of)
loop distribution
loop fusion
loop tiling
. . .
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Schedule Properties

Validity
New schedule should preserve meaning

Parallelism
Can the iterations of a given loop be executed in parallel?
Locality
Statement instances scheduled closely to each other
Tilability
Can a given schedule band be tiled?
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Schedule Validity [3]

New schedule should preserve meaning

R(a) W(a) R(a) W(b) W(a) W(a)

Internal restrictions
No read of a value may be scheduled before the write of the value
No other write to same memory location may be scheduled in between

External restrictions (on non-temporaries)
No write may be scheduled before initial read from a memory location
No write may be scheduled after last write to a memory location

Sufficient conditions:
Every read of a memory location is scheduled after every preceding
write to the same memory location
Every write to a memory location is scheduled after every preceding
read or write to the same memory location
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Dependences

Sufficient conditions for validity of schedule S :
Every read of a memory location is scheduled after every preceding
write to the same memory location
Every write to a memory location is scheduled after every preceding
read or write to the same memory location

Dependence relation D: pairs of statement instances
accessing the same memory location
of which at least one is a write
with the first executed before the second in original code

Sufficient condition:
@iÑ j P D : i ăS j
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Dependence Analysis
Recall: sufficient conditions for validity of schedule S :

@iÑ j P D : i ăS j

Dependence relation D: pairs of statement instances
accessing the same memory location
of which at least one is a write
with the first executed before the second in original code

Computation:

D “
``

W´1 ˝ R
˘

Y
`

W´1 ˝W
˘

Y
`

R´1 ˝W
˘˘

X păS0q

W : write access relation
R : read access relation
S0: original schedule

instances data

order

W , RS0

ăS0
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Local Validity
Schedule validity:

@iÑ j P D : i ăS j

Consider subset of local dependences L
At outermost node: L “ D

Current node
band node with partial schedule f

@iÑ j P L : f piqďlex f pjq

Carried dependences: iÑ j P L : f piq ‰ f pjq
ñ no longer need to be considered in nested nodes
Remaining dependences: L1 “ t iÑ j P L : f piq “ f pjq u

sequence node with child position p and filters Fk

@iÑ j P L : ppiq ď ppjq

Carried dependences: iÑ j P L : ppiq ‰ ppjq
Remaining dependences in child c : L1 “ t iÑ j P L : i, j P Fc u
leaf node: L “ H
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Loop Distribution Validity
for (int i = 1; i < 100; ++i) {
S: A[i] = f(i);
T: B[i] = A[i] + A[i - 1];
}

t Sris Ñ ris; Tris Ñ ris u

t Sris u, t Tris u

Dependences:

t Sris Ñ Tris : 1 ď i ă 100; Sris Ñ Tri ` 1s : 1 ď i , i ` 1 ă 100 u

Loop distribution

for (int i = 1; i < 100; ++i)
A[i] = f(i);

for (int i = 1; i < 100; ++i)
B[i] = A[i] + A[i - 1];

t Sris u, t Tris u

t Sris Ñ ris ut Tris Ñ ris u

t Sris u, t Tris u
satisfied: t Sris Ñ Tris : 1 ď i ă 100 u
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Loop Distribution Validity
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Schedule Properties

Validity
New schedule should preserve meaning

Parallelism
Can the iterations of a given loop be executed in parallel?
Locality
Statement instances scheduled closely to each other
Tilability
Can a given schedule band be tiled?
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Parallel Loops and Parallel Band Members

Recall:
Iterations of a given loop can be executed in parallel if
writes of iteration do not conflict with reads/writes of other iteration

iff there is no dependence between distinct iterations
(for any given iteration of the outer loops)

A band member with affine function f is parallel if

@iÑ j P L : f piq “ f pjq

with L the local dependences
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Loop Distribution and Parallelism
for (int i = 1; i < 100; ++i) {
S: A[i] = f(i);
T: B[i] = A[i] + A[i - 1];
}

t Sris Ñ ris; Tris Ñ ris u

t Sris u, t Tris u

Dependences:

t Sris Ñ Tris : 1 ď i ă 100; Sris Ñ Tri ` 1s : 1 ď i , i ` 1 ă 100 u

Loop distribution

for (int i = 1; i < 100; ++i)
A[i] = f(i);

for (int i = 1; i < 100; ++i)
B[i] = A[i] + A[i - 1];

t Sris u, t Tris u

t Sris Ñ ris ut Tris Ñ ris u

t Sris Ñ ris u
local: H
conflict: H
ñ parallel

t Tris Ñ ris u
local: H
conflict: H
ñ parallel
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Parallelism Example
for (int i = 1; i < 6; ++i)

for (int j = 0; j < 6; ++j)
S: A[i][j] = f(A[i - 1][[j + 1]);

Dependences:

t Sri , js Ñ Sri ` 1, j ´ 1s : 1 ď i , i ` 1 ă 6^ 0 ď j , j ´ 1 ă 6 u

i

j

1

2

12 original schedule:
Sri , js Ñ ri , js
new schedule:
Sri , js Ñ ri ` j , is
pi ` jq-direction is outer parallel

Decomposition: loop skewing + loop interchange

ri , js ri , i ` js ri ` j , is
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Schedule Properties

Validity
New schedule should preserve meaning
Parallelism
Can the iterations of a given loop be executed in parallel?

Locality
Statement instances scheduled closely to each other
Tilability
Can a given schedule band be tiled?
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Locality
Statement instances i and j that reuse memory
ñ scheduled closely to each other: f pjq ´ f piq small

Types of locality:
temporal locality
ñ instances that access the same memory element
spatial locality
ñ instances that access adjacent memory elements

Sometimes further distinction made:
self locality
ñ pair of instances from same statement
group locality
ñ any pair of statement instances

Temporal locality often restricted to
pairs of writes and reads that refer to the same value
ñ dataflow
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Array Dataflow Analysis [14]

Given a read from an array element, what was the last write to
the same array element before the read?

for (i = 0; i < N; ++i)
for (j = 0; j < N - i; ++j)

F: a[i+j] = f(a[i+j]);
for (i = 0; i < N; ++i)
G: g(a[i]);

F

G

a

A1

A2

Access relations:
A1 “ t Fri , js Ñ ari ` js : 0 ď i ă N ^ 0 ď j ă N ´ i u
A2 “ t Gris Ñ aris : 0 ď i ă N u

Map to all writes: R2 “ A1
´1 ˝A2 “ t Gris Ñ Fri 1, i ´ i 1s : 0 ď i 1 ď i ă N u

Map to all preceding writes:
R 1 “ R2 X păSq

´1 “ t Gris Ñ Fri 1, i ´ i 1s : 0 ď i 1 ď i ă N u
Last preceding write: R “ maxăS

R 1 “ t Gris Ñ Fri , 0s : 0 ď i ă N u
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Schedule Properties

Validity
New schedule should preserve meaning
Parallelism
Can the iterations of a given loop be executed in parallel?
Locality
Statement instances scheduled closely to each other

Tilability
Can a given schedule band be tiled?
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Tiling a Band
Input:

band of affine schedule functions

f1, f2, . . . , fn

tile sizes
T1,T2, . . . ,Tn

Steps (conceptually)
1 divide each direction into chunks of size Ti (strip-mining)

tf1{T1u , f1, tf2{T2u , f2, . . . , tfn{Tnu , fn

does not change execution order ñ always valid
2 combine the chunking (interchange)

tf1{T1u , tf2{T2u , . . . , tfn{Tnu , f1, f2, . . . , fn

sufficient condition for interchange:
all members are valid for local dependences at (top of) band
ñ permutable band



Polyhedral Compilation Schedules May 30, 2017 35 / 82

Tiling a Band
Input:

band of affine schedule functions

f1, f2, . . . , fn

tile sizes
T1,T2, . . . ,Tn

Steps (conceptually)
1 divide each direction into chunks of size Ti (strip-mining)

tf1{T1u , f1, tf2{T2u , f2, . . . , tfn{Tnu , fn

does not change execution order ñ always valid
2 combine the chunking (interchange)

tf1{T1u , tf2{T2u , . . . , tfn{Tnu , f1, f2, . . . , fn

sufficient condition for interchange:
all members are valid for local dependences at (top of) band
ñ permutable band



Polyhedral Compilation Schedules May 30, 2017 35 / 82

Tiling a Band
Input:

band of affine schedule functions

f1, f2, . . . , fn

tile sizes
T1,T2, . . . ,Tn

Steps (conceptually)
1 divide each direction into chunks of size Ti (strip-mining)

tf1{T1u , f1, tf2{T2u , f2, . . . , tfn{Tnu , fn

does not change execution order ñ always valid

2 combine the chunking (interchange)

tf1{T1u , tf2{T2u , . . . , tfn{Tnu , f1, f2, . . . , fn

sufficient condition for interchange:
all members are valid for local dependences at (top of) band
ñ permutable band



Polyhedral Compilation Schedules May 30, 2017 35 / 82

Tiling a Band
Input:

band of affine schedule functions

f1, f2, . . . , fn

tile sizes
T1,T2, . . . ,Tn

Steps (conceptually)
1 divide each direction into chunks of size Ti (strip-mining)

tf1{T1u , f1, tf2{T2u , f2, . . . , tfn{Tnu , fn

does not change execution order ñ always valid
2 combine the chunking (interchange)

tf1{T1u , tf2{T2u , . . . , tfn{Tnu , f1, f2, . . . , fn

sufficient condition for interchange:
all members are valid for local dependences at (top of) band
ñ permutable band



Polyhedral Compilation Schedules May 30, 2017 35 / 82

Tiling a Band
Input:

band of affine schedule functions

f1, f2, . . . , fn

tile sizes
T1,T2, . . . ,Tn

Steps (conceptually)
1 divide each direction into chunks of size Ti (strip-mining)

tf1{T1u , f1, tf2{T2u , f2, . . . , tfn{Tnu , fn

does not change execution order ñ always valid
2 combine the chunking (interchange)

tf1{T1u , tf2{T2u , . . . , tfn{Tnu , f1, f2, . . . , fn

sufficient condition for interchange:
all members are valid for local dependences at (top of) band
ñ permutable band



Polyhedral Compilation Schedules May 30, 2017 36 / 82

Loop Tiling Example
for (int i = 0; i < 8; ++i)

for (int j = 0; j < 8; ++j)
S: C[i][j] = A[i] * B[j];

1 strip-mine
2 interchange

Sri , js Ñ i
Sri , js Ñ j
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Operations on Polyhedral Model

Model Extraction
§ Input: AST
§ Output: instance set, access relations, original schedule

Dependence analysis
§ Input: instance set, access relations, original schedule
§ Output: dependence relations

Scheduling
§ Input: instance set, dependence relations
§ Output: schedule

AST generation (polyhedral scanning, code generation)
§ Input: instance set, schedule
§ Output: AST

Data layout transformations
§ Input: access relations, dependence relations
§ Output: transformed access relations



Polyhedral Compilation Operations May 30, 2017 38 / 82

Polyhedral Model Requirements

Requirements for basic polyhedral model: “regular” code
Static control
ñ control does not depend on input data
Affine
ñ all relevant expressions are (quasi-)affine
No Aliasing
ñ essentially no pointer manipulations

Note:
polyhedral model may be approximation of input that does not strictly
satisfy all requirements
many extensions are available
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Aliasing [1]

Some possible ways of handling aliasing:

use an input language that does not permit aliasing
pretend the problem does not exist
require user to ensure absence of aliasing
ñ e.g., use restrict keyword
handle as may-write
ñ may lead to too many dependences
check aliasing at run-time
ñ use original code in case of aliasing
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Polyhedral Scheduling [10, 15]

Polyhedral model can be used to
evaluate a schedule and/or
construct a schedule

Some popular polyhedral schedulers:
Feautrier

§ maximal inner parallelism
ñ carry as many dependences as possible at outer bands

Pluto
§ tilable bands
§ locality: f pjq ´ f piq small
ñ parallelism as extreme case: f pjq ´ f piq “ 0

Many other scheduling algorithms have been proposed
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Data layout transformations [12, 13]

Memory compaction
Reuse memory locations to store different data

ñ apply non-injective mapping to array elements
ñ reduce memory requirements
ñ extreme case: replace array by scalar

for (int i = 0; i < 100; ++i) {
A[i] = f(i);
B[i] = g(A[i]);

}

Expansion
Use different memory locations to store different data

ñ map different accesses to memory element to distinct locations
ñ increase scheduling freedom (e.g., more parallelism)
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False Dependences
for (int i = 0; i < n; ++i) {
S: t = f1(A[i]);
T: B[i] = f2(t);
}
Dependences

read-after-write (“true”): t Sris Ñ Tri 1s : i 1 ě i u

write-after-read (“anti”): t Tris Ñ Sri 1s : i 1 ą i u

write-after-write (“output”): t Sris Ñ Sri 1s : i 1 ą i u

“false”

False dependences not from dataflow, but from reuse of memory location t

Possible solution: expansion/privatization
for (int i = 0; i < n; ++i) {
S: t[i] = f1(A[i]);
T: B[i] = f2(t[i]);
}

dataflow (subset of “true” dependences): t Sris Ñ Tris u
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Expansion
Assume:

instance sets and access relations are static and exact
ñ each read has exactly one corresponding write
single read and write per statement
ñ expanded array indexed by statement instance of write

for (int i = 0; i < n; ++i) {
S: t = f1(A[i]);
T: B[i] = f2(t);
}

Dataflow: t Sris Ñ Tris u

for (int i = 0; i < n; ++i) {
S: S[i] = f1(A[i]);
T: B[i] = f2(S[i]);
}

ñ only remaining dependences are dataflow induced
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Maximal Static Expansion [5]

for (int i = 0; i < n; ++i) {
S1: t = f1(i);
S2: A[i] = t;
S3: t = f2(i);
S4: if (f3(i))
S5: t = f4(i);
S6: B[i] = t;
}

t1[i] = f1(i);
A[i] = t1[i];
t2[i] = f2(i);
if (f3(i))

t2[i] = f4(i);
B[i] = t2[i];

Dataflow cannot be determined independently of run-time information

ñ approximate dataflow
t S1ris Ñ S2ris; S3ris Ñ S6ris; S5ris Ñ S6ris u

ñ a read may be associated to more than one write
ñ corresponding equivalence classes should not be expanded apart
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Approximate Dataflow Analysis

How to compute dataflow in presence of data dependent control?

Two approaches
Direct computation

§ distinguish between may- and must-writes

Derived from exact run-time dependent dataflow
§ compute exact dataflow in terms of run-time information
§ exploit properties of run-time information
§ project out run-time information
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May Writes
Keep track of whether write is possible or definite

Must-writes
Array elements are definitely written by statement instance
May-writes
Array elements are possibly written by statement instance

§ statement instance not necessarily executed
for (i = 0; i < n; ++i)

if (A[i] > 0)
S: B[i] = A[i];
May-write: t Sris Ñ Bris u

§ array element not necessarily accessed
int A[N];
/* ... */
T: A[B[0]] = 5;
May-write: t Trs Ñ Aras : 0 ď a ă N u

Must-write access relation is subset of may-write access relation
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Approximate Dataflow — Direct Computation

Read-after-write dependences
§ write and read access same memory location
§ write executed before the read

ñ Approximate dataflow analysis with no must-writes
Dataflow dependences

§ write and read access same memory location
§ write executed before the read
§ no intermediate write to same memory location
ñ intermediate write kills dependence

Approximate dataflow dependences
§ may-write and read access same memory location
§ may-write executed before the read
§ no intermediate must-write to same memory location
ñ intermediate must-write kills dependence
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Approximate Dataflow Analysis

How to compute dataflow in presence of data dependent control?

Two approaches
Direct computation

§ distinguish between may- and must-writes
Derived from exact run-time dependent dataflow

§ compute exact dataflow in terms of run-time information
§ exploit properties of run-time information
§ project out run-time information
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Run-time Dependent Dataflow Analysis [6, 32]

Approaches
“fuzzy array dataflow analysis”
“on-demand-parametric array dataflow analysis”

for (int i = 0; i < n; ++i) {
S1: t = f1(i);
S2: A[i] = t;
S3: t = f2(i);
S4: if (f3(i))
S5: t = f4(i);
S6: B[i] = t;
}

Run-time dependent dataflow
t S1ris Ñ S2ris; S3ris Ñ S6ris : βS5S6 “ 0; S5ris Ñ S6ris : βS5S6 “ 1 u
βPC : any potential source instance P is executed for sink C

λP
C : last potential source instance P executed for sink C

Approximate dataflow (project out β and λ)
t S1ris Ñ S2ris; S3ris Ñ S6ris; S5ris Ñ S6ris u
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Representing Dynamic Conditions
N1: n = f();

for (int k = 0; k < 100; ++k) {
M: m = g();

for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j)

A: a[j][i] = g();
N2: n = f();

}
What is instance set (restricted to A statement)?

t Ark, i , js : 0 ď k ă 100^ 0 ď i ă m^ 0 ď j ă n u?
ñ no, m and n cannot be treated as symbolic constants

(they are modified inside k-loop)

tArk, i , js : 0 ď k ă 100̂ 0 ď i ă valueOf_mpk q̂ 0 ď j ă valueOf_npkqu?
ñ requires uninterpreted functions (of arity ą 0)
Alternative: use overapproximation of instance set and keep track of

which elements are executed

Instance set: t Ark , i , js : 0 ď k ă 100^ 0 ď i ^ 0 ď j u
Filter:

§ Filter access relations: reader Ñ [writer Ñ array element]
‹ F A

1 “
 

Ark, i , js Ñ rMrks Ñ mrss
(

‹ F A
2 “

 

Ar0, i , js Ñ rN1rs Ñ nrss; Ark, i , js Ñ rN2rk ´ 1s Ñ nrsq : k ě 1
(

§ Filter value relation:
V A “ t Ark, i , js Ñ rm, ns : 0 ď k ď 99^ 0 ď i ă m ^ 0 ď j ă n u

Statement instance is executed iff values written by corresponding write
accesses (through filter access relations) satisfy filter value relation
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which elements are executed

Instance set: t Ark , i , js : 0 ď k ă 100^ 0 ď i ^ 0 ď j u
Filter:

§ Filter access relations: reader Ñ [writer Ñ array element]
‹ F A

1 “
 

Ark, i , js Ñ rMrks Ñ mrss
(

‹ F A
2 “

 

Ar0, i , js Ñ rN1rs Ñ nrss; Ark, i , js Ñ rN2rk ´ 1s Ñ nrsq : k ě 1
(

§ Filter value relation:
V A “ t Ark, i , js Ñ rm, ns : 0 ď k ď 99^ 0 ď i ă m ^ 0 ď j ă n u

Statement instance is executed iff values written by corresponding write
accesses (through filter access relations) satisfy filter value relation
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Parametric Array Dataflow Analysis
while (1) {
N: n = f();

a = g();
if (n < 100)

H: a = h();
if (n > 200)

T: t(a);
}

I “ t Hris : i ě 0; Tris : i ě 0 u
F H “ t Hris Ñ rNris Ñ nrss u

V H “ t Hris Ñ rns : i ě 0^ n ă 100 u
F T “ t Tris Ñ rNris Ñ nrss u

V T “ t Tris Ñ rns : i ě 0^ n ą 200 u

Is there any dataflow between potential source and sink at inner level?

M “ t Tris Ñ Hris u
F H ˝M Ď F T

ñ filter elements accessed by any potential source instance associated to
sink instance forms subset of filter elements accessed by sink instance

ñ constraints on filter values at sink also apply at corresponding potential
source: V T ˝M´1 “ t Hris Ñ rns : i ě 0^ n ą 200 u

`

V T ˝M´1
˘

X V H “ H
ñ there can be no dataflow at inner level

potential source

sink
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Polyhedral Process Networks [24]

Main purpose: extract task level parallelism from dataflow graph

statement Ñ process
flow dependence Ñ communication channel

ñ requires dataflow analysis
Processes are mapped to parallel hardware (e.g., FPGA)

Example:

for (int i = 0; i < n; ++i) {
S: t = f1(A[i]);
T: B[i] = f2(t);
}

for (int i = 0; i < n; ++i)
write(fifo , f1(A[i]));

for (int i = 0; i < n; ++i)
B[i] = f2(read(fifo ));
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Process Networks with Dynamic Control

for (int i = 0; i < n; ++i) {
S1: t = f1(i);
S2: A[i] = t;
S3: t = f2(i);
S4: if (f3(i))
S5: t = f4(i);
S6: B[i] = t;
}

Run-time dependent dataflow:
t S1ris Ñ S2ris; S3ris Ñ S6ris : βS5

S6 “ 0;

S5ris Ñ S6ris : βS5
S6 “ 1; S4ris Ñ S5ris u

f1

out_1ND_0

in_0ND_1

ED_1

f2

out_1ND_2

in_2ND_5

ED_2

f3

out_1ND_3

in_0ND_4

ED_0

f4

out_2ND_4dc0_ND_4_b

in_0ND_5

ED_3dc0_ND_5_b

CED_4

in_0ND_5
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Polyhedral Software [4, 7, 8, 9, 10, 11, 16, 18, 19, 20, 21, 22, 23, 29, 31, 34]

http://polyhedral.info/software.html

Core set manipulation libraries
§ integer sets: isl, omega(+), . . .
§ rational sets: PolyLib, PPL, . . .

Model extraction
§ clan, pet, . . .

Dependence analysis
§ petit, candl, isl, FADA, . . .

Scheduler libraries
§ LetSee, isl, . . .

AST generation
§ omega(+), CLooG, isl, . . .

Source-to-source polyhedral compilers
§ Pluto, PoCC, PPCG, . . .

Compilers using polyhedral compilation
§ gcc/graphite, LLVM/Polly, . . .

http://polyhedral.info/software.html
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Outline
1 Loop Transformations

Loop Distribution
Loop Fusion
Loop Tiling

2 Polyhedral Compilation
Introduction
Polyhedral Model
Schedules
Operations
Software

3 PPCG
Overview
Model Extraction
Dependence Analysis
Scheduling
Device Mapping
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CARP Project (2011–2015)
Design tools and techniques to aid
Correct and Efficient Accelerator Programming

GPUs CPUs FPGAs Other accelerators

OpenCL

pencil
Platform-Neutral

Compute Intermediate Language

Domain Specific Languages

Optimizing, auto-parallelizing
pencil Ñ OpenCL compiler

DSL Ñ pencil compilers

Direct OpenCL
programming

Direct pencil
programming
(hand written
pencil code)
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PPCG Overview [31]

pen

c

il

PPCG OpenCL

CUDA

OpenMP

PPCG:
detect/expose parallelism
map parts of the code to an accelerator
copy data to/from device
introduce local copies of data

pencil:
C99 with restrictions and some extra builtins and pragmas pencil
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PPCG Overview [31]

pencil PPCG OpenCL

CUDA

OpenMP

PPCG:
detect/expose parallelism
map parts of the code to an accelerator
copy data to/from device
introduce local copies of data

pencil:
C99 with restrictions and some extra builtins and pragmas pencil
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PPCG Internal Structure [31]

C extraction accesses
schedule

instances

context

dependence analysis dependences

dead code
elimination

instancesschedule constraintsschedulingschedule

mapping to device schedule AST generation AST

OpenCL CUDA

Note: as currently implemented (version 0.07), not necessarily how it should be implemented
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Connection with other Libraries and Tools

LLVM imath GMP

clang isl NTL PolyLib

Polly pet barvinok

PPCG isa iscc

pencilcc

Licenses:
BSD/MIT
LGPL
GPL

isl: manipulates parametric affine sets and relations
pet: extracts polyhedral model from clang AST
PPCG: Polyhedral Parallel Code Generator
pencilcc: pencil compiler



PPCG Model Extraction May 30, 2017 62 / 82

Instance Set
Region that needs to be extracted may be

marked by

#pragma scop
#pragma endscop

autodetected (--pet-autodetect)

Internal structured dynamic control is encapsulated

for (int x = 0; x < n; ++x) {
A: s = f();
B: while (P(x, s))

s = g(s);
C: h(s);
}

Instance set: t Arxs : 0 ď x ă n; Brxs : 0 ď x ă n; Crxs : 0 ď x ă n u

Note: currently, internal order of accesses is lost
ñ possible loss of accuracy in dependence analysis
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Inlining

Enabled through C99 inline keyword on function definition

inline void set_diagonal(int n,
float A[const restrict static n][n], float v)

{
for (int i = 0; i < n; ++i)

U: A[i][i] = v;
}

void f(int n, float A[const restrict static n][n])
{
#pragma scop
S: set_diagonal(n, A, 0.f);

for (int i = 0; i < n; ++i)
for (int j = i + 1; j < n; ++j)

T: A[i][j] += A[i][j - 1] + 1;
#pragma endscop
}

Instance set: t Uris : 0 ď i ă n; Tri , js : 0 ď i ă j ă n u
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Access Relations and Function Calls

void set_diagonal(int n,
float A[const restrict static n][n], float v)

{
for (int i = 0; i < n; ++i)

U: A[i][i] = v;
}

void f(int n, float A[const restrict static n][n])
{
#pragma scop
S: set_diagonal(n, A, 0.f);

for (int i = 0; i < n; ++i)
for (int j = i + 1; j < n; ++j)

T: A[i][j] += A[i][j - 1] + 1;
#pragma endscop
}

May-write: t Srs Ñ Ari , is : 0 ď i ă n; Tri , js Ñ Ari , js : 0 ď i ă j ă n u
Must-write: t Srs Ñ Ari , is : 0 ď i ă n; Tri , js Ñ Ari , js : 0 ď i ă j ă n u
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Access Relations and Structures [26]

struct s {
int a;
int b;

};

int f()
{

struct s a, b[10];

S: a.b = 57;
T: a.a = 42;

for (int i = 0; i < 10; ++i)
U: b[i] = a;
}

Must-write:
t Srs Ñ a_brars Ñ brss; Trs Ñ a_arars Ñ arss;

Uris Ñ b_arbris Ñ arss; Uris Ñ b_brbris Ñ brss u
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Summary Functions [2, 26]

Analysis of accesses in called function may be inaccurate or even infeasible
missing body (library function without source)
unstructured control
aliasing
pattern inside dynamic control is ignored
additional information not explicitly expressed in code

ñ explicitly specify accesses in summary function pencil
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Summary Function Example
int f(int i); int maybe (); struct s { int a; };
void set_odd_summary(int n, struct s A[static n]) {

for (int i = 1; i < n; i += 2)
if (maybe ())

A[i].a = 0;
}
__attribute__ (( pencil_access(set_odd_summary )))
void set_odd(int n, struct s A[static n])
{

for (int i = 0; i < n; ++i)
A[2 * f(i) + 1].a = i;

}
void foo(int n, struct s B[static 2 * n])
{
#pragma scop
S: set_odd (2 * n, B);
#pragma endscop
}

May-write: t Srs Ñ B_arBris Ñ arss : 0 ď i ă 2n u
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int f(int i); int maybe (); struct s { int a; };
void set_odd_summary(int n, struct s A[static n]) {

for (int i = 1; i < n; i += 2)
if (maybe ())

A[i].a = 0;
}
__attribute__ (( pencil_access(set_odd_summary )))
void set_odd(int n, struct s A[static n])
{

for (int i = 0; i < n; ++i)
A[2 * f(i) + 1].a = i;

}
void foo(int n, struct s B[static 2 * n])
{
#pragma scop
S: set_odd (2 * n, B);
#pragma endscop
}

May-write: t Srs Ñ B_arBris Ñ arss : 0 ď i ă 2n ^ i mod 2 “ 1 u
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Context

The context collects constraints on the symbolic constants
derived by pet

§ exclude values that result in undefined behavior
‹ negative array sizes
‹ out-of-bounds accesses
‹ signed integer overflow

§ __builtin_assume or __pencil_assume pencil

ñ any constraint can be specified
ñ only quasi-affine constraints on symbolic constants are exploited

specified on PPCG command line
§ --ctx
§ --assume-non-negative-parameters

Main purpose: simplify generated AST
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Dependence analysis in isl [27, 28]

isl contains generic dependence analysis engine
ñ determines dependence relations between “sources” and “sinks”

Input:
Sink K : I Ñ D

May-source Y : I Ñ D

Kill L : I Ñ D

Schedule S on I ñ defines “before” and “intermediate”

Output:
May-dependence relation: triples pi, k, aq

§ i has a may-source to a
§ k has a sink to a
§ i is scheduled before k
§ there is no intermediate kill to a

May-no-source: sinks kÑ a with no kill to a before k
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Dependence analysis in PPCG [28]

isl:
May-dependence relation: triples pi, k, aq

§ i has a may-source to a
§ k has a sink to a
§ i is scheduled before k
§ there is no intermediate kill to a

May-no-source: sinks kÑ a with no kill to a before k

PPCG (without live-range reordering):
flow dependences (without a) and live-in (may-no-source)

§ sink: may-read
§ may-source: may-write
§ kill: must-write

or pure kill

false dependences (without a)
§ sink: may-write
§ may-source: may-read or may-write
§ kill: must-write

killed writes (without k) (ñ removed from may-write to get live-out)
§ sink: must-write

or pure kill

§ may-source: may-write
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Live-Range Reordering [26, 28]

a = f1();
f2(a);
a = f3();
f4(a);

: flow
: false

Reordering rejected due to false dependences

allows such live-ranges to be reordered
using somewhat different classification of dependences
computed using different calls to the same dependence analysis engine
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Pure Kills [26]

Basic idea:
Must-writes kill dependences to earlier writes
Pure kills can also be useful
Used only as kills during dependence analysis, not as source

Kills can be inserted
automatically by pet

§ Variable declared within SCoP
ñ kill at declaration
ñ kill at end of enclosing block (if within SCoP)

§ Variable declared in scope that contains SCoP, only used inside
ñ kill at end of SCoP

manually by the user
§ __pencil_kill pencil
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Dependence analysis in PPCG [28]

isl:
May-dependence relation: triples pi, k, aq

§ i has a may-source to a
§ k has a sink to a
§ i is scheduled before k
§ there is no intermediate kill to a

May-no-source: sinks kÑ a with no kill to a before k
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May-dependence relation: triples pi, k, aq

§ i has a may-source to a
§ k has a sink to a
§ i is scheduled before k
§ there is no intermediate kill to a

May-no-source: sinks kÑ a with no kill to a before k

PPCG (without live-range reordering):
flow dependences (without a) and live-in (may-no-source)

§ sink: may-read
§ may-source: may-write
§ kill: must-write or pure kill

false dependences (without a)
§ sink: may-write
§ may-source: may-read or may-write
§ kill: must-write

killed writes (without k) (ñ removed from may-write to get live-out)
§ sink: must-write or pure kill
§ may-source: may-write
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Kill Example
void f(int n, int A[restrict static n],

int B[restrict static n])
{

int t;
#pragma scop

for (int i = 0; i < n; ++i) {
t = A[i];
B[i] = t;

}
__pencil_kill(t);

#pragma endscop
}

Without kill of t, compiler needs to assume t may be used after loop
ñ last write needs to remain last
ñ limited scheduling freedom (even with live-range reordering)

Note: kill inserted automatically by pet (if t not used after SCoP)
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Absence of Loop Carried Dependences [26]

void foo(int n, int A[restrict static n][n],
int B[restrict static n][n])

{
for (int i = 0; i < n; ++i)

#pragma pencil independent
for (int j = 0; j < n; ++j)

B[i][A[i][j]] = i + j;
}

Assume each row of A has distinct elements
ñ no loop-carried dependences, but PPCG cannot tell
ñ add #pragma pencil independent pencil

Note: not handled very efficiently in current version of PPCG
ñ only add when needed
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Optimization Criteria for PPCG

Two levels of parallelism
ñ blocks and threads (work groups and work items)
ñ parallelism

In PPCG, second level obtained through tiling
ñ tilability

Reduced working set for some arrays
ñ mapping to shared memory or registers

Obtained through tiling
ñ tilability

Reduced data movement
ñ locality

Simple schedules
ñ schedule used in several subsequent steps, including AST generation
ñ simplicity
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Scheduling Constraints [28]

Validity aÑ b
ñ statement instance b needs to be executed after a
ñ f pbq ě f paq

Proximity aÑ b
ñ statement instance b preferably executed close to a
ñ f pbq ´ f paq as small as possible

Coincidence aÑ b
ñ statement instance b preferably executed together with a
ñ f pbq “ f paq
ñ band member only considered “coincident” if it coschedules all pairs

Conditional validity (live-range reordering)
§ condition bÑ c (ø flow dependences)
§ conditioned validity aÑ b, cÑ d (ø order dependences)

Schedule constraints only relevant if coscheduled by outer nodes
Other schedule constraints are said to be carried by some outer node
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Dependences and Schedule Constraints [28]

Traditional dependences
flow dependences
ñ validity constraints
ñ proximity constraints
ñ coincidence constraints (when parallelism is important)

false dependences
ñ validity constraints
ñ coincidence constraints (when parallelism is important)
ñ proximity constraints (optional for memory reuse)

pairs of reads with shared write (“input dependences”)
ñ proximity constraints (optional)

Live-range reordering
somewhat different classification of dependences
slightly different mapping to schedule constraints

Current PPCG
adds false dependences to proximity constraints for historical reasons
does not consider input dependences
uses live-range reordering by default
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Forced Outer Coincidence Scheduler
Recall:

Feautrier
§ maximal inner parallelism
ñ carry as many dependences as possible at outer bands

Pluto
§ tilable bands
§ locality: f pjq ´ f piq small
ñ parallelism as extreme case: f pjq ´ f piq “ 0

PPCG uses variant of Pluto-algorithm with Feautrier fallback
ñ force outer coincidence in each band
ñ locally fall back to Feautrier if infeasible (single step)

Members in bands constructed by Pluto-algorithm are permutable
ñ if outer member cannot be coincident, then no member can be

Each step in Feautrier algorithm carries as many dependences as possible
ñ subsequent application of Pluto more likely to find coincident member



PPCG Scheduling May 30, 2017 79 / 82

Forced Outer Coincidence Scheduler
Recall:

Feautrier
§ maximal inner parallelism
ñ carry as many dependences as possible at outer bands

Pluto
§ tilable bands
§ locality: f pjq ´ f piq small
ñ parallelism as extreme case: f pjq ´ f piq “ 0

PPCG uses variant of Pluto-algorithm with Feautrier fallback
ñ force outer coincidence in each band
ñ locally fall back to Feautrier if infeasible (single step)

Members in bands constructed by Pluto-algorithm are permutable
ñ if outer member cannot be coincident, then no member can be

Each step in Feautrier algorithm carries as many dependences as possible
ñ subsequent application of Pluto more likely to find coincident member



PPCG Device Mapping May 30, 2017 80 / 82

Device Mapping [31]

Input: schedule tree

If schedule tree contains no coincident band member
ñ generate pure CPU code

Otherwise:
select subtree for mapping to the device
is entire schedule tree, except

§ coincidence-free children of outer set node
§ coincidence-free initial children of outer sequence node

within selected subtree, generate kernels for
§ outermost bands with coincident members
§ maximal coincidence-free subtrees
ñ insert zero-dimensional band node

add data copying to/from device around selected subtree
add device initialization and clean-up around entire schedule tree
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Data Copying to/from Device
Copy-out:

take may-writes
remove writes only needed for dataflow inside selected subtree
approximate to entire array

May-persist:
elements that may need to be preserved by selected subtree
consists of

§ elements that may need to be preserved by entire SCoP
ñ elements not definitely written and not definitely killed

§ elements in potential dataflow across selected subtree

May-not-written: pcopy-outXran may-persistq zmust-write

Copy-in: live-inYmay-not-written

Note: if array elements are structures, then entire structures are copied
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Data Copying Example

__pencil_kill(A);
for (int i = 0; i < n; i++)

if (B[i] > 0)
A[i] = B[i];

A may be written
ñ A in copy-out
A may also not be written (completely)

, but no data can flow across kill

ñ parts of A may (be expected to) survive
ñ A also needs to be in copy-in
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