
May 30, 2017 1 / 82

High-Level Loop Transformations and
Polyhedral Compilation

Sven Verdoolaege

Polly Labs and KU Leuven (affiliated researcher)

May 30, 2017

Loop Transformations May 30, 2017 3 / 82

Outline
1 Loop Transformations

Loop Distribution
Loop Fusion
Loop Tiling

2 Polyhedral Compilation
Introduction
Polyhedral Model
Schedules
Operations
Software

3 PPCG
Overview
Model Extraction
Dependence Analysis
Scheduling
Device Mapping

Loop Transformations Loop Distribution May 30, 2017 4 / 82

Loop Distribution
L: for (int i = 1; i < 100; ++i) {

A[i] = f(i);
B[i] = A[i] + A[i - 1];

}

Can this loop be parallelized?

Requirement:
writes of iteration do not conflict with reads/writes of other iteration
Lr1s: W pAr1sq RpAr1sq RpAr0sq W pBr1sq
Lr2s: W pAr2sq RpAr2sq RpAr1sq W pBr2sq

Loop distribution

changes meaning!

L1: for (int i = 1; i < 100; ++i)
A[i] = f(i);

L2: for (int i = 1; i < 100; ++i)
B[i] = A[i] + A[i - 1];

Loop Transformations Loop Distribution May 30, 2017 4 / 82

Loop Distribution
L: for (int i = 1; i < 100; ++i) {

A[i] = f(i);
B[i] = A[i] + A[i - 1];

}

Can this loop be parallelized?

Requirement:
writes of iteration do not conflict with reads/writes of other iteration

Lr1s: W pAr1sq RpAr1sq RpAr0sq W pBr1sq
Lr2s: W pAr2sq RpAr2sq RpAr1sq W pBr2sq

Loop distribution

changes meaning!

L1: for (int i = 1; i < 100; ++i)
A[i] = f(i);

L2: for (int i = 1; i < 100; ++i)
B[i] = A[i] + A[i - 1];

Loop Transformations Loop Distribution May 30, 2017 4 / 82

Loop Distribution
L: for (int i = 1; i < 100; ++i) {

A[i] = f(i);
B[i] = A[i] + A[i - 1];

}

Can this loop be parallelized?

Requirement:
writes of iteration do not conflict with reads/writes of other iteration
Lr1s: W pAr1sq RpAr1sq RpAr0sq W pBr1sq
Lr2s: W pAr2sq RpAr2sq RpAr1sq W pBr2sq

Loop distribution

changes meaning!

L1: for (int i = 1; i < 100; ++i)
A[i] = f(i);

L2: for (int i = 1; i < 100; ++i)
B[i] = A[i] + A[i - 1];

Loop Transformations Loop Distribution May 30, 2017 4 / 82

Loop Distribution
L: for (int i = 1; i < 100; ++i) {

A[i] = f(i);
B[i] = A[i] + A[i - 1];

}

Can this loop be parallelized?

Requirement:
writes of iteration do not conflict with reads/writes of other iteration
Lr1s: W pAr1sq RpAr1sq RpAr0sq W pBr1sq
Lr2s: W pAr2sq RpAr2sq RpAr1sq W pBr2sq

Loop distribution

changes meaning!

L1: for (int i = 1; i < 100; ++i)
A[i] = f(i);

L2: for (int i = 1; i < 100; ++i)
B[i] = A[i] + A[i - 1];

Loop Transformations Loop Distribution May 30, 2017 4 / 82

Loop Distribution
L: for (int i = 1; i < 100; ++i) {

A[i] = f(i);
B[i] = A[i] + A[i - 1];

}

Can this loop be parallelized?

Requirement:
writes of iteration do not conflict with reads/writes of other iteration
Lr1s: W pAr1sq RpAr1sq RpAr0sq W pBr1sq
Lr2s: W pAr2sq RpAr2sq RpAr1sq W pBr2sq

Loop distribution

changes meaning!

L1: for (int i = 1; i < 100; ++i)
A[i] = f(i);

L2: for (int i = 1; i < 100; ++i)
B[i] = A[i] + A[i - 1];

No conflicts between iterations of L1 ñ can be run in parallel
No conflicts between iterations of L2 ñ can be run in parallel

Loop Transformations Loop Distribution May 30, 2017 5 / 82

Loop Distribution
L: for (int i = 1; i < 100; ++i) {

A[i] = f(i);
B[i] = A[i] + A[i - 1];

}

Can this loop be parallelized?

Requirement:
writes of iteration do not conflict with reads/writes of other iteration
Lr1s: W pAr1sq RpAr1sq RpAr0sq W pBr1sq
Lr2s: W pAr2sq RpAr2sq RpAr1sq W pBr2sq

Loop distribution

changes meaning!

L1: for (int i = 1; i < 100; ++i)
A[i] = f(i);

L2: for (int i = 1; i < 100; ++i)
B[i] = A[i] + A[i - 1];

Loop Transformations Loop Distribution May 30, 2017 5 / 82

Loop Distribution
L: for (int i = 1; i < 100; ++i) {

A[i] = f(i);
B[i] = A[i] + A[i + 1];

}

Can this loop be parallelized?

Requirement:
writes of iteration do not conflict with reads/writes of other iteration
Lr1s: W pAr1sq RpAr1sq RpAr2sq W pBr1sq
Lr2s: W pAr2sq RpAr2sq RpAr3sq W pBr2sq

Loop distribution

changes meaning!

L1: for (int i = 1; i < 100; ++i)
A[i] = f(i);

L2: for (int i = 1; i < 100; ++i)
B[i] = A[i] + A[i + 1];

Loop Transformations Loop Distribution May 30, 2017 5 / 82

Loop Distribution
L: for (int i = 1; i < 100; ++i) {

A[i] = f(i);
B[i] = A[i] + A[i + 1];

}

Can this loop be parallelized?

Requirement:
writes of iteration do not conflict with reads/writes of other iteration

Lr1s: W pAr1sq RpAr1sq RpAr2sq W pBr1sq
Lr2s: W pAr2sq RpAr2sq RpAr3sq W pBr2sq

Loop distribution

changes meaning!

L1: for (int i = 1; i < 100; ++i)
A[i] = f(i);

L2: for (int i = 1; i < 100; ++i)
B[i] = A[i] + A[i + 1];

Loop Transformations Loop Distribution May 30, 2017 5 / 82

Loop Distribution
L: for (int i = 1; i < 100; ++i) {

A[i] = f(i);
B[i] = A[i] + A[i + 1];

}

Can this loop be parallelized?

Requirement:
writes of iteration do not conflict with reads/writes of other iteration
Lr1s: W pAr1sq RpAr1sq RpAr2sq W pBr1sq
Lr2s: W pAr2sq RpAr2sq RpAr3sq W pBr2sq

Loop distribution

changes meaning!

L1: for (int i = 1; i < 100; ++i)
A[i] = f(i);

L2: for (int i = 1; i < 100; ++i)
B[i] = A[i] + A[i + 1];

Loop Transformations Loop Distribution May 30, 2017 5 / 82

Loop Distribution
L: for (int i = 1; i < 100; ++i) {

A[i] = f(i);
B[i] = A[i] + A[i + 1];

}

Can this loop be parallelized?

Requirement:
writes of iteration do not conflict with reads/writes of other iteration
Lr1s: W pAr1sq RpAr1sq RpAr2sq W pBr1sq
Lr2s: W pAr2sq RpAr2sq RpAr3sq W pBr2sq

Loop distribution

changes meaning!

L1: for (int i = 1; i < 100; ++i)
A[i] = f(i);

L2: for (int i = 1; i < 100; ++i)
B[i] = A[i] + A[i + 1];

Loop Transformations Loop Distribution May 30, 2017 5 / 82

Loop Distribution
L: for (int i = 1; i < 100; ++i) {

A[i] = f(i);
B[i] = A[i] + A[i + 1];

}

Can this loop be parallelized?

Requirement:
writes of iteration do not conflict with reads/writes of other iteration
Lr1s: W pAr1sq RpAr1sq RpAr2sq W pBr1sq
Lr2s: W pAr2sq RpAr2sq RpAr3sq W pBr2sq

Loop distribution changes meaning!

L1: for (int i = 1; i < 100; ++i)
A[i] = f(i);

L2: for (int i = 1; i < 100; ++i)
B[i] = A[i] + A[i + 1];

before distribution, Lr1s reads Ar2s value written before code fragment
after distribution, L2r1s reads Ar2s value written by L1r2s

Loop Transformations Loop Fusion May 30, 2017 6 / 82

Loop Fusion
L1: for (int i = 0; i < 100; ++i)

A[i] = f(i);
L2: for (int i = 0; i < 100; ++i)

B[i] = g(A[i]);

Assume A does not fit in the cache
ñ elements get evicted and reloaded for use in L2

Loop fusion

(changes execution order ñ may not preserve meaning)

for (int i = 0; i < 100; ++i) {
A[i] = f(i);
B[i] = g(A[i]);

}
ñ elements of A get reused immediately
ñ better locality

If A not needed outside code fragment
ñ array can be replaced by a scalar
ñ memory compaction

Loop Transformations Loop Fusion May 30, 2017 6 / 82

Loop Fusion
L1: for (int i = 0; i < 100; ++i)

A[i] = f(i);
L2: for (int i = 0; i < 100; ++i)

B[i] = g(A[i]);

Assume A does not fit in the cache
ñ elements get evicted and reloaded for use in L2

Loop fusion

(changes execution order ñ may not preserve meaning)

for (int i = 0; i < 100; ++i) {
A[i] = f(i);
B[i] = g(A[i]);

}
ñ elements of A get reused immediately
ñ better locality

If A not needed outside code fragment
ñ array can be replaced by a scalar
ñ memory compaction

Loop Transformations Loop Fusion May 30, 2017 6 / 82

Loop Fusion
L1: for (int i = 0; i < 100; ++i)

A[i] = f(i);
L2: for (int i = 0; i < 100; ++i)

B[i] = g(A[i]);

Assume A does not fit in the cache
ñ elements get evicted and reloaded for use in L2

Loop fusion

(changes execution order ñ may not preserve meaning)

for (int i = 0; i < 100; ++i) {
A[i] = f(i);
B[i] = g(A[i]);

}
ñ elements of A get reused immediately
ñ better locality

If A not needed outside code fragment
ñ array can be replaced by a scalar
ñ memory compaction

Loop Transformations Loop Fusion May 30, 2017 6 / 82

Loop Fusion
L1: for (int i = 0; i < 100; ++i)

A[i] = f(i);
L2: for (int i = 0; i < 100; ++i)

B[i] = g(A[i]);

Assume A does not fit in the cache
ñ elements get evicted and reloaded for use in L2

Loop fusion

(changes execution order ñ may not preserve meaning)

for (int i = 0; i < 100; ++i) {
A

[i]

= f(i);
B[i] = g(A

[i]

);
}
ñ elements of A get reused immediately
ñ better locality

If A not needed outside code fragment
ñ array can be replaced by a scalar
ñ memory compaction

Loop Transformations Loop Fusion May 30, 2017 6 / 82

Loop Fusion
L1: for (int i = 0; i < 100; ++i)

A[i] = f(i);
L2: for (int i = 0; i < 100; ++i)

B[i] = g(A[i]);

Assume A does not fit in the cache
ñ elements get evicted and reloaded for use in L2

Loop fusion (changes execution order ñ may not preserve meaning)
for (int i = 0; i < 100; ++i) {

A

[i]

= f(i);
B[i] = g(A

[i]

);
}
ñ elements of A get reused immediately
ñ better locality

If A not needed outside code fragment
ñ array can be replaced by a scalar
ñ memory compaction

Loop Transformations Loop Tiling May 30, 2017 7 / 82

Loop Tiling [17, 35]

L1: for (int i = 0; i < 8; ++i)
L2: for (int j = 0; j < 8; ++j)

C[i][j] = A[i] * B[j];

Assume B does not fit in the cache
ñ elements get (re)loaded and evicted in every iteration of L1

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4

Loop Transformations Loop Tiling May 30, 2017 7 / 82

Loop Tiling [17, 35]

L1: for (int i = 0; i < 8; ++i)
L2: for (int j = 0; j < 8; ++j)

C[i][j] = A[i] * B[j];

Assume B does not fit in the cache
ñ elements get (re)loaded and evicted in every iteration of L1

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4

Loop Transformations Loop Tiling May 30, 2017 7 / 82

Loop Tiling [17, 35]

L1: for (int i = 0; i < 8; ++i)
L2: for (int j = 0; j < 8; ++j)

C[i][j] = A[i] * B[j];

Assume B does not fit in the cache
ñ elements get (re)loaded and evicted in every iteration of L1

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4

Loop Transformations Loop Tiling May 30, 2017 7 / 82

Loop Tiling [17, 35]

L1: for (int i = 0; i < 8; ++i)
L2: for (int j = 0; j < 8; ++j)

C[i][j] = A[i] * B[j];

Assume B does not fit in the cache
ñ elements get (re)loaded and evicted in every iteration of L1

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4

Loop Transformations Loop Tiling May 30, 2017 7 / 82

Loop Tiling [17, 35]

L1: for (int i = 0; i < 8; ++i)
L2: for (int j = 0; j < 8; ++j)

C[i][j] = A[i] * B[j];

Assume B does not fit in the cache
ñ elements get (re)loaded and evicted in every iteration of L1

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4

Loop Transformations Loop Tiling May 30, 2017 7 / 82

Loop Tiling [17, 35]

L1: for (int i = 0; i < 8; ++i)
L2: for (int j = 0; j < 8; ++j)

C[i][j] = A[i] * B[j];

Assume B does not fit in the cache
ñ elements get (re)loaded and evicted in every iteration of L1

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4

Loop Transformations Loop Tiling May 30, 2017 7 / 82

Loop Tiling [17, 35]

L1: for (int i = 0; i < 8; ++i)
L2: for (int j = 0; j < 8; ++j)

C[i][j] = A[i] * B[j];

Assume B does not fit in the cache
ñ elements get (re)loaded and evicted in every iteration of L1

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4

Loop Transformations Loop Tiling May 30, 2017 7 / 82

Loop Tiling [17, 35]

L1: for (int i = 0; i < 8; ++i)
L2: for (int j = 0; j < 8; ++j)

C[i][j] = A[i] * B[j];

Assume B does not fit in the cache
ñ elements get (re)loaded and evicted in every iteration of L1

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4

Loop Transformations Loop Tiling May 30, 2017 7 / 82

Loop Tiling [17, 35]

L1: for (int i = 0; i < 8; ++i)
L2: for (int j = 0; j < 8; ++j)

C[i][j] = A[i] * B[j];

Assume B does not fit in the cache
ñ elements get (re)loaded and evicted in every iteration of L1

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4

Loop Transformations Loop Tiling May 30, 2017 7 / 82

Loop Tiling [17, 35]

L1: for (int i = 0; i < 8; ++i)
L2: for (int j = 0; j < 8; ++j)

C[i][j] = A[i] * B[j];

Assume B does not fit in the cache
ñ elements get (re)loaded and evicted in every iteration of L1

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4

Loop Transformations Loop Tiling May 30, 2017 7 / 82

Loop Tiling [17, 35]

L1: for (int i = 0; i < 8; ++i)
L2: for (int j = 0; j < 8; ++j)

C[i][j] = A[i] * B[j];

Assume B does not fit in the cache
ñ elements get (re)loaded and evicted in every iteration of L1

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4

Loop Transformations Loop Tiling May 30, 2017 7 / 82

Loop Tiling [17, 35]

L1: for (int i = 0; i < 8; ++i)
L2: for (int j = 0; j < 8; ++j)

C[i][j] = A[i] * B[j];

Assume B does not fit in the cache
ñ elements get (re)loaded and evicted in every iteration of L1

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4

Loop Transformations Loop Tiling May 30, 2017 7 / 82

Loop Tiling [17, 35]

L1: for (int i = 0; i < 8; ++i)
L2: for (int j = 0; j < 8; ++j)

C[i][j] = A[i] * B[j];

Assume B does not fit in the cache
ñ elements get (re)loaded and evicted in every iteration of L1

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4

Loop Transformations Loop Tiling May 30, 2017 7 / 82

Loop Tiling [17, 35]

L1: for (int i = 0; i < 8; ++i)
L2: for (int j = 0; j < 8; ++j)

C[i][j] = A[i] * B[j];

Assume B does not fit in the cache
ñ elements get (re)loaded and evicted in every iteration of L1

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4

Loop Transformations Loop Tiling May 30, 2017 7 / 82

Loop Tiling [17, 35]

L1: for (int i = 0; i < 8; ++i)
L2: for (int j = 0; j < 8; ++j)

C[i][j] = A[i] * B[j];

Assume B does not fit in the cache
ñ elements get (re)loaded and evicted in every iteration of L1

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4

Loop Transformations Loop Tiling May 30, 2017 7 / 82

Loop Tiling [17, 35]

L1: for (int i = 0; i < 8; ++i)
L2: for (int j = 0; j < 8; ++j)

C[i][j] = A[i] * B[j];

Assume B does not fit in the cache
ñ elements get (re)loaded and evicted in every iteration of L1

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4

Loop Transformations Loop Tiling May 30, 2017 7 / 82

Loop Tiling [17, 35]

L1: for (int i = 0; i < 8; ++i)
L2: for (int j = 0; j < 8; ++j)

C[i][j] = A[i] * B[j];

Assume B does not fit in the cache
ñ elements get (re)loaded and evicted in every iteration of L1

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4

Loop Transformations Loop Tiling May 30, 2017 7 / 82

Loop Tiling [17, 35]

L1: for (int i = 0; i < 8; ++i)
L2: for (int j = 0; j < 8; ++j)

C[i][j] = A[i] * B[j];

Assume B does not fit in the cache
ñ elements get (re)loaded and evicted in every iteration of L1

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4

Loop Transformations Loop Tiling May 30, 2017 7 / 82

Loop Tiling [17, 35]

L1: for (int i = 0; i < 8; ++i)
L2: for (int j = 0; j < 8; ++j)

C[i][j] = A[i] * B[j];

Assume B does not fit in the cache
ñ elements get (re)loaded and evicted in every iteration of L1

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4

Loop Transformations Loop Tiling May 30, 2017 7 / 82

Loop Tiling [17, 35]

L1: for (int i = 0; i < 8; ++i)
L2: for (int j = 0; j < 8; ++j)

C[i][j] = A[i] * B[j];

Assume B does not fit in the cache
ñ elements get (re)loaded and evicted in every iteration of L1

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4

Loop Transformations Loop Tiling May 30, 2017 7 / 82

Loop Tiling [17, 35]

L1: for (int i = 0; i < 8; ++i)
L2: for (int j = 0; j < 8; ++j)

C[i][j] = A[i] * B[j];

Assume B does not fit in the cache
ñ elements get (re)loaded and evicted in every iteration of L1

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4

Loop Transformations Loop Tiling May 30, 2017 7 / 82

Loop Tiling [17, 35]

L1: for (int i = 0; i < 8; ++i)
L2: for (int j = 0; j < 8; ++j)

C[i][j] = A[i] * B[j];

Assume B does not fit in the cache
ñ elements get (re)loaded and evicted in every iteration of L1

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4

Loop Transformations Loop Tiling May 30, 2017 7 / 82

Loop Tiling [17, 35]

L1: for (int i = 0; i < 8; ++i)
L2: for (int j = 0; j < 8; ++j)

C[i][j] = A[i] * B[j];

Assume B does not fit in the cache
ñ elements get (re)loaded and evicted in every iteration of L1

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4

Loop Transformations Loop Tiling May 30, 2017 7 / 82

Loop Tiling [17, 35]

L1: for (int i = 0; i < 8; ++i)
L2: for (int j = 0; j < 8; ++j)

C[i][j] = A[i] * B[j];

Assume B does not fit in the cache
ñ elements get (re)loaded and evicted in every iteration of L1

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4

Loop Transformations Loop Tiling May 30, 2017 7 / 82

Loop Tiling [17, 35]

L1: for (int i = 0; i < 8; ++i)
L2: for (int j = 0; j < 8; ++j)

C[i][j] = A[i] * B[j];

Assume B does not fit in the cache
ñ elements get (re)loaded and evicted in every iteration of L1

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4

Loop Transformations Loop Tiling May 30, 2017 7 / 82

Loop Tiling [17, 35]

L1: for (int i = 0; i < 8; ++i)
L2: for (int j = 0; j < 8; ++j)

C[i][j] = A[i] * B[j];

Assume B does not fit in the cache
ñ elements get (re)loaded and evicted in every iteration of L1

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4

Loop Transformations Loop Tiling May 30, 2017 7 / 82

Loop Tiling [17, 35]

L1: for (int i = 0; i < 8; ++i)
L2: for (int j = 0; j < 8; ++j)

C[i][j] = A[i] * B[j];

Assume B does not fit in the cache
ñ elements get (re)loaded and evicted in every iteration of L1

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4

Loop Transformations Loop Tiling May 30, 2017 7 / 82

Loop Tiling [17, 35]

L1: for (int i = 0; i < 8; ++i)
L2: for (int j = 0; j < 8; ++j)

C[i][j] = A[i] * B[j];

Assume B does not fit in the cache
ñ elements get (re)loaded and evicted in every iteration of L1

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4

Loop Transformations Loop Tiling May 30, 2017 7 / 82

Loop Tiling [17, 35]

L1: for (int i = 0; i < 8; ++i)
L2: for (int j = 0; j < 8; ++j)

C[i][j] = A[i] * B[j];

Assume B does not fit in the cache
ñ elements get (re)loaded and evicted in every iteration of L1

Loop tiling

(changes execution order ñ may not preserve meaning)

for (int ti = 0; ti < 8; ti += 4)
for (int tj = 0; tj < 8; tj += 4)

for (int i = ti; i < ti + 4; ++i)
for (int j = tj; j < tj + 4; ++j)

C[i][j] = A[i] * B[j];

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4

Loop Transformations Loop Tiling May 30, 2017 7 / 82

Loop Tiling [17, 35]

L1: for (int i = 0; i < 8; ++i)
L2: for (int j = 0; j < 8; ++j)

C[i][j] = A[i] * B[j];

Assume B does not fit in the cache
ñ elements get (re)loaded and evicted in every iteration of L1

Loop tiling (changes execution order ñ may not preserve meaning)

for (int ti = 0; ti < 8; ti += 4)
for (int tj = 0; tj < 8; tj += 4)

for (int i = ti; i < ti + 4; ++i)
for (int j = tj; j < tj + 4; ++j)

C[i][j] = A[i] * B[j];

B

A C

computed element

load into cache

already in cache

ñ compute C in tiles, e.g., 4ˆ 4

Polyhedral Compilation May 30, 2017 8 / 82

Outline
1 Loop Transformations

Loop Distribution
Loop Fusion
Loop Tiling

2 Polyhedral Compilation
Introduction
Polyhedral Model
Schedules
Operations
Software

3 PPCG
Overview
Model Extraction
Dependence Analysis
Scheduling
Device Mapping

Polyhedral Compilation Introduction May 30, 2017 9 / 82

Motivation

Computer architectures are becoming more difficult to program
efficiently

§ multiple levels of parallelism
§ non-uniform memory architectures

ñ Advanced compiler optimizations are required
§ hierarchical partitioning and reordering of operations
(e.g., parallelization, loop fusion, . . .)

§ mapping to different processing units
§ memory transfers between processing units

ñ Global view of individual operations is required
ñ Polyhedral Model

Polyhedral Compilation Introduction May 30, 2017 10 / 82

Polyhedral Compilation — Example
for (t = 0; t < T; t++)

for (i = 1; i < N - 1; i++)
A[(t+1)%2][i] = A[t%2][i-1] + A[t%2][i+1];

t

i

ñ

1 1 1

3 3 3

5 5 5

0 0 0

2 2 2

4 4 4

6 6 6

t

i

1 Extract polyhedral model
ñ each dynamic instance represented by pt, iq pair

2 Compute dependences

ñ iteration t “ 2, i “ 3 depends on iteration t “ 1, i “ 4

3 Compute schedule respecting dependences

ñ tiles with same number can be executed in parallel
ñ rows within tiles can be executed in parallel

Polyhedral Compilation Introduction May 30, 2017 10 / 82

Polyhedral Compilation — Example
for (t = 0; t < T; t++)

for (i = 1; i < N - 1; i++)
A[(t+1)%2][i] = A[t%2][i-1] + A[t%2][i+1];

t

i

ñ

1 1 1

3 3 3

5 5 5

0 0 0

2 2 2

4 4 4

6 6 6

t

i

1 Extract polyhedral model
ñ each dynamic instance represented by pt, iq pair

2 Compute dependences

ñ iteration t “ 2, i “ 3 depends on iteration t “ 1, i “ 4

3 Compute schedule respecting dependences

ñ tiles with same number can be executed in parallel
ñ rows within tiles can be executed in parallel

Polyhedral Compilation Introduction May 30, 2017 10 / 82

Polyhedral Compilation — Example
for (t = 0; t < T; t++)

for (i = 1; i < N - 1; i++)
A[(t+1)%2][i] = A[t%2][i-1] + A[t%2][i+1];

t

i

ñ

1 1 1

3 3 3

5 5 5

0 0 0

2 2 2

4 4 4

6 6 6

t

i

1 Extract polyhedral model
ñ each dynamic instance represented by pt, iq pair

2 Compute dependences

ñ iteration t “ 2, i “ 3 depends on iteration t “ 1, i “ 4

3 Compute schedule respecting dependences

ñ tiles with same number can be executed in parallel
ñ rows within tiles can be executed in parallel

Polyhedral Compilation Introduction May 30, 2017 10 / 82

Polyhedral Compilation — Example
for (t = 0; t < T; t++)

for (i = 1; i < N - 1; i++)
A[(t+1)%2][i] = A[t%2][i-1] + A[t%2][i+1];

t

i

ñ

1 1 1

3 3 3

5 5 5

0 0 0

2 2 2

4 4 4

6 6 6

t

i

1 Extract polyhedral model
ñ each dynamic instance represented by pt, iq pair

2 Compute dependences

ñ iteration t “ 2, i “ 3 depends on iteration t “ 1, i “ 4
3 Compute schedule respecting dependences

ñ tiles with same number can be executed in parallel
ñ rows within tiles can be executed in parallel

Polyhedral Compilation Introduction May 30, 2017 10 / 82

Polyhedral Compilation — Example
for (t = 0; t < T; t++)

for (i = 1; i < N - 1; i++)
A[(t+1)%2][i] = A[t%2][i-1] + A[t%2][i+1];

t

i

ñ

1 1 1

3 3 3

5 5 5

0 0 0

2 2 2

4 4 4

6 6 6

t

i

1 Extract polyhedral model
ñ each dynamic instance represented by pt, iq pair

2 Compute dependences

ñ iteration t “ 2, i “ 3 depends on iteration t “ 1, i “ 4
3 Compute schedule respecting dependences

ñ tiles with same number can be executed in parallel
ñ rows within tiles can be executed in parallel

Polyhedral Compilation Introduction May 30, 2017 10 / 82

Polyhedral Compilation — Example
for (t = 0; t < T; t++)

for (i = 1; i < N - 1; i++)
A[(t+1)%2][i] = A[t%2][i-1] + A[t%2][i+1];

t

i

ñ

1 1 1

3 3 3

5 5 5

0 0 0

2 2 2

4 4 4

6 6 6

t

i

1 Extract polyhedral model
ñ each dynamic instance represented by pt, iq pair

2 Compute dependences
ñ iteration t “ 2, i “ 3 depends on iteration t “ 1, i “ 4

3 Compute schedule respecting dependences

ñ tiles with same number can be executed in parallel
ñ rows within tiles can be executed in parallel

Polyhedral Compilation Introduction May 30, 2017 10 / 82

Polyhedral Compilation — Example
for (t = 0; t < T; t++)

for (i = 1; i < N - 1; i++)
A[(t+1)%2][i] = A[t%2][i-1] + A[t%2][i+1];

t

i

ñ

1 1 1

3 3 3

5 5 5

0 0 0

2 2 2

4 4 4

6 6 6

t

i

1 Extract polyhedral model
ñ each dynamic instance represented by pt, iq pair

2 Compute dependences
ñ iteration t “ 2, i “ 3 depends on iteration t “ 1, i “ 4

3 Compute schedule respecting dependences

ñ tiles with same number can be executed in parallel
ñ rows within tiles can be executed in parallel

Polyhedral Compilation Introduction May 30, 2017 10 / 82

Polyhedral Compilation — Example
for (t = 0; t < T; t++)

for (i = 1; i < N - 1; i++)
A[(t+1)%2][i] = A[t%2][i-1] + A[t%2][i+1];

t

i

ñ

1 1 1

3 3 3

5 5 5

0 0 0

2 2 2

4 4 4

6 6 6

t

i

1 Extract polyhedral model
ñ each dynamic instance represented by pt, iq pair

2 Compute dependences
ñ iteration t “ 2, i “ 3 depends on iteration t “ 1, i “ 4

3 Compute schedule respecting dependences
ñ tiles with same number can be executed in parallel
ñ rows within tiles can be executed in parallel

Polyhedral Compilation Polyhedral Model May 30, 2017 11 / 82

Polyhedral Model [27]

Key features
instance based
ñ statement instances
ñ array elements

compact representation based on polyhedra or similar objects
ñ Presburger sets and relations

defined by Presburger formula

ñ . . .
Main constituents of program representation

Instance Set
ñ the set of all statement instances

Access Relations
ñ the array elements accessed by a statement instance

Dependences
ñ the statement instances that depend on a statement instance

Schedule
ñ the relative execution order of statement instances

Context
ñ constraints on parameters

Polyhedral Compilation Polyhedral Model May 30, 2017 12 / 82

Polyhedral Model — Example

for (i = 0; i < 3; ++i)
S: B[i] = f(A[i]);
for (i = 0; i < 3; ++i)
T: C[i] = g(B[2 - i]);

S[], T[]

S[0],S[1],S[2] T[0],T[1],T[2]

S[0]

T[0]

B[0]

S[1]

T[1]

B[1]

S[2]

T[2]

B[2]

for (c = 0; c < 3; ++c) {
B[c] = f(A[c]);
C[2 - c] = g(B[c]);

}

S[0]T[2],S[1]T[1],S[2]T[0]

S[], T[]

input code input execution order

model

new code new execution order

Polyhedral Compilation Polyhedral Model May 30, 2017 12 / 82

Polyhedral Model — Example

for (i = 0; i < 3; ++i)
S: B[i] = f(A[i]);
for (i = 0; i < 3; ++i)
T: C[i] = g(B[2 - i]);

S[], T[]

S[0],S[1],S[2] T[0],T[1],T[2]

S[0]

T[0]

B[0]

S[1]

T[1]

B[1]

S[2]

T[2]

B[2]

for (c = 0; c < 3; ++c) {
B[c] = f(A[c]);
C[2 - c] = g(B[c]);

}

S[0]T[2],S[1]T[1],S[2]T[0]

S[], T[]

input code input execution order

model

new code new execution order

Polyhedral Compilation Polyhedral Model May 30, 2017 12 / 82

Polyhedral Model — Example

for (i = 0; i < 3; ++i)
S: B[i] = f(A[i]);
for (i = 0; i < 3; ++i)
T: C[i] = g(B[2 - i]);

S[], T[]

S[0],S[1],S[2] T[0],T[1],T[2]

S[0]

T[0]

B[0]

S[1]

T[1]

B[1]

S[2]

T[2]

B[2]

for (c = 0; c < 3; ++c) {
B[c] = f(A[c]);
C[2 - c] = g(B[c]);

}

S[0]T[2],S[1]T[1],S[2]T[0]

S[], T[]

input code input execution order

model

new code new execution order

Polyhedral Compilation Polyhedral Model May 30, 2017 12 / 82

Polyhedral Model — Example

for (i = 0; i < 3; ++i)
S: B[i] = f(A[i]);
for (i = 0; i < 3; ++i)
T: C[i] = g(B[2 - i]);

S[], T[]

S[0],S[1],S[2] T[0],T[1],T[2]

S[0]

T[0]

B[0]

S[1]

T[1]

B[1]

S[2]

T[2]

B[2]

for (c = 0; c < 3; ++c) {
B[c] = f(A[c]);
C[2 - c] = g(B[c]);

}

S[0]T[2],S[1]T[1],S[2]T[0]

S[], T[]

input code input execution order

model

new code new execution order

Polyhedral Compilation Polyhedral Model May 30, 2017 12 / 82

Polyhedral Model — Example

for (i = 0; i < 3; ++i)
S: B[i] = f(A[i]);
for (i = 0; i < 3; ++i)
T: C[i] = g(B[2 - i]);

S[], T[]

S[0],S[1],S[2] T[0],T[1],T[2]

S[0]

T[0]

B[0]

S[1]

T[1]

B[1]

S[2]

T[2]

B[2]

for (c = 0; c < 3; ++c) {
B[c] = f(A[c]);
C[2 - c] = g(B[c]);

}

S[0]T[2],S[1]T[1],S[2]T[0]

S[], T[]

input code input execution order

model

new code new execution order

Polyhedral Compilation Polyhedral Model May 30, 2017 12 / 82

Polyhedral Model — Example

for (i = 0; i < 3; ++i)
S: B[i] = f(A[i]);
for (i = 0; i < 3; ++i)
T: C[i] = g(B[2 - i]);

S[], T[]

S[0],S[1],S[2] T[0],T[1],T[2]

S[0]

T[0]

B[0]

S[1]

T[1]

B[1]

S[2]

T[2]

B[2]

for (c = 0; c < 3; ++c) {
B[c] = f(A[c]);
C[2 - c] = g(B[c]);

}

S[0]T[2],S[1]T[1],S[2]T[0]

S[], T[]

input code input execution order

model

new code new execution order

Polyhedral Compilation Polyhedral Model May 30, 2017 12 / 82

Polyhedral Model — Example

for (i = 0; i < 3; ++i)
S: B[i] = f(A[i]);
for (i = 0; i < 3; ++i)
T: C[i] = g(B[2 - i]);

t Sris u, t Tris u

t Sris Ñ ris u t Tris Ñ ris u

S[0]

T[0]

B[0]

S[1]

T[1]

B[1]

S[2]

T[2]

B[2]

for (c = 0; c < 3; ++c) {
B[c] = f(A[c]);
C[2 - c] = g(B[c]);

}

S[0]T[2],S[1]T[1],S[2]T[0]

S[], T[]

input code input execution order

model

new code new execution order

Polyhedral Compilation Polyhedral Model May 30, 2017 12 / 82

Polyhedral Model — Example

for (i = 0; i < 3; ++i)
S: B[i] = f(A[i]);
for (i = 0; i < 3; ++i)
T: C[i] = g(B[2 - i]);

t Sris u, t Tris u

t Sris Ñ ris u t Tris Ñ ris u

S[0]

T[0]

B[0]

S[1]

T[1]

B[1]

S[2]

T[2]

B[2]

for (c = 0; c < 3; ++c) {
B[c] = f(A[c]);
C[2 - c] = g(B[c]);

}

t Sris Ñ ris; Tris Ñ r2´ is u

t Sris u, t Tris u

input code input execution order

model

new code new execution order

Polyhedral Compilation Polyhedral Model May 30, 2017 13 / 82

Polyhedral Model [27]

Key features
instance based
ñ statement instances
ñ array elements

compact representation based on polyhedra or similar objects
ñ Presburger sets and relations

defined by Presburger formula

ñ . . .
Main constituents of program representation

Instance Set
ñ the set of all statement instances

Access Relations
ñ the array elements accessed by a statement instance

Dependences
ñ the statement instances that depend on a statement instance

Schedule
ñ the relative execution order of statement instances

Context
ñ constraints on parameters

Polyhedral Compilation Polyhedral Model May 30, 2017 13 / 82

Polyhedral Model [27]

Key features
instance based
ñ statement instances
ñ array elements

compact representation based on polyhedra or similar objects
ñ Presburger sets and relations defined by Presburger formula
ñ . . .

Main constituents of program representation
Instance Set
ñ the set of all statement instances

Access Relations
ñ the array elements accessed by a statement instance

Dependences
ñ the statement instances that depend on a statement instance

Schedule
ñ the relative execution order of statement instances

Context
ñ constraints on parameters

Polyhedral Compilation Polyhedral Model May 30, 2017 13 / 82

Polyhedral Model [27]

Key features
instance based
ñ statement instances
ñ array elements

compact representation based on polyhedra or similar objects
ñ Presburger sets and relations defined by Presburger formula
ñ . . .

quasi-

affine expression

(no multiplication)

§ variable
§ constant integer number
§ constant symbol
§ addition (`), subtraction (´)

§ integer division by integer constant d (t¨{du)
Presburger formula

§ true
§ quasi-affine expression
§ less-than-or-equal relation (ď)
§ equality (“)
§ first order logic connectives: ^, _, , D, @

Main constituents of program representation
Instance Set
ñ the set of all statement instances

Access Relations
ñ the array elements accessed by a statement instance

Dependences
ñ the statement instances that depend on a statement instance

Schedule
ñ the relative execution order of statement instances

Context
ñ constraints on parameters

Polyhedral Compilation Polyhedral Model May 30, 2017 13 / 82

Polyhedral Model [27]

Key features
instance based
ñ statement instances
ñ array elements

compact representation based on polyhedra or similar objects
ñ Presburger sets and relations defined by Presburger formula
ñ . . .
quasi-affine expression

(no multiplication)

§ variable
§ constant integer number
§ constant symbol
§ addition (`), subtraction (´)
§ integer division by integer constant d (t¨{du)

Presburger formula
§ true
§ quasi-affine expression
§ less-than-or-equal relation (ď)
§ equality (“)
§ first order logic connectives: ^, _, , D, @

Main constituents of program representation
Instance Set
ñ the set of all statement instances

Access Relations
ñ the array elements accessed by a statement instance

Dependences
ñ the statement instances that depend on a statement instance

Schedule
ñ the relative execution order of statement instances

Context
ñ constraints on parameters

Polyhedral Compilation Polyhedral Model May 30, 2017 13 / 82

Polyhedral Model [27]

Key features
instance based
ñ statement instances
ñ array elements

compact representation based on polyhedra or similar objects
ñ Presburger sets and relations defined by Presburger formula
ñ . . .
quasi-affine expression (no multiplication)

§ variable
§ constant integer number
§ constant symbol
§ addition (`), subtraction (´)
§ integer division by integer constant d (t¨{du)

Presburger formula
§ true
§ quasi-affine expression
§ less-than-or-equal relation (ď)
§ equality (“)
§ first order logic connectives: ^, _, , D, @

Main constituents of program representation
Instance Set
ñ the set of all statement instances

Access Relations
ñ the array elements accessed by a statement instance

Dependences
ñ the statement instances that depend on a statement instance

Schedule
ñ the relative execution order of statement instances

Context
ñ constraints on parameters

Polyhedral Compilation Polyhedral Model May 30, 2017 13 / 82

Polyhedral Model [27]

Key features
instance based
ñ statement instances
ñ array elements

compact representation based on polyhedra or similar objects
ñ Presburger sets and relations defined by Presburger formula
ñ . . .
quasi-affine expression (no multiplication)

§ variable
§ constant integer number
§ constant symbol
§ addition (`), subtraction (´)
§ integer division by integer constant d (t¨{du)

Presburger formula
§ true
§ quasi-affine expression
§ less-than-or-equal relation (ď)
§ equality (“)
§ first order logic connectives: ^, _, , D, @

Main constituents of program representation
Instance Set
ñ the set of all statement instances

Access Relations
ñ the array elements accessed by a statement instance

Dependences
ñ the statement instances that depend on a statement instance

Schedule
ñ the relative execution order of statement instances

Context
ñ constraints on parameters

Polyhedral Compilation Polyhedral Model May 30, 2017 14 / 82

Parametric Example: Matrix Multiplication
for (int i = 0; i < M; i++)

for (int j = 0; j < N; j++) {
S1: C[i][j] = 0;

for (int k = 0; k < K; k++)
S2: C[i][j] = C[i][j] + A[i][k] * B[k][j];

}

Instance Set (set of statement instances)

t S1ri , js : 0 ď i ă M ^ 0 ď j ă N;

S2ri , j , ks : 0 ď i ă M ^ 0 ď j ă N ^ 0 ď k ă K u

Access Relations (accessed array elements; W : write, R : read)

W “ t S1ri , js Ñ Cri , js; S2ri , j , ks Ñ Cri , js u

R “ t S2ri , j , ks Ñ Cri , js; S2ri , j , ks Ñ Ari , ks; S2ri , j , ks Ñ Brk , js u

Polyhedral Compilation Polyhedral Model May 30, 2017 15 / 82

Schedule Representation [30]

Schedule S keeps track of relative execution order of statement instances

ñ for each pair of statement instances i and j, schedule determines
§ i executed before j (i ăS j),
§ i executed after j (j ăS i), or
§ i and j may be executed simultaneously

Schedule trees form a combined hierarchical schedule representation
Main constructs:

§ affine schedule: instances are executed according to affine function

§ band: nested sequence of affine functions called its members;
combined multi-dimensional affine function is called
the partial schedule of the band

§ sequence: partitions instances through child filters executed in order

Order of instances determined by outermost node that separates them
Deriving schedule tree from AST

§ for loop ñ affine schedule corresponding to loop iterator
§ compound statement ñ sequence

Polyhedral Compilation Polyhedral Model May 30, 2017 15 / 82

Schedule Representation [30]

Schedule S keeps track of relative execution order of statement instances

ñ for each pair of statement instances i and j, schedule determines
§ i executed before j (i ăS j),
§ i executed after j (j ăS i), or
§ i and j may be executed simultaneously

Schedule trees form a combined hierarchical schedule representation
Main constructs:

§ affine schedule: instances are executed according to affine function

§ band: nested sequence of affine functions called its members;
combined multi-dimensional affine function is called
the partial schedule of the band

§ sequence: partitions instances through child filters executed in order

Order of instances determined by outermost node that separates them
Deriving schedule tree from AST

§ for loop ñ affine schedule corresponding to loop iterator
§ compound statement ñ sequence

Polyhedral Compilation Polyhedral Model May 30, 2017 16 / 82

Parametric Example: Matrix Multiplication
for (int i = 0; i < M; i++)

for (int j = 0; j < N; j++) {
S1: C[i][j] = 0;

for (int k = 0; k < K; k++)
S2: C[i][j] = C[i][j] + A[i][k] * B[k][j];

}

S1ri , js Ñ ris; S2ri , j , ks Ñ ris

S1ri , js Ñ rjs; S2ri , j , ks Ñ rjs

sequence

S1ri , js

S1ri , js Ñ r0s

S2ri , j , ks

S2ri , j , ks Ñ rks

filters

affine functions

Polyhedral Compilation Polyhedral Model May 30, 2017 16 / 82

Parametric Example: Matrix Multiplication
for (int i = 0; i < M; i++)

for (int j = 0; j < N; j++) {
S1: C[i][j] = 0;

for (int k = 0; k < K; k++)
S2: C[i][j] = C[i][j] + A[i][k] * B[k][j];

}

S1ri , js Ñ ris; S2ri , j , ks Ñ ris

S1ri , js Ñ rjs; S2ri , j , ks Ñ rjs

sequence

S1ri , js

S1ri , js Ñ r0s

S2ri , j , ks

S2ri , j , ks Ñ rks

filters

affine functions

Polyhedral Compilation Polyhedral Model May 30, 2017 16 / 82

Parametric Example: Matrix Multiplication
for (int i = 0; i < M; i++)

for (int j = 0; j < N; j++) {
S1: C[i][j] = 0;

for (int k = 0; k < K; k++)
S2: C[i][j] = C[i][j] + A[i][k] * B[k][j];

}

S1ri , js Ñ ris; S2ri , j , ks Ñ ris

S1ri , js Ñ rjs; S2ri , j , ks Ñ rjs

sequence

S1ri , js

S1ri , js Ñ r0s

S2ri , j , ks

S2ri , j , ks Ñ rks

filters

affine functions

Polyhedral Compilation Polyhedral Model May 30, 2017 16 / 82

Parametric Example: Matrix Multiplication
for (int i = 0; i < M; i++)

for (int j = 0; j < N; j++) {
S1: C[i][j] = 0;

for (int k = 0; k < K; k++)
S2: C[i][j] = C[i][j] + A[i][k] * B[k][j];

}

S1ri , js Ñ ris; S2ri , j , ks Ñ ris

S1ri , js Ñ rjs; S2ri , j , ks Ñ rjs

sequence

S1ri , js

S1ri , js Ñ r0s

S2ri , j , ks

S2ri , j , ks Ñ rks

filters

affine functions

Polyhedral Compilation Polyhedral Model May 30, 2017 16 / 82

Parametric Example: Matrix Multiplication
for (int i = 0; i < M; i++)

for (int j = 0; j < N; j++) {
S1: C[i][j] = 0;

for (int k = 0; k < K; k++)
S2: C[i][j] = C[i][j] + A[i][k] * B[k][j];

}

S1ri , js Ñ ris; S2ri , j , ks Ñ ris

S1ri , js Ñ rjs; S2ri , j , ks Ñ rjs

sequence

S1ri , js

S1ri , js Ñ r0s

S2ri , j , ks

S2ri , j , ks Ñ rks

filters

affine functions

Polyhedral Compilation Polyhedral Model May 30, 2017 17 / 82

Schedule Representation [30]

Schedule S keeps track of relative execution order of statement instances

ñ for each pair of statement instances i and j, schedule determines
§ i executed before j (i ăS j),
§ i executed after j (j ăS i), or
§ i and j may be executed simultaneously

Schedule trees form a combined hierarchical schedule representation
Main constructs:

§ affine schedule: instances are executed according to affine function

§ band: nested sequence of affine functions called its members;
combined multi-dimensional affine function is called
the partial schedule of the band

§ sequence: partitions instances through child filters executed in order

Order of instances determined by outermost node that separates them
Deriving schedule tree from AST

§ for loop ñ affine schedule corresponding to loop iterator
§ compound statement ñ sequence

Polyhedral Compilation Polyhedral Model May 30, 2017 17 / 82

Schedule Representation [30]

Schedule S keeps track of relative execution order of statement instances

ñ for each pair of statement instances i and j, schedule determines
§ i executed before j (i ăS j),
§ i executed after j (j ăS i), or
§ i and j may be executed simultaneously

Schedule trees form a combined hierarchical schedule representation
Main constructs:

§ affine schedule: instances are executed according to affine function
§ band: nested sequence of affine functions called its members;
combined multi-dimensional affine function is called
the partial schedule of the band

§ sequence: partitions instances through child filters executed in order

Order of instances determined by outermost node that separates them
Deriving schedule tree from AST

§ for loop ñ affine schedule corresponding to loop iterator
§ compound statement ñ sequence

Polyhedral Compilation Polyhedral Model May 30, 2017 18 / 82

Named Presburger Relation Schedules

Schedule tree with single (band) node

Flattening a schedule tree
two nested band nodes
ñ replace by single band node with concatenated partial schedule

sequence with as children either leaves or
trees consisting of a single band node
ñ treat leaves as zero-dimensional band nodes
ñ pad lower-dimensional bands (e.g., with zero)
ñ construct one-dimensional band assigning increasing values to children
ñ combine one-dimensional band with children

Polyhedral Compilation Polyhedral Model May 30, 2017 18 / 82

Named Presburger Relation Schedules

Schedule tree with single (band) node

Flattening a schedule tree
two nested band nodes
ñ replace by single band node with concatenated partial schedule

sequence with as children either leaves or
trees consisting of a single band node
ñ treat leaves as zero-dimensional band nodes
ñ pad lower-dimensional bands (e.g., with zero)
ñ construct one-dimensional band assigning increasing values to children
ñ combine one-dimensional band with children

Polyhedral Compilation Polyhedral Model May 30, 2017 19 / 82

Parametric Example: Matrix Multiplication
for (int i = 0; i < M; i++)

for (int j = 0; j < N; j++) {
S1: C[i][j] = 0;

for (int k = 0; k < K; k++)
S2: C[i][j] = C[i][j] + A[i][k] * B[k][j];

}

S1ri , js Ñ ris; S2ri , j , ks Ñ ris

S1ri , js Ñ rjs; S2ri , j , ks Ñ rjs

sequence

S1ri , js

S1ri , js Ñ r0s

S2ri , j , ks

S2ri , j , ks Ñ rks

Polyhedral Compilation Polyhedral Model May 30, 2017 19 / 82

Parametric Example: Matrix Multiplication
for (int i = 0; i < M; i++)

for (int j = 0; j < N; j++) {
S1: C[i][j] = 0;

for (int k = 0; k < K; k++)
S2: C[i][j] = C[i][j] + A[i][k] * B[k][j];

}

S1ri , js Ñ ris; S2ri , j , ks Ñ ris

S1ri , js Ñ rjs; S2ri , j , ks Ñ rjs

sequence

S1ri , js

S1ri , js Ñ r0s

S2ri , j , ks

S2ri , j , ks Ñ rks

Polyhedral Compilation Polyhedral Model May 30, 2017 19 / 82

Parametric Example: Matrix Multiplication
for (int i = 0; i < M; i++)

for (int j = 0; j < N; j++) {
S1: C[i][j] = 0;

for (int k = 0; k < K; k++)
S2: C[i][j] = C[i][j] + A[i][k] * B[k][j];

}

S1ri , js Ñ ris; S2ri , j , ks Ñ ris

S1ri , js Ñ rjs; S2ri , j , ks Ñ rjs

S1ri , js Ñ r0, 0s; S2ri , j , ks Ñ r1, ks

S1ri , js

S1ri , js Ñ r0s

S2ri , j , ks

S2ri , j , ks Ñ rks

Polyhedral Compilation Polyhedral Model May 30, 2017 19 / 82

Parametric Example: Matrix Multiplication
for (int i = 0; i < M; i++)

for (int j = 0; j < N; j++) {
S1: C[i][j] = 0;

for (int k = 0; k < K; k++)
S2: C[i][j] = C[i][j] + A[i][k] * B[k][j];

}

S1ri , js Ñ ris; S2ri , j , ks Ñ ris

S1ri , js Ñ rj , 0, 0s; S2ri , j , ks Ñ rj , 1, ks

S1ri , js Ñ r0, 0s; S2ri , j , ks Ñ r1, ks

S1ri , js

S1ri , js Ñ r0s

S2ri , j , ks

S2ri , j , ks Ñ rks

Polyhedral Compilation Polyhedral Model May 30, 2017 19 / 82

Parametric Example: Matrix Multiplication
for (int i = 0; i < M; i++)

for (int j = 0; j < N; j++) {
S1: C[i][j] = 0;

for (int k = 0; k < K; k++)
S2: C[i][j] = C[i][j] + A[i][k] * B[k][j];

}

S1ri , js Ñ ri , j , 0, 0s; S2ri , j , ks Ñ ri , j , 1, ks

S1ri , js Ñ rj , 0, 0s; S2ri , j , ks Ñ rj , 1, ks

S1ri , js Ñ r0, 0s; S2ri , j , ks Ñ r1, ks

S1ri , js

S1ri , js Ñ r0s

S2ri , j , ks

S2ri , j , ks Ñ rks

Polyhedral Compilation Polyhedral Model May 30, 2017 20 / 82

Loop Transformations and the Polyhedral Model

Loop transformations result in
different execution order of statement instances
ñ different schedule

Polyhedral model can be used to
evaluate a schedule and/or
construct a schedule

Polyhedral schedules can represent (combinations of)
loop distribution
loop fusion
loop tiling
. . .

Polyhedral Compilation Schedules May 30, 2017 21 / 82

Schedule Properties

Validity
New schedule should preserve meaning

Parallelism
Can the iterations of a given loop be executed in parallel?
Locality
Statement instances scheduled closely to each other
Tilability
Can a given schedule band be tiled?

Polyhedral Compilation Schedules May 30, 2017 22 / 82

Schedule Validity [3]

New schedule should preserve meaning

R(a) W(a) R(a) W(b) W(a) W(a)

Internal restrictions
No read of a value may be scheduled before the write of the value
No other write to same memory location may be scheduled in between

External restrictions (on non-temporaries)
No write may be scheduled before initial read from a memory location
No write may be scheduled after last write to a memory location

Sufficient conditions:
Every read of a memory location is scheduled after every preceding
write to the same memory location
Every write to a memory location is scheduled after every preceding
read or write to the same memory location

Polyhedral Compilation Schedules May 30, 2017 22 / 82

Schedule Validity [3]

New schedule should preserve meaning

R(a) W(a) R(a) W(b) W(a) W(a)

Internal restrictions
No read of a value may be scheduled before the write of the value
No other write to same memory location may be scheduled in between

External restrictions (on non-temporaries)
No write may be scheduled before initial read from a memory location
No write may be scheduled after last write to a memory location

Sufficient conditions:
Every read of a memory location is scheduled after every preceding
write to the same memory location
Every write to a memory location is scheduled after every preceding
read or write to the same memory location

Polyhedral Compilation Schedules May 30, 2017 22 / 82

Schedule Validity [3]

New schedule should preserve meaning

R(a) W(a) R(a) W(b) W(a) W(a)

Internal restrictions
No read of a value may be scheduled before the write of the value
No other write to same memory location may be scheduled in between

External restrictions (on non-temporaries)
No write may be scheduled before initial read from a memory location
No write may be scheduled after last write to a memory location

Sufficient conditions:
Every read of a memory location is scheduled after every preceding
write to the same memory location
Every write to a memory location is scheduled after every preceding
read or write to the same memory location

Polyhedral Compilation Schedules May 30, 2017 22 / 82

Schedule Validity [3]

New schedule should preserve meaning

R(a) W(a) R(a) W(b) W(a) W(a)

Internal restrictions
No read of a value may be scheduled before the write of the value
No other write to same memory location may be scheduled in between

External restrictions (on non-temporaries)
No write may be scheduled before initial read from a memory location
No write may be scheduled after last write to a memory location

Sufficient conditions:
Every read of a memory location is scheduled after every preceding
write to the same memory location
Every write to a memory location is scheduled after every preceding
read or write to the same memory location

Polyhedral Compilation Schedules May 30, 2017 22 / 82

Schedule Validity [3]

New schedule should preserve meaning

R(a) W(a) R(a) W(b) W(a) W(a)

Internal restrictions
No read of a value may be scheduled before the write of the value
No other write to same memory location may be scheduled in between

External restrictions (on non-temporaries)
No write may be scheduled before initial read from a memory location
No write may be scheduled after last write to a memory location

Sufficient conditions:
Every read of a memory location is scheduled after every preceding
write to the same memory location
Every write to a memory location is scheduled after every preceding
read or write to the same memory location

Polyhedral Compilation Schedules May 30, 2017 22 / 82

Schedule Validity [3]

New schedule should preserve meaning

R(a) W(a) R(a) W(b) W(a) W(a)

Internal restrictions
No read of a value may be scheduled before the write of the value
No other write to same memory location may be scheduled in between

External restrictions (on non-temporaries)
No write may be scheduled before initial read from a memory location
No write may be scheduled after last write to a memory location

Sufficient conditions:
Every read of a memory location is scheduled after every preceding
write to the same memory location
Every write to a memory location is scheduled after every preceding
read or write to the same memory location

Polyhedral Compilation Schedules May 30, 2017 22 / 82

Schedule Validity [3]

New schedule should preserve meaning

R(a) W(a) R(a) W(b) W(a) W(a)

Internal restrictions
No read of a value may be scheduled before the write of the value
No other write to same memory location may be scheduled in between

External restrictions (on non-temporaries)
No write may be scheduled before initial read from a memory location
No write may be scheduled after last write to a memory location

Sufficient conditions:
Every read of a memory location is scheduled after every preceding
write to the same memory location
Every write to a memory location is scheduled after every preceding
read or write to the same memory location

Polyhedral Compilation Schedules May 30, 2017 22 / 82

Schedule Validity [3]

New schedule should preserve meaning

R(a) W(a) R(a) W(b) W(a) W(a)

Internal restrictions
No read of a value may be scheduled before the write of the value
No other write to same memory location may be scheduled in between

External restrictions (on non-temporaries)
No write may be scheduled before initial read from a memory location
No write may be scheduled after last write to a memory location

Sufficient conditions:
Every read of a memory location is scheduled after every preceding
write to the same memory location
Every write to a memory location is scheduled after every preceding
read or write to the same memory location

Polyhedral Compilation Schedules May 30, 2017 23 / 82

Dependences

Sufficient conditions for validity of schedule S :
Every read of a memory location is scheduled after every preceding
write to the same memory location
Every write to a memory location is scheduled after every preceding
read or write to the same memory location

Dependence relation D: pairs of statement instances
accessing the same memory location
of which at least one is a write
with the first executed before the second in original code

Sufficient condition:
@iÑ j P D : i ăS j

Polyhedral Compilation Schedules May 30, 2017 24 / 82

Dependence Analysis
Recall: sufficient conditions for validity of schedule S :

@iÑ j P D : i ăS j

Dependence relation D: pairs of statement instances
accessing the same memory location
of which at least one is a write
with the first executed before the second in original code

Computation:

D “
``

W´1 ˝ R
˘

Y
`

W´1 ˝W
˘

Y
`

R´1 ˝W
˘˘

X păS0q

W : write access relation
R : read access relation
S0: original schedule

instances data

order

W , RS0

ăS0

Polyhedral Compilation Schedules May 30, 2017 24 / 82

Dependence Analysis
Recall: sufficient conditions for validity of schedule S :

@iÑ j P D : i ăS j

Dependence relation D: pairs of statement instances
accessing the same memory location
of which at least one is a write
with the first executed before the second in original code

Computation:

D “
``

W´1 ˝ R
˘

Y
`

W´1 ˝W
˘

Y
`

R´1 ˝W
˘˘

X păS0q

W : write access relation
R : read access relation
S0: original schedule

instances data

order

W , RS0

ăS0

Polyhedral Compilation Schedules May 30, 2017 25 / 82

Local Validity
Schedule validity:

@iÑ j P D : i ăS j

Consider subset of local dependences L
At outermost node: L “ D

Current node
band node with partial schedule f

@iÑ j P L : f piqďlex f pjq

Carried dependences: iÑ j P L : f piq ‰ f pjq
ñ no longer need to be considered in nested nodes
Remaining dependences: L1 “ t iÑ j P L : f piq “ f pjq u

sequence node with child position p and filters Fk

@iÑ j P L : ppiq ď ppjq

Carried dependences: iÑ j P L : ppiq ‰ ppjq
Remaining dependences in child c : L1 “ t iÑ j P L : i, j P Fc u
leaf node: L “ H

Polyhedral Compilation Schedules May 30, 2017 25 / 82

Local Validity
Schedule validity:

@iÑ j P D : i ăS j

Consider subset of local dependences L
At outermost node: L “ D
Current node

band node with partial schedule f

@iÑ j P L : f piqďlex f pjq

Carried dependences: iÑ j P L : f piq ‰ f pjq
ñ no longer need to be considered in nested nodes
Remaining dependences: L1 “ t iÑ j P L : f piq “ f pjq u

sequence node with child position p and filters Fk

@iÑ j P L : ppiq ď ppjq

Carried dependences: iÑ j P L : ppiq ‰ ppjq
Remaining dependences in child c : L1 “ t iÑ j P L : i, j P Fc u
leaf node: L “ H

Polyhedral Compilation Schedules May 30, 2017 25 / 82

Local Validity
Schedule validity:

@iÑ j P D : i ăS j

Consider subset of local dependences L
At outermost node: L “ D
Current node

band node with partial schedule f

@iÑ j P L : f piqďlex f pjq

Carried dependences: iÑ j P L : f piq ‰ f pjq
ñ no longer need to be considered in nested nodes
Remaining dependences: L1 “ t iÑ j P L : f piq “ f pjq u
sequence node with child position p and filters Fk

@iÑ j P L : ppiq ď ppjq

Carried dependences: iÑ j P L : ppiq ‰ ppjq
Remaining dependences in child c : L1 “ t iÑ j P L : i, j P Fc u

leaf node: L “ H

Polyhedral Compilation Schedules May 30, 2017 25 / 82

Local Validity
Schedule validity:

@iÑ j P D : i ăS j

Consider subset of local dependences L
At outermost node: L “ D
Current node

band node with partial schedule f

@iÑ j P L : f piqďlex f pjq

Carried dependences: iÑ j P L : f piq ‰ f pjq
ñ no longer need to be considered in nested nodes
Remaining dependences: L1 “ t iÑ j P L : f piq “ f pjq u
sequence node with child position p and filters Fk

@iÑ j P L : ppiq ď ppjq

Carried dependences: iÑ j P L : ppiq ‰ ppjq
Remaining dependences in child c : L1 “ t iÑ j P L : i, j P Fc u
leaf node: L “ H

Polyhedral Compilation Schedules May 30, 2017 26 / 82

Loop Distribution Validity
for (int i = 1; i < 100; ++i) {
S: A[i] = f(i);
T: B[i] = A[i] + A[i - 1];
}

t Sris Ñ ris; Tris Ñ ris u

t Sris u, t Tris u

Dependences:

t Sris Ñ Tris : 1 ď i ă 100; Sris Ñ Tri ` 1s : 1 ď i , i ` 1 ă 100 u

Loop distribution

for (int i = 1; i < 100; ++i)
A[i] = f(i);

for (int i = 1; i < 100; ++i)
B[i] = A[i] + A[i - 1];

t Sris u, t Tris u

t Sris Ñ ris ut Tris Ñ ris u

t Sris u, t Tris u
satisfied: t Sris Ñ Tris : 1 ď i ă 100 u

Polyhedral Compilation Schedules May 30, 2017 26 / 82

Loop Distribution Validity
for (int i = 1; i < 100; ++i) {
S: A[i] = f(i);
T: B[i] = A[i] + A[i - 1];
}

t Sris Ñ ris; Tris Ñ ris u

t Sris u, t Tris u

Dependences:

t Sris Ñ Tris : 1 ď i ă 100; Sris Ñ Tri ` 1s : 1 ď i , i ` 1 ă 100 u

Loop distribution

for (int i = 1; i < 100; ++i)
A[i] = f(i);

for (int i = 1; i < 100; ++i)
B[i] = A[i] + A[i - 1];

t Sris u, t Tris u

t Sris Ñ ris ut Tris Ñ ris u

t Sris u, t Tris u
satisfied: t Sris Ñ Tris : 1 ď i ă 100 u

Polyhedral Compilation Schedules May 30, 2017 26 / 82

Loop Distribution Validity
for (int i = 1; i < 100; ++i) {
S: A[i] = f(i);
T: B[i] = A[i] + A[i - 1];
}

t Sris Ñ ris; Tris Ñ ris u

t Sris u, t Tris u

Dependences:

t Sris Ñ Tris : 1 ď i ă 100; Sris Ñ Tri ` 1s : 1 ď i , i ` 1 ă 100 u

t Sris Ñ ris; Tris Ñ ris u
satisfied: t Sris Ñ Tris : 1 ď i ă 100; Sris Ñ Tri ` 1s : 1 ď i , i ` 1 ă 100 u
carried: t Sris Ñ Tri ` 1s : 1 ď i , i ` 1 ă 100 u

t Sris u, t Tris u
satisfied: t Sris Ñ Tris : 1 ď i ă 100 u
carried: t Sris Ñ Tris : 1 ď i ă 100 u
Loop distribution

for (int i = 1; i < 100; ++i)
A[i] = f(i);

for (int i = 1; i < 100; ++i)
B[i] = A[i] + A[i - 1];

t Sris u, t Tris u

t Sris Ñ ris ut Tris Ñ ris u

t Sris u, t Tris u
satisfied: t Sris Ñ Tris : 1 ď i ă 100 u

Polyhedral Compilation Schedules May 30, 2017 26 / 82

Loop Distribution Validity
for (int i = 1; i < 100; ++i) {
S: A[i] = f(i);
T: B[i] = A[i] + A[i - 1];
}

t Sris Ñ ris; Tris Ñ ris u

t Sris u, t Tris u

Dependences:

t Sris Ñ Tris : 1 ď i ă 100; Sris Ñ Tri ` 1s : 1 ď i , i ` 1 ă 100 u

t Sris Ñ ris; Tris Ñ ris u
satisfied: t Sris Ñ Tris : 1 ď i ă 100; Sris Ñ Tri ` 1s : 1 ď i , i ` 1 ă 100 u
carried: t Sris Ñ Tri ` 1s : 1 ď i , i ` 1 ă 100 u
t Sris u, t Tris u
satisfied: t Sris Ñ Tris : 1 ď i ă 100 u
carried: t Sris Ñ Tris : 1 ď i ă 100 u

Loop distribution

for (int i = 1; i < 100; ++i)
A[i] = f(i);

for (int i = 1; i < 100; ++i)
B[i] = A[i] + A[i - 1];

t Sris u, t Tris u

t Sris Ñ ris ut Tris Ñ ris u

t Sris u, t Tris u
satisfied: t Sris Ñ Tris : 1 ď i ă 100 u

Polyhedral Compilation Schedules May 30, 2017 26 / 82

Loop Distribution Validity
for (int i = 1; i < 100; ++i) {
S: A[i] = f(i);
T: B[i] = A[i] + A[i - 1];
}

t Sris Ñ ris; Tris Ñ ris u

t Sris u, t Tris u

Dependences:

t Sris Ñ Tris : 1 ď i ă 100; Sris Ñ Tri ` 1s : 1 ď i , i ` 1 ă 100 u

Loop distribution

for (int i = 1; i < 100; ++i)
A[i] = f(i);

for (int i = 1; i < 100; ++i)
B[i] = A[i] + A[i - 1];

t Sris u, t Tris u

t Sris Ñ ris ut Tris Ñ ris u

t Sris u, t Tris u
satisfied: t Sris Ñ Tris : 1 ď i ă 100 u

Polyhedral Compilation Schedules May 30, 2017 26 / 82

Loop Distribution Validity
for (int i = 1; i < 100; ++i) {
S: A[i] = f(i);
T: B[i] = A[i] + A[i - 1];
}

t Sris Ñ ris; Tris Ñ ris u

t Sris u, t Tris u

Dependences:

t Sris Ñ Tris : 1 ď i ă 100; Sris Ñ Tri ` 1s : 1 ď i , i ` 1 ă 100 u

Loop distribution

for (int i = 1; i < 100; ++i)
A[i] = f(i);

for (int i = 1; i < 100; ++i)
B[i] = A[i] + A[i - 1];

t Sris u, t Tris u

t Sris Ñ ris ut Tris Ñ ris u

t Sris u, t Tris u
satisfied: t Sris Ñ Tris : 1 ď i ă 100; Sris Ñ Tri ` 1s : 1 ď i , i ` 1 ă 100 u
carried: t Sris Ñ Tris : 1 ď i ă 100; Sris Ñ Tri ` 1s : 1 ď i , i ` 1 ă 100 u

Polyhedral Compilation Schedules May 30, 2017 26 / 82

Loop Distribution Validity
for (int i = 1; i < 100; ++i) {
S: A[i] = f(i);
T: B[i] = A[i] + A[i - 1];
}

t Sris Ñ ris; Tris Ñ ris u

t Sris u, t Tris u

Dependences:
t Sris Ñ Tris : 1 ď i ă 100; u

Loop distribution

for (int i = 1; i < 100; ++i)
A[i] = f(i);

for (int i = 1; i < 100; ++i)
B[i] = A[i] + A[i 1];

t Sris u, t Tris u

t Sris Ñ ris ut Tris Ñ ris u

t Sris u, t Tris u
satisfied: t Sris Ñ Tris : 1 ď i ă 100 u

Polyhedral Compilation Schedules May 30, 2017 26 / 82

Loop Distribution Validity
for (int i = 1; i < 100; ++i) {
S: A[i] = f(i);
T: B[i] = A[i] + A[i + 1];
}

t Sris Ñ ris; Tris Ñ ris u

t Sris u, t Tris u

Dependences:
t Sris Ñ Tris : 1 ď i ă 100; u

Loop distribution

for (int i = 1; i < 100; ++i)
A[i] = f(i);

for (int i = 1; i < 100; ++i)
B[i] = A[i] + A[i 1];

t Sris u, t Tris u

t Sris Ñ ris ut Tris Ñ ris u

t Sris u, t Tris u
satisfied: t Sris Ñ Tris : 1 ď i ă 100 u

Polyhedral Compilation Schedules May 30, 2017 26 / 82

Loop Distribution Validity
for (int i = 1; i < 100; ++i) {
S: A[i] = f(i);
T: B[i] = A[i] + A[i + 1];
}

t Sris Ñ ris; Tris Ñ ris u

t Sris u, t Tris u

Dependences:

t Sris Ñ Tris : 1 ď i ă 100; Tris Ñ Sri ` 1s : 1 ď i , i ` 1 ă 100 u

Loop distribution

for (int i = 1; i < 100; ++i)
A[i] = f(i);

for (int i = 1; i < 100; ++i)
B[i] = A[i] + A[i 1];

t Sris u, t Tris u

t Sris Ñ ris ut Tris Ñ ris u

t Sris u, t Tris u
satisfied: t Sris Ñ Tris : 1 ď i ă 100 u

Polyhedral Compilation Schedules May 30, 2017 26 / 82

Loop Distribution Validity
for (int i = 1; i < 100; ++i) {
S: A[i] = f(i);
T: B[i] = A[i] + A[i + 1];
}

t Sris Ñ ris; Tris Ñ ris u

t Sris u, t Tris u

Dependences:

t Sris Ñ Tris : 1 ď i ă 100; Tris Ñ Sri ` 1s : 1 ď i , i ` 1 ă 100 u

Loop distribution

for (int i = 1; i < 100; ++i)
A[i] = f(i);

for (int i = 1; i < 100; ++i)
B[i] = A[i] + A[i + 1];

t Sris u, t Tris u

t Sris Ñ ris ut Tris Ñ ris u

t Sris u, t Tris u
satisfied: t Sris Ñ Tris : 1 ď i ă 100 u

Polyhedral Compilation Schedules May 30, 2017 26 / 82

Loop Distribution Validity
for (int i = 1; i < 100; ++i) {
S: A[i] = f(i);
T: B[i] = A[i] + A[i + 1];
}

t Sris Ñ ris; Tris Ñ ris u

t Sris u, t Tris u

Dependences:

t Sris Ñ Tris : 1 ď i ă 100; Tris Ñ Sri ` 1s : 1 ď i , i ` 1 ă 100 u

Loop distribution

for (int i = 1; i < 100; ++i)
A[i] = f(i);

for (int i = 1; i < 100; ++i)
B[i] = A[i] + A[i + 1];

t Sris u, t Tris u

t Sris Ñ ris ut Tris Ñ ris u

t Sris u, t Tris u
satisfied: t Sris Ñ Tris : 1 ď i ă 100 u
violated: t Tris Ñ Sri ` 1s : 1 ď i , i ` 1 ă 100 u

Polyhedral Compilation Schedules May 30, 2017 27 / 82

Schedule Properties

Validity
New schedule should preserve meaning

Parallelism
Can the iterations of a given loop be executed in parallel?
Locality
Statement instances scheduled closely to each other
Tilability
Can a given schedule band be tiled?

Polyhedral Compilation Schedules May 30, 2017 27 / 82

Schedule Properties

Validity
New schedule should preserve meaning
Parallelism
Can the iterations of a given loop be executed in parallel?

Locality
Statement instances scheduled closely to each other
Tilability
Can a given schedule band be tiled?

Polyhedral Compilation Schedules May 30, 2017 28 / 82

Parallel Loops and Parallel Band Members

Recall:
Iterations of a given loop can be executed in parallel if
writes of iteration do not conflict with reads/writes of other iteration

iff there is no dependence between distinct iterations
(for any given iteration of the outer loops)

A band member with affine function f is parallel if

@iÑ j P L : f piq “ f pjq

with L the local dependences

Polyhedral Compilation Schedules May 30, 2017 28 / 82

Parallel Loops and Parallel Band Members

Recall:
Iterations of a given loop can be executed in parallel if
writes of iteration do not conflict with reads/writes of other iteration
iff there is no dependence between distinct iterations

(for any given iteration of the outer loops)

A band member with affine function f is parallel if

@iÑ j P L : f piq “ f pjq

with L the local dependences

Polyhedral Compilation Schedules May 30, 2017 28 / 82

Parallel Loops and Parallel Band Members

Recall:
Iterations of a given loop can be executed in parallel if
writes of iteration do not conflict with reads/writes of other iteration
iff there is no dependence between distinct iterations
(for any given iteration of the outer loops)

A band member with affine function f is parallel if

@iÑ j P L : f piq “ f pjq

with L the local dependences

Polyhedral Compilation Schedules May 30, 2017 28 / 82

Parallel Loops and Parallel Band Members

Recall:
Iterations of a given loop can be executed in parallel if
writes of iteration do not conflict with reads/writes of other iteration
iff there is no dependence between distinct iterations
(for any given iteration of the outer loops)

A band member with affine function f is parallel if

@iÑ j P L : f piq “ f pjq

with L the local dependences

Polyhedral Compilation Schedules May 30, 2017 29 / 82

Loop Distribution and Parallelism
for (int i = 1; i < 100; ++i) {
S: A[i] = f(i);
T: B[i] = A[i] + A[i - 1];
}

t Sris Ñ ris; Tris Ñ ris u

t Sris u, t Tris u

Dependences:

t Sris Ñ Tris : 1 ď i ă 100; Sris Ñ Tri ` 1s : 1 ď i , i ` 1 ă 100 u

Loop distribution

for (int i = 1; i < 100; ++i)
A[i] = f(i);

for (int i = 1; i < 100; ++i)
B[i] = A[i] + A[i - 1];

t Sris u, t Tris u

t Sris Ñ ris ut Tris Ñ ris u

t Sris Ñ ris u
local: H
conflict: H
ñ parallel

t Tris Ñ ris u
local: H
conflict: H
ñ parallel

Polyhedral Compilation Schedules May 30, 2017 29 / 82

Loop Distribution and Parallelism
for (int i = 1; i < 100; ++i) {
S: A[i] = f(i);
T: B[i] = A[i] + A[i - 1];
}

t Sris Ñ ris; Tris Ñ ris u

t Sris u, t Tris u

Dependences:

t Sris Ñ Tris : 1 ď i ă 100; Sris Ñ Tri ` 1s : 1 ď i , i ` 1 ă 100 u

t Sris Ñ ris; Tris Ñ ris u
local: t Sris Ñ Tris : 1 ď i ă 100; Sris Ñ Tri ` 1s : 1 ď i , i ` 1 ă 100 u
conflict: t Sris Ñ Tri ` 1s : 1 ď i , i ` 1 ă 100 u
ñ not parallel

Loop distribution

for (int i = 1; i < 100; ++i)
A[i] = f(i);

for (int i = 1; i < 100; ++i)
B[i] = A[i] + A[i - 1];

t Sris u, t Tris u

t Sris Ñ ris ut Tris Ñ ris u

t Sris Ñ ris u
local: H
conflict: H
ñ parallel

t Tris Ñ ris u
local: H
conflict: H
ñ parallel

Polyhedral Compilation Schedules May 30, 2017 29 / 82

Loop Distribution and Parallelism
for (int i = 1; i < 100; ++i) {
S: A[i] = f(i);
T: B[i] = A[i] + A[i - 1];
}

t Sris Ñ ris; Tris Ñ ris u

t Sris u, t Tris u

Dependences:

t Sris Ñ Tris : 1 ď i ă 100; Sris Ñ Tri ` 1s : 1 ď i , i ` 1 ă 100 u

Loop distribution

for (int i = 1; i < 100; ++i)
A[i] = f(i);

for (int i = 1; i < 100; ++i)
B[i] = A[i] + A[i - 1];

t Sris u, t Tris u

t Sris Ñ ris ut Tris Ñ ris u

t Sris Ñ ris u
local: H
conflict: H
ñ parallel

t Tris Ñ ris u
local: H
conflict: H
ñ parallel

Polyhedral Compilation Schedules May 30, 2017 29 / 82

Loop Distribution and Parallelism
for (int i = 1; i < 100; ++i) {
S: A[i] = f(i);
T: B[i] = A[i] + A[i - 1];
}

t Sris Ñ ris; Tris Ñ ris u

t Sris u, t Tris u

Dependences:

t Sris Ñ Tris : 1 ď i ă 100; Sris Ñ Tri ` 1s : 1 ď i , i ` 1 ă 100 u

Loop distribution

for (int i = 1; i < 100; ++i)
A[i] = f(i);

for (int i = 1; i < 100; ++i)
B[i] = A[i] + A[i - 1];

t Sris u, t Tris u

t Sris Ñ ris ut Tris Ñ ris u

t Sris Ñ ris u
local: H
conflict: H
ñ parallel

t Tris Ñ ris u
local: H
conflict: H
ñ parallel

Polyhedral Compilation Schedules May 30, 2017 29 / 82

Loop Distribution and Parallelism
for (int i = 1; i < 100; ++i) {
S: A[i] = f(i);
T: B[i] = A[i] + A[i - 1];
}

t Sris Ñ ris; Tris Ñ ris u

t Sris u, t Tris u

Dependences:

t Sris Ñ Tris : 1 ď i ă 100; Sris Ñ Tri ` 1s : 1 ď i , i ` 1 ă 100 u

Loop distribution

for (int i = 1; i < 100; ++i)
A[i] = f(i);

for (int i = 1; i < 100; ++i)
B[i] = A[i] + A[i - 1];

t Sris u, t Tris u

t Sris Ñ ris ut Tris Ñ ris u

t Sris Ñ ris u
local: H
conflict: H
ñ parallel

t Tris Ñ ris u
local: H
conflict: H
ñ parallel

Polyhedral Compilation Schedules May 30, 2017 30 / 82

Parallelism Example
for (int i = 1; i < 6; ++i)

for (int j = 0; j < 6; ++j)
S: A[i][j] = f(A[i - 1][[j + 1]);

Dependences:

t Sri , js Ñ Sri ` 1, j ´ 1s : 1 ď i , i ` 1 ă 6^ 0 ď j , j ´ 1 ă 6 u

i

j

1

2

12 original schedule:
Sri , js Ñ ri , js
new schedule:
Sri , js Ñ ri ` j , is
pi ` jq-direction is outer parallel

Decomposition: loop skewing + loop interchange

ri , js ri , i ` js ri ` j , is

Polyhedral Compilation Schedules May 30, 2017 30 / 82

Parallelism Example
for (int i = 1; i < 6; ++i)

for (int j = 0; j < 6; ++j)
S: A[i][j] = f(A[i - 1][[j + 1]);

Dependences:

t Sri , js Ñ Sri ` 1, j ´ 1s : 1 ď i , i ` 1 ă 6^ 0 ď j , j ´ 1 ă 6 u

i

j

1

2

12 original schedule:
Sri , js Ñ ri , js
new schedule:
Sri , js Ñ ri ` j , is
pi ` jq-direction is outer parallel

Decomposition: loop skewing + loop interchange

ri , js ri , i ` js ri ` j , is

Polyhedral Compilation Schedules May 30, 2017 30 / 82

Parallelism Example
for (int i = 1; i < 6; ++i)

for (int j = 0; j < 6; ++j)
S: A[i][j] = f(A[i - 1][[j + 1]);

Dependences:

t Sri , js Ñ Sri ` 1, j ´ 1s : 1 ď i , i ` 1 ă 6^ 0 ď j , j ´ 1 ă 6 u

i

j

1

2

12 original schedule:
Sri , js Ñ ri , js
new schedule:
Sri , js Ñ ri ` j , is
pi ` jq-direction is outer parallel

Decomposition: loop skewing + loop interchange

ri , js ri , i ` js ri ` j , is

Polyhedral Compilation Schedules May 30, 2017 30 / 82

Parallelism Example
for (int i = 1; i < 6; ++i)

for (int j = 0; j < 6; ++j)
S: A[i][j] = f(A[i - 1][[j + 1]);

Dependences:

t Sri , js Ñ Sri ` 1, j ´ 1s : 1 ď i , i ` 1 ă 6^ 0 ď j , j ´ 1 ă 6 u

i

j

1

2

12 original schedule:
Sri , js Ñ ri , js
new schedule:
Sri , js Ñ ri ` j , is
pi ` jq-direction is outer parallel

Decomposition: loop skewing + loop interchange

ri , js ri , i ` js ri ` j , is

Polyhedral Compilation Schedules May 30, 2017 31 / 82

Schedule Properties

Validity
New schedule should preserve meaning
Parallelism
Can the iterations of a given loop be executed in parallel?

Locality
Statement instances scheduled closely to each other
Tilability
Can a given schedule band be tiled?

Polyhedral Compilation Schedules May 30, 2017 31 / 82

Schedule Properties

Validity
New schedule should preserve meaning
Parallelism
Can the iterations of a given loop be executed in parallel?
Locality
Statement instances scheduled closely to each other

Tilability
Can a given schedule band be tiled?

Polyhedral Compilation Schedules May 30, 2017 32 / 82

Locality
Statement instances i and j that reuse memory
ñ scheduled closely to each other: f pjq ´ f piq small

Types of locality:
temporal locality
ñ instances that access the same memory element
spatial locality
ñ instances that access adjacent memory elements

Sometimes further distinction made:
self locality
ñ pair of instances from same statement
group locality
ñ any pair of statement instances

Temporal locality often restricted to
pairs of writes and reads that refer to the same value
ñ dataflow

Polyhedral Compilation Schedules May 30, 2017 32 / 82

Locality
Statement instances i and j that reuse memory
ñ scheduled closely to each other: f pjq ´ f piq small

Types of locality:
temporal locality
ñ instances that access the same memory element
spatial locality
ñ instances that access adjacent memory elements

Sometimes further distinction made:
self locality
ñ pair of instances from same statement
group locality
ñ any pair of statement instances

Temporal locality often restricted to
pairs of writes and reads that refer to the same value
ñ dataflow

Polyhedral Compilation Schedules May 30, 2017 32 / 82

Locality
Statement instances i and j that reuse memory
ñ scheduled closely to each other: f pjq ´ f piq small

Types of locality:
temporal locality
ñ instances that access the same memory element
spatial locality
ñ instances that access adjacent memory elements

Sometimes further distinction made:
self locality
ñ pair of instances from same statement
group locality
ñ any pair of statement instances

Temporal locality often restricted to
pairs of writes and reads that refer to the same value
ñ dataflow

Polyhedral Compilation Schedules May 30, 2017 32 / 82

Locality
Statement instances i and j that reuse memory
ñ scheduled closely to each other: f pjq ´ f piq small

Types of locality:
temporal locality
ñ instances that access the same memory element
spatial locality
ñ instances that access adjacent memory elements

Sometimes further distinction made:
self locality
ñ pair of instances from same statement
group locality
ñ any pair of statement instances

Temporal locality often restricted to
pairs of writes and reads that refer to the same value
ñ dataflow

Polyhedral Compilation Schedules May 30, 2017 33 / 82

Array Dataflow Analysis [14]

Given a read from an array element, what was the last write to
the same array element before the read?

for (i = 0; i < N; ++i)
for (j = 0; j < N - i; ++j)

F: a[i+j] = f(a[i+j]);
for (i = 0; i < N; ++i)
G: g(a[i]);

F

G

a

A1

A2

Access relations:
A1 “ t Fri , js Ñ ari ` js : 0 ď i ă N ^ 0 ď j ă N ´ i u
A2 “ t Gris Ñ aris : 0 ď i ă N u

Map to all writes: R2 “ A1
´1 ˝A2 “ t Gris Ñ Fri 1, i ´ i 1s : 0 ď i 1 ď i ă N u

Map to all preceding writes:
R 1 “ R2 X păSq

´1 “ t Gris Ñ Fri 1, i ´ i 1s : 0 ď i 1 ď i ă N u
Last preceding write: R “ maxăS

R 1 “ t Gris Ñ Fri , 0s : 0 ď i ă N u

Polyhedral Compilation Schedules May 30, 2017 33 / 82

Array Dataflow Analysis [14]

Given a read from an array element, what was the last write to
the same array element before the read?

for (i = 0; i < N; ++i)
for (j = 0; j < N - i; ++j)

F: a[i+j] = f(a[i+j]);
for (i = 0; i < N; ++i)
G: g(a[i]);

F

G

a

A1

A2

Access relations:
A1 “ t Fri , js Ñ ari ` js : 0 ď i ă N ^ 0 ď j ă N ´ i u
A2 “ t Gris Ñ aris : 0 ď i ă N u

Map to all writes: R2 “ A1
´1 ˝A2 “ t Gris Ñ Fri 1, i ´ i 1s : 0 ď i 1 ď i ă N u

Map to all preceding writes:
R 1 “ R2 X păSq

´1 “ t Gris Ñ Fri 1, i ´ i 1s : 0 ď i 1 ď i ă N u
Last preceding write: R “ maxăS

R 1 “ t Gris Ñ Fri , 0s : 0 ď i ă N u

Polyhedral Compilation Schedules May 30, 2017 33 / 82

Array Dataflow Analysis [14]

Given a read from an array element, what was the last write to
the same array element before the read?

for (i = 0; i < N; ++i)
for (j = 0; j < N - i; ++j)

F: a[i+j] = f(a[i+j]);
for (i = 0; i < N; ++i)
G: g(a[i]);

F

G

a

A1

A2

Access relations:
A1 “ t Fri , js Ñ ari ` js : 0 ď i ă N ^ 0 ď j ă N ´ i u
A2 “ t Gris Ñ aris : 0 ď i ă N u

Map to all writes: R2 “ A1
´1 ˝A2 “ t Gris Ñ Fri 1, i ´ i 1s : 0 ď i 1 ď i ă N u

Map to all preceding writes:
R 1 “ R2 X păSq

´1 “ t Gris Ñ Fri 1, i ´ i 1s : 0 ď i 1 ď i ă N u
Last preceding write: R “ maxăS

R 1 “ t Gris Ñ Fri , 0s : 0 ď i ă N u

Polyhedral Compilation Schedules May 30, 2017 33 / 82

Array Dataflow Analysis [14]

Given a read from an array element, what was the last write to
the same array element before the read?

for (i = 0; i < N; ++i)
for (j = 0; j < N - i; ++j)

F: a[i+j] = f(a[i+j]);
for (i = 0; i < N; ++i)
G: g(a[i]);

F

G

a

A1

A2

Access relations:
A1 “ t Fri , js Ñ ari ` js : 0 ď i ă N ^ 0 ď j ă N ´ i u
A2 “ t Gris Ñ aris : 0 ď i ă N u

Map to all writes: R2 “ A1
´1 ˝A2 “ t Gris Ñ Fri 1, i ´ i 1s : 0 ď i 1 ď i ă N u

Map to all preceding writes:
R 1 “ R2 X păSq

´1 “ t Gris Ñ Fri 1, i ´ i 1s : 0 ď i 1 ď i ă N u
Last preceding write: R “ maxăS

R 1 “ t Gris Ñ Fri , 0s : 0 ď i ă N u

Polyhedral Compilation Schedules May 30, 2017 33 / 82

Array Dataflow Analysis [14]

Given a read from an array element, what was the last write to
the same array element before the read?

for (i = 0; i < N; ++i)
for (j = 0; j < N - i; ++j)

F: a[i+j] = f(a[i+j]);
for (i = 0; i < N; ++i)
G: g(a[i]);

F

G

a

A1

A2

Access relations:
A1 “ t Fri , js Ñ ari ` js : 0 ď i ă N ^ 0 ď j ă N ´ i u
A2 “ t Gris Ñ aris : 0 ď i ă N u

Map to all writes: R2 “ A1
´1 ˝A2 “ t Gris Ñ Fri 1, i ´ i 1s : 0 ď i 1 ď i ă N u

Map to all preceding writes:
R 1 “ R2 X păSq

´1 “ t Gris Ñ Fri 1, i ´ i 1s : 0 ď i 1 ď i ă N u

Last preceding write: R “ maxăS
R 1 “ t Gris Ñ Fri , 0s : 0 ď i ă N u

Polyhedral Compilation Schedules May 30, 2017 33 / 82

Array Dataflow Analysis [14]

Given a read from an array element, what was the last write to
the same array element before the read?

for (i = 0; i < N; ++i)
for (j = 0; j < N - i; ++j)

F: a[i+j] = f(a[i+j]);
for (i = 0; i < N; ++i)
G: g(a[i]);

F

G

a

A1

A2

Access relations:
A1 “ t Fri , js Ñ ari ` js : 0 ď i ă N ^ 0 ď j ă N ´ i u
A2 “ t Gris Ñ aris : 0 ď i ă N u

Map to all writes: R2 “ A1
´1 ˝A2 “ t Gris Ñ Fri 1, i ´ i 1s : 0 ď i 1 ď i ă N u

Map to all preceding writes:
R 1 “ R2 X păSq

´1 “ t Gris Ñ Fri 1, i ´ i 1s : 0 ď i 1 ď i ă N u
Last preceding write: R “ maxăS

R 1 “ t Gris Ñ Fri , 0s : 0 ď i ă N u

Polyhedral Compilation Schedules May 30, 2017 34 / 82

Schedule Properties

Validity
New schedule should preserve meaning
Parallelism
Can the iterations of a given loop be executed in parallel?
Locality
Statement instances scheduled closely to each other

Tilability
Can a given schedule band be tiled?

Polyhedral Compilation Schedules May 30, 2017 34 / 82

Schedule Properties

Validity
New schedule should preserve meaning
Parallelism
Can the iterations of a given loop be executed in parallel?
Locality
Statement instances scheduled closely to each other
Tilability
Can a given schedule band be tiled?

Polyhedral Compilation Schedules May 30, 2017 35 / 82

Tiling a Band
Input:

band of affine schedule functions

f1, f2, . . . , fn

tile sizes
T1,T2, . . . ,Tn

Steps (conceptually)
1 divide each direction into chunks of size Ti (strip-mining)

tf1{T1u , f1, tf2{T2u , f2, . . . , tfn{Tnu , fn

does not change execution order ñ always valid
2 combine the chunking (interchange)

tf1{T1u , tf2{T2u , . . . , tfn{Tnu , f1, f2, . . . , fn

sufficient condition for interchange:
all members are valid for local dependences at (top of) band
ñ permutable band

Polyhedral Compilation Schedules May 30, 2017 35 / 82

Tiling a Band
Input:

band of affine schedule functions

f1, f2, . . . , fn

tile sizes
T1,T2, . . . ,Tn

Steps (conceptually)
1 divide each direction into chunks of size Ti (strip-mining)

tf1{T1u , f1, tf2{T2u , f2, . . . , tfn{Tnu , fn

does not change execution order ñ always valid
2 combine the chunking (interchange)

tf1{T1u , tf2{T2u , . . . , tfn{Tnu , f1, f2, . . . , fn

sufficient condition for interchange:
all members are valid for local dependences at (top of) band
ñ permutable band

Polyhedral Compilation Schedules May 30, 2017 35 / 82

Tiling a Band
Input:

band of affine schedule functions

f1, f2, . . . , fn

tile sizes
T1,T2, . . . ,Tn

Steps (conceptually)
1 divide each direction into chunks of size Ti (strip-mining)

tf1{T1u , f1, tf2{T2u , f2, . . . , tfn{Tnu , fn

does not change execution order ñ always valid

2 combine the chunking (interchange)

tf1{T1u , tf2{T2u , . . . , tfn{Tnu , f1, f2, . . . , fn

sufficient condition for interchange:
all members are valid for local dependences at (top of) band
ñ permutable band

Polyhedral Compilation Schedules May 30, 2017 35 / 82

Tiling a Band
Input:

band of affine schedule functions

f1, f2, . . . , fn

tile sizes
T1,T2, . . . ,Tn

Steps (conceptually)
1 divide each direction into chunks of size Ti (strip-mining)

tf1{T1u , f1, tf2{T2u , f2, . . . , tfn{Tnu , fn

does not change execution order ñ always valid
2 combine the chunking (interchange)

tf1{T1u , tf2{T2u , . . . , tfn{Tnu , f1, f2, . . . , fn

sufficient condition for interchange:
all members are valid for local dependences at (top of) band
ñ permutable band

Polyhedral Compilation Schedules May 30, 2017 35 / 82

Tiling a Band
Input:

band of affine schedule functions

f1, f2, . . . , fn

tile sizes
T1,T2, . . . ,Tn

Steps (conceptually)
1 divide each direction into chunks of size Ti (strip-mining)

tf1{T1u , f1, tf2{T2u , f2, . . . , tfn{Tnu , fn

does not change execution order ñ always valid
2 combine the chunking (interchange)

tf1{T1u , tf2{T2u , . . . , tfn{Tnu , f1, f2, . . . , fn

sufficient condition for interchange:
all members are valid for local dependences at (top of) band
ñ permutable band

Polyhedral Compilation Schedules May 30, 2017 36 / 82

Loop Tiling Example
for (int i = 0; i < 8; ++i)

for (int j = 0; j < 8; ++j)
S: C[i][j] = A[i] * B[j];

1 strip-mine
2 interchange

Sri , js Ñ i
Sri , js Ñ j

Polyhedral Compilation Schedules May 30, 2017 36 / 82

Loop Tiling Example
for (int i = 0; i < 8; ++i)

for (int j = 0; j < 8; ++j)
S: C[i][j] = A[i] * B[j];

1 strip-mine
2 interchange

Sri , js Ñ i
Sri , js Ñ j

Polyhedral Compilation Schedules May 30, 2017 36 / 82

Loop Tiling Example
for (int i = 0; i < 8; ++i)

for (int j = 0; j < 8; ++j)
S: C[i][j] = A[i] * B[j];

1 strip-mine

2 interchange

Sri , js Ñ 4 ti{4u

Sri , js Ñ i
Sri , js Ñ 4 tj{4u

Sri , js Ñ j

for (int ti = 0; ti < 8; ti += 4)
for (int i = ti; i < ti + 4; ++i)

for (int tj = 0; tj < 8; tj += 4)
for (int j = tj; j < tj + 4; ++j)

C[i][j] = A[i] * B[j];

Polyhedral Compilation Schedules May 30, 2017 36 / 82

Loop Tiling Example
for (int i = 0; i < 8; ++i)

for (int j = 0; j < 8; ++j)
S: C[i][j] = A[i] * B[j];

1 strip-mine
2 interchange

Sri , js Ñ 4 ti{4u

Sri , js Ñ 4 tj{4u

Sri , js Ñ i
Sri , js Ñ j

for (int ti = 0; ti < 8; ti += 4)
for (int tj = 0; tj < 8; tj += 4)

for (int i = ti; i < ti + 4; ++i)
for (int j = tj; j < tj + 4; ++j)

C[i][j] = A[i] * B[j];

Polyhedral Compilation Operations May 30, 2017 37 / 82

Operations on Polyhedral Model

Model Extraction
§ Input: AST
§ Output: instance set, access relations, original schedule

Dependence analysis
§ Input: instance set, access relations, original schedule
§ Output: dependence relations

Scheduling
§ Input: instance set, dependence relations
§ Output: schedule

AST generation (polyhedral scanning, code generation)
§ Input: instance set, schedule
§ Output: AST

Data layout transformations
§ Input: access relations, dependence relations
§ Output: transformed access relations

Polyhedral Compilation Operations May 30, 2017 38 / 82

Polyhedral Model Requirements

Requirements for basic polyhedral model: “regular” code
Static control
ñ control does not depend on input data
Affine
ñ all relevant expressions are (quasi-)affine
No Aliasing
ñ essentially no pointer manipulations

Note:
polyhedral model may be approximation of input that does not strictly
satisfy all requirements
many extensions are available

Polyhedral Compilation Operations May 30, 2017 38 / 82

Polyhedral Model Requirements

Requirements for basic polyhedral model: “regular” code
Static control
ñ control does not depend on input data
Affine
ñ all relevant expressions are (quasi-)affine
No Aliasing
ñ essentially no pointer manipulations

Note:
polyhedral model may be approximation of input that does not strictly
satisfy all requirements
many extensions are available

Polyhedral Compilation Operations May 30, 2017 39 / 82

Aliasing [1]

Some possible ways of handling aliasing:

use an input language that does not permit aliasing
pretend the problem does not exist
require user to ensure absence of aliasing
ñ e.g., use restrict keyword
handle as may-write
ñ may lead to too many dependences
check aliasing at run-time
ñ use original code in case of aliasing

Polyhedral Compilation Operations May 30, 2017 40 / 82

Operations on Polyhedral Model

Model Extraction
§ Input: AST
§ Output: instance set, access relations, original schedule

Dependence analysis
§ Input: instance set, access relations, original schedule
§ Output: dependence relations

Scheduling
§ Input: instance set, dependence relations
§ Output: schedule

AST generation (polyhedral scanning, code generation)
§ Input: instance set, schedule
§ Output: AST

Data layout transformations
§ Input: access relations, dependence relations
§ Output: transformed access relations

Polyhedral Compilation Operations May 30, 2017 40 / 82

Operations on Polyhedral Model

Model Extraction
§ Input: AST
§ Output: instance set, access relations, original schedule

Dependence analysis
§ Input: instance set, access relations, original schedule
§ Output: dependence relations

Scheduling
§ Input: instance set, dependence relations
§ Output: schedule

AST generation (polyhedral scanning, code generation)
§ Input: instance set, schedule
§ Output: AST

Data layout transformations
§ Input: access relations, dependence relations
§ Output: transformed access relations

Polyhedral Compilation Operations May 30, 2017 40 / 82

Operations on Polyhedral Model

Model Extraction
§ Input: AST
§ Output: instance set, access relations, original schedule

Dependence analysis
§ Input: instance set, access relations, original schedule
§ Output: dependence relations

Scheduling
§ Input: instance set, dependence relations
§ Output: schedule

AST generation (polyhedral scanning, code generation)
§ Input: instance set, schedule
§ Output: AST

Data layout transformations
§ Input: access relations, dependence relations
§ Output: transformed access relations

Polyhedral Compilation Operations May 30, 2017 41 / 82

Polyhedral Scheduling [10, 15]

Polyhedral model can be used to
evaluate a schedule and/or
construct a schedule

Some popular polyhedral schedulers:
Feautrier

§ maximal inner parallelism
ñ carry as many dependences as possible at outer bands

Pluto
§ tilable bands
§ locality: f pjq ´ f piq small
ñ parallelism as extreme case: f pjq ´ f piq “ 0

Many other scheduling algorithms have been proposed

Polyhedral Compilation Operations May 30, 2017 41 / 82

Polyhedral Scheduling [10, 15]

Polyhedral model can be used to
evaluate a schedule and/or
construct a schedule

Some popular polyhedral schedulers:
Feautrier

§ maximal inner parallelism
ñ carry as many dependences as possible at outer bands

Pluto
§ tilable bands
§ locality: f pjq ´ f piq small
ñ parallelism as extreme case: f pjq ´ f piq “ 0

Many other scheduling algorithms have been proposed

Polyhedral Compilation Operations May 30, 2017 42 / 82

Operations on Polyhedral Model

Model Extraction
§ Input: AST
§ Output: instance set, access relations, original schedule

Dependence analysis
§ Input: instance set, access relations, original schedule
§ Output: dependence relations

Scheduling
§ Input: instance set, dependence relations
§ Output: schedule

AST generation (polyhedral scanning, code generation)
§ Input: instance set, schedule
§ Output: AST

Data layout transformations
§ Input: access relations, dependence relations
§ Output: transformed access relations

Polyhedral Compilation Operations May 30, 2017 42 / 82

Operations on Polyhedral Model

Model Extraction
§ Input: AST
§ Output: instance set, access relations, original schedule

Dependence analysis
§ Input: instance set, access relations, original schedule
§ Output: dependence relations

Scheduling
§ Input: instance set, dependence relations
§ Output: schedule

AST generation (polyhedral scanning, code generation)
§ Input: instance set, schedule
§ Output: AST

Data layout transformations
§ Input: access relations, dependence relations
§ Output: transformed access relations

Polyhedral Compilation Operations May 30, 2017 42 / 82

Operations on Polyhedral Model

Model Extraction
§ Input: AST
§ Output: instance set, access relations, original schedule

Dependence analysis
§ Input: instance set, access relations, original schedule
§ Output: dependence relations

Scheduling
§ Input: instance set, dependence relations
§ Output: schedule

AST generation (polyhedral scanning, code generation)
§ Input: instance set, schedule
§ Output: AST

Data layout transformations
§ Input: access relations, dependence relations
§ Output: transformed access relations

Polyhedral Compilation Operations May 30, 2017 43 / 82

Data layout transformations [12, 13]

Memory compaction
Reuse memory locations to store different data

ñ apply non-injective mapping to array elements
ñ reduce memory requirements
ñ extreme case: replace array by scalar

for (int i = 0; i < 100; ++i) {
A[i] = f(i);
B[i] = g(A[i]);

}

Expansion
Use different memory locations to store different data

ñ map different accesses to memory element to distinct locations
ñ increase scheduling freedom (e.g., more parallelism)

Polyhedral Compilation Operations May 30, 2017 43 / 82

Data layout transformations [12, 13]

Memory compaction
Reuse memory locations to store different data

ñ apply non-injective mapping to array elements
ñ reduce memory requirements
ñ extreme case: replace array by scalar

for (int i = 0; i < 100; ++i) {
A[i] = f(i);
B[i] = g(A[i]);

}

Expansion
Use different memory locations to store different data

ñ map different accesses to memory element to distinct locations
ñ increase scheduling freedom (e.g., more parallelism)

Polyhedral Compilation Operations May 30, 2017 43 / 82

Data layout transformations [12, 13]

Memory compaction
Reuse memory locations to store different data

ñ apply non-injective mapping to array elements
ñ reduce memory requirements
ñ extreme case: replace array by scalar

for (int i = 0; i < 100; ++i) {
A

[i]

= f(i);
B[i] = g(A

[i]

);
}

Expansion
Use different memory locations to store different data

ñ map different accesses to memory element to distinct locations
ñ increase scheduling freedom (e.g., more parallelism)

Polyhedral Compilation Operations May 30, 2017 43 / 82

Data layout transformations [12, 13]

Memory compaction
Reuse memory locations to store different data

ñ apply non-injective mapping to array elements
ñ reduce memory requirements
ñ extreme case: replace array by scalar

for (int i = 0; i < 100; ++i) {
A

[i]

= f(i);
B[i] = g(A

[i]

);
}

Expansion
Use different memory locations to store different data

ñ map different accesses to memory element to distinct locations
ñ increase scheduling freedom (e.g., more parallelism)

Polyhedral Compilation Operations May 30, 2017 44 / 82

False Dependences
for (int i = 0; i < n; ++i) {
S: t = f1(A[i]);
T: B[i] = f2(t);
}
Dependences

read-after-write (“true”): t Sris Ñ Tri 1s : i 1 ě i u

write-after-read (“anti”): t Tris Ñ Sri 1s : i 1 ą i u

write-after-write (“output”): t Sris Ñ Sri 1s : i 1 ą i u

“false”

False dependences not from dataflow, but from reuse of memory location t

Possible solution: expansion/privatization
for (int i = 0; i < n; ++i) {
S: t[i] = f1(A[i]);
T: B[i] = f2(t[i]);
}

dataflow (subset of “true” dependences): t Sris Ñ Tris u

Polyhedral Compilation Operations May 30, 2017 44 / 82

False Dependences
for (int i = 0; i < n; ++i) {
S: t = f1(A[i]);
T: B[i] = f2(t);
}
Dependences

read-after-write (“true”): t Sris Ñ Tri 1s : i 1 ě i u

write-after-read (“anti”): t Tris Ñ Sri 1s : i 1 ą i u

write-after-write (“output”): t Sris Ñ Sri 1s : i 1 ą i u
“false”

False dependences not from dataflow, but from reuse of memory location t

Possible solution: expansion/privatization
for (int i = 0; i < n; ++i) {
S: t[i] = f1(A[i]);
T: B[i] = f2(t[i]);
}

dataflow (subset of “true” dependences): t Sris Ñ Tris u

Polyhedral Compilation Operations May 30, 2017 44 / 82

False Dependences
for (int i = 0; i < n; ++i) {
S: t = f1(A[i]);
T: B[i] = f2(t);
}
Dependences

read-after-write (“true”): t Sris Ñ Tri 1s : i 1 ě i u

write-after-read (“anti”): t Tris Ñ Sri 1s : i 1 ą i u

write-after-write (“output”): t Sris Ñ Sri 1s : i 1 ą i u
“false”

False dependences not from dataflow, but from reuse of memory location t

Possible solution: expansion/privatization
for (int i = 0; i < n; ++i) {
S: t[i] = f1(A[i]);
T: B[i] = f2(t[i]);
}

dataflow (subset of “true” dependences): t Sris Ñ Tris u

Polyhedral Compilation Operations May 30, 2017 45 / 82

Expansion
Assume:

instance sets and access relations are static and exact
ñ each read has exactly one corresponding write
single read and write per statement
ñ expanded array indexed by statement instance of write

for (int i = 0; i < n; ++i) {
S: t = f1(A[i]);
T: B[i] = f2(t);
}

Dataflow: t Sris Ñ Tris u

for (int i = 0; i < n; ++i) {
S: S[i] = f1(A[i]);
T: B[i] = f2(S[i]);
}

ñ only remaining dependences are dataflow induced

Polyhedral Compilation Operations May 30, 2017 45 / 82

Expansion
Assume:

instance sets and access relations are static and exact
ñ each read has exactly one corresponding write
single read and write per statement
ñ expanded array indexed by statement instance of write

for (int i = 0; i < n; ++i) {
S: t = f1(A[i]);
T: B[i] = f2(t);
}

Dataflow: t Sris Ñ Tris u

for (int i = 0; i < n; ++i) {
S: S[i] = f1(A[i]);
T: B[i] = f2(S[i]);
}

ñ only remaining dependences are dataflow induced

Polyhedral Compilation Operations May 30, 2017 45 / 82

Expansion
Assume:

instance sets and access relations are static and exact
ñ each read has exactly one corresponding write
single read and write per statement
ñ expanded array indexed by statement instance of write

for (int i = 0; i < n; ++i) {
S: t = f1(A[i]);
T: B[i] = f2(t);
}

Dataflow: t Sris Ñ Tris u

for (int i = 0; i < n; ++i) {
S: S[i] = f1(A[i]);
T: B[i] = f2(S[i]);
}

ñ only remaining dependences are dataflow induced

Polyhedral Compilation Operations May 30, 2017 46 / 82

Maximal Static Expansion [5]

for (int i = 0; i < n; ++i) {
S1: t = f1(i);
S2: A[i] = t;
S3: t = f2(i);
S4: if (f3(i))
S5: t = f4(i);
S6: B[i] = t;
}

t1[i] = f1(i);
A[i] = t1[i];
t2[i] = f2(i);
if (f3(i))

t2[i] = f4(i);
B[i] = t2[i];

Dataflow cannot be determined independently of run-time information

ñ approximate dataflow
t S1ris Ñ S2ris; S3ris Ñ S6ris; S5ris Ñ S6ris u

ñ a read may be associated to more than one write
ñ corresponding equivalence classes should not be expanded apart

Polyhedral Compilation Operations May 30, 2017 46 / 82

Maximal Static Expansion [5]

for (int i = 0; i < n; ++i) {
S1: t = f1(i);
S2: A[i] = t;
S3: t = f2(i);
S4: if (f3(i))
S5: t = f4(i);
S6: B[i] = t;
}

t1[i] = f1(i);
A[i] = t1[i];
t2[i] = f2(i);
if (f3(i))

t2[i] = f4(i);
B[i] = t2[i];

Dataflow cannot be determined independently of run-time information

ñ approximate dataflow
t S1ris Ñ S2ris; S3ris Ñ S6ris; S5ris Ñ S6ris u

ñ a read may be associated to more than one write
ñ corresponding equivalence classes should not be expanded apart

Polyhedral Compilation Operations May 30, 2017 46 / 82

Maximal Static Expansion [5]

for (int i = 0; i < n; ++i) {
S1: t = f1(i);
S2: A[i] = t;
S3: t = f2(i);
S4: if (f3(i))
S5: t = f4(i);
S6: B[i] = t;
}

t1[i] = f1(i);
A[i] = t1[i];
t2[i] = f2(i);
if (f3(i))

t2[i] = f4(i);
B[i] = t2[i];

Dataflow cannot be determined independently of run-time information

ñ approximate dataflow
t S1ris Ñ S2ris; S3ris Ñ S6ris; S5ris Ñ S6ris u

ñ a read may be associated to more than one write
ñ corresponding equivalence classes should not be expanded apart

Polyhedral Compilation Operations May 30, 2017 46 / 82

Maximal Static Expansion [5]

for (int i = 0; i < n; ++i) {
S1: t = f1(i);
S2: A[i] = t;
S3: t = f2(i);
S4: if (f3(i))
S5: t = f4(i);
S6: B[i] = t;
}

t1[i] = f1(i);
A[i] = t1[i];
t2[i] = f2(i);
if (f3(i))

t2[i] = f4(i);
B[i] = t2[i];

Dataflow cannot be determined independently of run-time information

ñ approximate dataflow
t S1ris Ñ S2ris; S3ris Ñ S6ris; S5ris Ñ S6ris u

ñ a read may be associated to more than one write
ñ corresponding equivalence classes should not be expanded apart

Polyhedral Compilation Operations May 30, 2017 47 / 82

Approximate Dataflow Analysis

How to compute dataflow in presence of data dependent control?

Two approaches
Direct computation

§ distinguish between may- and must-writes

Derived from exact run-time dependent dataflow
§ compute exact dataflow in terms of run-time information
§ exploit properties of run-time information
§ project out run-time information

Polyhedral Compilation Operations May 30, 2017 47 / 82

Approximate Dataflow Analysis

How to compute dataflow in presence of data dependent control?

Two approaches
Direct computation

§ distinguish between may- and must-writes
Derived from exact run-time dependent dataflow

§ compute exact dataflow in terms of run-time information
§ exploit properties of run-time information
§ project out run-time information

Polyhedral Compilation Operations May 30, 2017 47 / 82

Approximate Dataflow Analysis

How to compute dataflow in presence of data dependent control?

Two approaches
Direct computation

§ distinguish between may- and must-writes
Derived from exact run-time dependent dataflow

§ compute exact dataflow in terms of run-time information
§ exploit properties of run-time information
§ project out run-time information

Polyhedral Compilation Operations May 30, 2017 48 / 82

May Writes
Keep track of whether write is possible or definite

Must-writes
Array elements are definitely written by statement instance
May-writes
Array elements are possibly written by statement instance

§ statement instance not necessarily executed
for (i = 0; i < n; ++i)

if (A[i] > 0)
S: B[i] = A[i];
May-write: t Sris Ñ Bris u

§ array element not necessarily accessed
int A[N];
/* ... */
T: A[B[0]] = 5;
May-write: t Trs Ñ Aras : 0 ď a ă N u

Must-write access relation is subset of may-write access relation

Polyhedral Compilation Operations May 30, 2017 48 / 82

May Writes
Keep track of whether write is possible or definite

Must-writes
Array elements are definitely written by statement instance
May-writes
Array elements are possibly written by statement instance

§ statement instance not necessarily executed
for (i = 0; i < n; ++i)

if (A[i] > 0)
S: B[i] = A[i];
May-write: t Sris Ñ Bris u

§ array element not necessarily accessed
int A[N];
/* ... */
T: A[B[0]] = 5;
May-write: t Trs Ñ Aras : 0 ď a ă N u

Must-write access relation is subset of may-write access relation

Polyhedral Compilation Operations May 30, 2017 48 / 82

May Writes
Keep track of whether write is possible or definite

Must-writes
Array elements are definitely written by statement instance
May-writes
Array elements are possibly written by statement instance

§ statement instance not necessarily executed
for (i = 0; i < n; ++i)

if (A[i] > 0)
S: B[i] = A[i];
May-write: t Sris Ñ Bris u

§ array element not necessarily accessed
int A[N];
/* ... */
T: A[B[0]] = 5;
May-write: t Trs Ñ Aras : 0 ď a ă N u

Must-write access relation is subset of may-write access relation

Polyhedral Compilation Operations May 30, 2017 49 / 82

Approximate Dataflow — Direct Computation

Read-after-write dependences
§ write and read access same memory location
§ write executed before the read

ñ Approximate dataflow analysis with no must-writes
Dataflow dependences

§ write and read access same memory location
§ write executed before the read
§ no intermediate write to same memory location
ñ intermediate write kills dependence

Approximate dataflow dependences
§ may-write and read access same memory location
§ may-write executed before the read
§ no intermediate must-write to same memory location
ñ intermediate must-write kills dependence

Polyhedral Compilation Operations May 30, 2017 49 / 82

Approximate Dataflow — Direct Computation

Read-after-write dependences
§ write and read access same memory location
§ write executed before the read

ñ Approximate dataflow analysis with no must-writes

Dataflow dependences
§ write and read access same memory location
§ write executed before the read
§ no intermediate write to same memory location
ñ intermediate write kills dependence

Approximate dataflow dependences
§ may-write and read access same memory location
§ may-write executed before the read
§ no intermediate must-write to same memory location
ñ intermediate must-write kills dependence

Polyhedral Compilation Operations May 30, 2017 49 / 82

Approximate Dataflow — Direct Computation

Read-after-write dependences
§ write and read access same memory location
§ write executed before the read

ñ Approximate dataflow analysis with no must-writes

Dataflow dependences
§ write and read access same memory location
§ write executed before the read
§ no intermediate write to same memory location
ñ intermediate write kills dependence

Approximate dataflow dependences
§ may-write and read access same memory location
§ may-write executed before the read
§ no intermediate must-write to same memory location
ñ intermediate must-write kills dependence

Polyhedral Compilation Operations May 30, 2017 49 / 82

Approximate Dataflow — Direct Computation

Read-after-write dependences
§ write and read access same memory location
§ write executed before the read

ñ Approximate dataflow analysis with no must-writes
Dataflow dependences

§ write and read access same memory location
§ write executed before the read
§ no intermediate write to same memory location
ñ intermediate write kills dependence

Approximate dataflow dependences
§ may-write and read access same memory location
§ may-write executed before the read
§ no intermediate must-write to same memory location
ñ intermediate must-write kills dependence

Polyhedral Compilation Operations May 30, 2017 50 / 82

Approximate Dataflow Analysis

How to compute dataflow in presence of data dependent control?

Two approaches
Direct computation

§ distinguish between may- and must-writes
Derived from exact run-time dependent dataflow

§ compute exact dataflow in terms of run-time information
§ exploit properties of run-time information
§ project out run-time information

Polyhedral Compilation Operations May 30, 2017 50 / 82

Approximate Dataflow Analysis

How to compute dataflow in presence of data dependent control?

Two approaches
Direct computation

§ distinguish between may- and must-writes
Derived from exact run-time dependent dataflow

§ compute exact dataflow in terms of run-time information
§ exploit properties of run-time information
§ project out run-time information

Polyhedral Compilation Operations May 30, 2017 51 / 82

Run-time Dependent Dataflow Analysis [6, 32]

Approaches
“fuzzy array dataflow analysis”
“on-demand-parametric array dataflow analysis”

for (int i = 0; i < n; ++i) {
S1: t = f1(i);
S2: A[i] = t;
S3: t = f2(i);
S4: if (f3(i))
S5: t = f4(i);
S6: B[i] = t;
}

Run-time dependent dataflow
t S1ris Ñ S2ris; S3ris Ñ S6ris : βS5S6 “ 0; S5ris Ñ S6ris : βS5S6 “ 1 u
βPC : any potential source instance P is executed for sink C

λP
C : last potential source instance P executed for sink C

Approximate dataflow (project out β and λ)
t S1ris Ñ S2ris; S3ris Ñ S6ris; S5ris Ñ S6ris u

Polyhedral Compilation Operations May 30, 2017 51 / 82

Run-time Dependent Dataflow Analysis [6, 32]

Approaches
“fuzzy array dataflow analysis”
“on-demand-parametric array dataflow analysis”

for (int i = 0; i < n; ++i) {
S1: t = f1(i);
S2: A[i] = t;
S3: t = f2(i);
S4: if (f3(i))
S5: t = f4(i);
S6: B[i] = t;
}

Run-time dependent dataflow
t S1ris Ñ S2ris; S3ris Ñ S6ris : βS5S6 “ 0; S5ris Ñ S6ris : βS5S6 “ 1 u
βPC : any potential source instance P is executed for sink C

λP
C : last potential source instance P executed for sink C

Approximate dataflow (project out β and λ)
t S1ris Ñ S2ris; S3ris Ñ S6ris; S5ris Ñ S6ris u

Polyhedral Compilation Operations May 30, 2017 51 / 82

Run-time Dependent Dataflow Analysis [6, 32]

Approaches
“fuzzy array dataflow analysis”
“on-demand-parametric array dataflow analysis”

for (int i = 0; i < n; ++i) {
S1: t = f1(i);
S2: A[i] = t;
S3: t = f2(i);
S4: if (f3(i))
S5: t = f4(i);
S6: B[i] = t;
}

Run-time dependent dataflow
t S1ris Ñ S2ris; S3ris Ñ S6ris : βS5S6 “ 0; S5ris Ñ S6ris : βS5S6 “ 1 u
βPC : any potential source instance P is executed for sink C

λP
C : last potential source instance P executed for sink C

Approximate dataflow (project out β and λ)
t S1ris Ñ S2ris; S3ris Ñ S6ris; S5ris Ñ S6ris u

Polyhedral Compilation Operations May 30, 2017 51 / 82

Run-time Dependent Dataflow Analysis [6, 32]

Approaches
“fuzzy array dataflow analysis”
“on-demand-parametric array dataflow analysis”

for (int i = 0; i < n; ++i) {
S1: t = f1(i);
S2: A[i] = t;
S3: t = f2(i);
S4: if (f3(i))
S5: t = f4(i);
S6: B[i] = t;
}

Run-time dependent dataflow
t S1ris Ñ S2ris; S3ris Ñ S6ris : βS5S6 “ 0; S5ris Ñ S6ris : βS5S6 “ 1 u
βPC : any potential source instance P is executed for sink C

λP
C : last potential source instance P executed for sink C

Approximate dataflow (project out β and λ)
t S1ris Ñ S2ris; S3ris Ñ S6ris; S5ris Ñ S6ris u

Polyhedral Compilation Operations May 30, 2017 51 / 82

Run-time Dependent Dataflow Analysis [6, 32]

Approaches
“fuzzy array dataflow analysis”
“on-demand-parametric array dataflow analysis”

for (int i = 0; i < n; ++i) {
S1: t = f1(i);
S2: A[i] = t;
S3: t = f2(i);
S4: if (f3(i))
S5: t = f4(i);
S6: B[i] = t;
}

Run-time dependent dataflow
t S1ris Ñ S2ris; S3ris Ñ S6ris : βS5S6 “ 0; S5ris Ñ S6ris : βS5S6 “ 1 u
βPC : any potential source instance P is executed for sink C

λP
C : last potential source instance P executed for sink C

Approximate dataflow (project out β and λ)
t S1ris Ñ S2ris; S3ris Ñ S6ris; S5ris Ñ S6ris u

Polyhedral Compilation Operations May 30, 2017 52 / 82

Representing Dynamic Conditions
N1: n = f();

for (int k = 0; k < 100; ++k) {
M: m = g();

for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j)

A: a[j][i] = g();
N2: n = f();

}
What is instance set (restricted to A statement)?

t Ark, i , js : 0 ď k ă 100^ 0 ď i ă m^ 0 ď j ă n u?
ñ no, m and n cannot be treated as symbolic constants

(they are modified inside k-loop)

tArk, i , js : 0 ď k ă 100̂ 0 ď i ă valueOf_mpk q̂ 0 ď j ă valueOf_npkqu?
ñ requires uninterpreted functions (of arity ą 0)
Alternative: use overapproximation of instance set and keep track of

which elements are executed

Instance set: t Ark , i , js : 0 ď k ă 100^ 0 ď i ^ 0 ď j u
Filter:

§ Filter access relations: reader Ñ [writer Ñ array element]
‹ F A

1 “

Ark, i , js Ñ rMrks Ñ mrss
(

‹ F A
2 “

Ar0, i , js Ñ rN1rs Ñ nrss; Ark, i , js Ñ rN2rk ´ 1s Ñ nrsq : k ě 1
(

§ Filter value relation:
V A “ t Ark, i , js Ñ rm, ns : 0 ď k ď 99^ 0 ď i ă m ^ 0 ď j ă n u

Statement instance is executed iff values written by corresponding write
accesses (through filter access relations) satisfy filter value relation

Polyhedral Compilation Operations May 30, 2017 52 / 82

Representing Dynamic Conditions
N1: n = f();

for (int k = 0; k < 100; ++k) {
M: m = g();

for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j)

A: a[j][i] = g();
N2: n = f();

}
What is instance set (restricted to A statement)?
t Ark, i , js : 0 ď k ă 100^ 0 ď i ă m^ 0 ď j ă n u?

ñ no, m and n cannot be treated as symbolic constants
(they are modified inside k-loop)

tArk, i , js : 0 ď k ă 100̂ 0 ď i ă valueOf_mpk q̂ 0 ď j ă valueOf_npkqu?
ñ requires uninterpreted functions (of arity ą 0)
Alternative: use overapproximation of instance set and keep track of

which elements are executed

Instance set: t Ark , i , js : 0 ď k ă 100^ 0 ď i ^ 0 ď j u
Filter:

§ Filter access relations: reader Ñ [writer Ñ array element]
‹ F A

1 “

Ark, i , js Ñ rMrks Ñ mrss
(

‹ F A
2 “

Ar0, i , js Ñ rN1rs Ñ nrss; Ark, i , js Ñ rN2rk ´ 1s Ñ nrsq : k ě 1
(

§ Filter value relation:
V A “ t Ark, i , js Ñ rm, ns : 0 ď k ď 99^ 0 ď i ă m ^ 0 ď j ă n u

Statement instance is executed iff values written by corresponding write
accesses (through filter access relations) satisfy filter value relation

Polyhedral Compilation Operations May 30, 2017 52 / 82

Representing Dynamic Conditions
N1: n = f();

for (int k = 0; k < 100; ++k) {
M: m = g();

for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j)

A: a[j][i] = g();
N2: n = f();

}
What is instance set (restricted to A statement)?
t Ark, i , js : 0 ď k ă 100^ 0 ď i ă m^ 0 ď j ă n u?
ñ no, m and n cannot be treated as symbolic constants

(they are modified inside k-loop)

tArk, i , js : 0 ď k ă 100̂ 0 ď i ă valueOf_mpk q̂ 0 ď j ă valueOf_npkqu?
ñ requires uninterpreted functions (of arity ą 0)
Alternative: use overapproximation of instance set and keep track of

which elements are executed

Instance set: t Ark , i , js : 0 ď k ă 100^ 0 ď i ^ 0 ď j u
Filter:

§ Filter access relations: reader Ñ [writer Ñ array element]
‹ F A

1 “

Ark, i , js Ñ rMrks Ñ mrss
(

‹ F A
2 “

Ar0, i , js Ñ rN1rs Ñ nrss; Ark, i , js Ñ rN2rk ´ 1s Ñ nrsq : k ě 1
(

§ Filter value relation:
V A “ t Ark, i , js Ñ rm, ns : 0 ď k ď 99^ 0 ď i ă m ^ 0 ď j ă n u

Statement instance is executed iff values written by corresponding write
accesses (through filter access relations) satisfy filter value relation

Polyhedral Compilation Operations May 30, 2017 52 / 82

Representing Dynamic Conditions
N1: n = f();

for (int k = 0; k < 100; ++k) {
M: m = g();

for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j)

A: a[j][i] = g();
N2: n = f();

}
What is instance set (restricted to A statement)?
t Ark, i , js : 0 ď k ă 100^ 0 ď i ă m^ 0 ď j ă n u?
ñ no, m and n cannot be treated as symbolic constants

(they are modified inside k-loop)

tArk, i , js : 0 ď k ă 100̂ 0 ď i ă valueOf_mpk q̂ 0 ď j ă valueOf_npkqu?

ñ requires uninterpreted functions (of arity ą 0)
Alternative: use overapproximation of instance set and keep track of

which elements are executed

Instance set: t Ark , i , js : 0 ď k ă 100^ 0 ď i ^ 0 ď j u
Filter:

§ Filter access relations: reader Ñ [writer Ñ array element]
‹ F A

1 “

Ark, i , js Ñ rMrks Ñ mrss
(

‹ F A
2 “

Ar0, i , js Ñ rN1rs Ñ nrss; Ark, i , js Ñ rN2rk ´ 1s Ñ nrsq : k ě 1
(

§ Filter value relation:
V A “ t Ark, i , js Ñ rm, ns : 0 ď k ď 99^ 0 ď i ă m ^ 0 ď j ă n u

Statement instance is executed iff values written by corresponding write
accesses (through filter access relations) satisfy filter value relation

Polyhedral Compilation Operations May 30, 2017 52 / 82

Representing Dynamic Conditions
N1: n = f();

for (int k = 0; k < 100; ++k) {
M: m = g();

for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j)

A: a[j][i] = g();
N2: n = f();

}
What is instance set (restricted to A statement)?
t Ark, i , js : 0 ď k ă 100^ 0 ď i ă m^ 0 ď j ă n u?
ñ no, m and n cannot be treated as symbolic constants

(they are modified inside k-loop)

tArk, i , js : 0 ď k ă 100̂ 0 ď i ă valueOf_mpk q̂ 0 ď j ă valueOf_npkqu?
ñ requires uninterpreted functions (of arity ą 0)

Alternative: use overapproximation of instance set and keep track of
which elements are executed

Instance set: t Ark , i , js : 0 ď k ă 100^ 0 ď i ^ 0 ď j u
Filter:

§ Filter access relations: reader Ñ [writer Ñ array element]
‹ F A

1 “

Ark, i , js Ñ rMrks Ñ mrss
(

‹ F A
2 “

Ar0, i , js Ñ rN1rs Ñ nrss; Ark, i , js Ñ rN2rk ´ 1s Ñ nrsq : k ě 1
(

§ Filter value relation:
V A “ t Ark, i , js Ñ rm, ns : 0 ď k ď 99^ 0 ď i ă m ^ 0 ď j ă n u

Statement instance is executed iff values written by corresponding write
accesses (through filter access relations) satisfy filter value relation

Polyhedral Compilation Operations May 30, 2017 52 / 82

Representing Dynamic Conditions
N1: n = f();

for (int k = 0; k < 100; ++k) {
M: m = g();

for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j)

A: a[j][i] = g();
N2: n = f();

}
What is instance set (restricted to A statement)?
t Ark, i , js : 0 ď k ă 100^ 0 ď i ă m^ 0 ď j ă n u?
ñ no, m and n cannot be treated as symbolic constants

(they are modified inside k-loop)

tArk, i , js : 0 ď k ă 100̂ 0 ď i ă valueOf_mpk q̂ 0 ď j ă valueOf_npkqu?
ñ requires uninterpreted functions (of arity ą 0)
Alternative: use overapproximation of instance set and keep track of

which elements are executed

Instance set: t Ark , i , js : 0 ď k ă 100^ 0 ď i ^ 0 ď j u
Filter:

§ Filter access relations: reader Ñ [writer Ñ array element]
‹ F A

1 “

Ark, i , js Ñ rMrks Ñ mrss
(

‹ F A
2 “

Ar0, i , js Ñ rN1rs Ñ nrss; Ark, i , js Ñ rN2rk ´ 1s Ñ nrsq : k ě 1
(

§ Filter value relation:
V A “ t Ark, i , js Ñ rm, ns : 0 ď k ď 99^ 0 ď i ă m ^ 0 ď j ă n u

Statement instance is executed iff values written by corresponding write
accesses (through filter access relations) satisfy filter value relation

Polyhedral Compilation Operations May 30, 2017 52 / 82

Representing Dynamic Conditions
N1: n = f();

for (int k = 0; k < 100; ++k) {
M: m = g();

for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j)

A: a[j][i] = g();
N2: n = f();

}
Instance set: t Ark , i , js : 0 ď k ă 100^ 0 ď i ^ 0 ď j u
Filter:

§ Filter access relations: reader Ñ [writer Ñ array element]
‹ F A

1 “

Ark, i , js Ñ rMrks Ñ mrss
(

‹ F A
2 “

Ar0, i , js Ñ rN1rs Ñ nrss; Ark, i , js Ñ rN2rk ´ 1s Ñ nrsq : k ě 1
(

§ Filter value relation:
V A “ t Ark , i , js Ñ rm, ns : 0 ď k ď 99^ 0 ď i ă m ^ 0 ď j ă n u

Statement instance is executed iff values written by corresponding write
accesses (through filter access relations) satisfy filter value relation

Polyhedral Compilation Operations May 30, 2017 52 / 82

Representing Dynamic Conditions
N1: n = f();

for (int k = 0; k < 100; ++k) {
M: m = g();

for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j)

A: a[j][i] = g();
N2: n = f();

}
Instance set: t Ark , i , js : 0 ď k ă 100^ 0 ď i ^ 0 ď j u
Filter:

§ Filter access relations: reader Ñ [writer Ñ array element]
‹ F A

1 “

Ark, i , js Ñ rMrks Ñ mrss
(

‹ F A
2 “

Ar0, i , js Ñ rN1rs Ñ nrss; Ark, i , js Ñ rN2rk ´ 1s Ñ nrsq : k ě 1
(

§ Filter value relation:
V A “ t Ark , i , js Ñ rm, ns : 0 ď k ď 99^ 0 ď i ă m ^ 0 ď j ă n u

Statement instance is executed iff values written by corresponding write
accesses (through filter access relations) satisfy filter value relation

Polyhedral Compilation Operations May 30, 2017 53 / 82

Parametric Array Dataflow Analysis
while (1) {
N: n = f();

a = g();
if (n < 100)

H: a = h();
if (n > 200)

T: t(a);
}

I “ t Hris : i ě 0; Tris : i ě 0 u
F H “ t Hris Ñ rNris Ñ nrss u

V H “ t Hris Ñ rns : i ě 0^ n ă 100 u
F T “ t Tris Ñ rNris Ñ nrss u

V T “ t Tris Ñ rns : i ě 0^ n ą 200 u

Is there any dataflow between potential source and sink at inner level?

M “ t Tris Ñ Hris u
F H ˝M Ď F T

ñ filter elements accessed by any potential source instance associated to
sink instance forms subset of filter elements accessed by sink instance

ñ constraints on filter values at sink also apply at corresponding potential
source: V T ˝M´1 “ t Hris Ñ rns : i ě 0^ n ą 200 u

`

V T ˝M´1
˘

X V H “ H
ñ there can be no dataflow at inner level

potential source

sink

Polyhedral Compilation Operations May 30, 2017 53 / 82

Parametric Array Dataflow Analysis
while (1) {
N: n = f();

a = g();
if (n < 100)

H: a = h();
if (n > 200)

T: t(a);
}

I “ t Hris : i ě 0; Tris : i ě 0 u
F H “ t Hris Ñ rNris Ñ nrss u

V H “ t Hris Ñ rns : i ě 0^ n ă 100 u
F T “ t Tris Ñ rNris Ñ nrss u

V T “ t Tris Ñ rns : i ě 0^ n ą 200 u

Is there any dataflow between potential source and sink at inner level?

M “ t Tris Ñ Hris u
F H ˝M Ď F T

ñ filter elements accessed by any potential source instance associated to
sink instance forms subset of filter elements accessed by sink instance

ñ constraints on filter values at sink also apply at corresponding potential
source: V T ˝M´1 “ t Hris Ñ rns : i ě 0^ n ą 200 u

`

V T ˝M´1
˘

X V H “ H
ñ there can be no dataflow at inner level

potential source

sink

Polyhedral Compilation Operations May 30, 2017 53 / 82

Parametric Array Dataflow Analysis
while (1) {
N: n = f();

a = g();
if (n < 100)

H: a = h();
if (n > 200)

T: t(a);
}

I “ t Hris : i ě 0; Tris : i ě 0 u
F H “ t Hris Ñ rNris Ñ nrss u

V H “ t Hris Ñ rns : i ě 0^ n ă 100 u
F T “ t Tris Ñ rNris Ñ nrss u

V T “ t Tris Ñ rns : i ě 0^ n ą 200 u

Is there any dataflow between potential source and sink at inner level?
M “ t Tris Ñ Hris u

F H ˝M Ď F T

ñ filter elements accessed by any potential source instance associated to
sink instance forms subset of filter elements accessed by sink instance

ñ constraints on filter values at sink also apply at corresponding potential
source: V T ˝M´1 “ t Hris Ñ rns : i ě 0^ n ą 200 u

`

V T ˝M´1
˘

X V H “ H
ñ there can be no dataflow at inner level

potential source

sink

Polyhedral Compilation Operations May 30, 2017 53 / 82

Parametric Array Dataflow Analysis
while (1) {
N: n = f();

a = g();
if (n < 100)

H: a = h();
if (n > 200)

T: t(a);
}

I “ t Hris : i ě 0; Tris : i ě 0 u
F H “ t Hris Ñ rNris Ñ nrss u

V H “ t Hris Ñ rns : i ě 0^ n ă 100 u
F T “ t Tris Ñ rNris Ñ nrss u

V T “ t Tris Ñ rns : i ě 0^ n ą 200 u

Is there any dataflow between potential source and sink at inner level?
M “ t Tris Ñ Hris u
F H ˝M Ď F T

ñ filter elements accessed by any potential source instance associated to
sink instance forms subset of filter elements accessed by sink instance

ñ constraints on filter values at sink also apply at corresponding potential
source: V T ˝M´1 “ t Hris Ñ rns : i ě 0^ n ą 200 u

`

V T ˝M´1
˘

X V H “ H
ñ there can be no dataflow at inner level

potential source

sink

Polyhedral Compilation Operations May 30, 2017 53 / 82

Parametric Array Dataflow Analysis
while (1) {
N: n = f();

a = g();
if (n < 100)

H: a = h();
if (n > 200)

T: t(a);
}

I “ t Hris : i ě 0; Tris : i ě 0 u
F H “ t Hris Ñ rNris Ñ nrss u

V H “ t Hris Ñ rns : i ě 0^ n ă 100 u
F T “ t Tris Ñ rNris Ñ nrss u

V T “ t Tris Ñ rns : i ě 0^ n ą 200 u

Is there any dataflow between potential source and sink at inner level?
M “ t Tris Ñ Hris u
F H ˝M Ď F T

ñ filter elements accessed by any potential source instance associated to
sink instance forms subset of filter elements accessed by sink instance

ñ constraints on filter values at sink also apply at corresponding potential
source: V T ˝M´1 “ t Hris Ñ rns : i ě 0^ n ą 200 u

`

V T ˝M´1
˘

X V H “ H
ñ there can be no dataflow at inner level

potential source

sink

Polyhedral Compilation Operations May 30, 2017 53 / 82

Parametric Array Dataflow Analysis
while (1) {
N: n = f();

a = g();
if (n < 100)

H: a = h();
if (n > 200)

T: t(a);
}

I “ t Hris : i ě 0; Tris : i ě 0 u
F H “ t Hris Ñ rNris Ñ nrss u

V H “ t Hris Ñ rns : i ě 0^ n ă 100 u
F T “ t Tris Ñ rNris Ñ nrss u

V T “ t Tris Ñ rns : i ě 0^ n ą 200 u

Is there any dataflow between potential source and sink at inner level?
M “ t Tris Ñ Hris u
F H ˝M Ď F T

ñ filter elements accessed by any potential source instance associated to
sink instance forms subset of filter elements accessed by sink instance

ñ constraints on filter values at sink also apply at corresponding potential
source: V T ˝M´1 “ t Hris Ñ rns : i ě 0^ n ą 200 u

`

V T ˝M´1
˘

X V H “ H
ñ there can be no dataflow at inner level

potential source

sink

Polyhedral Compilation Operations May 30, 2017 54 / 82

Polyhedral Process Networks [24]

Main purpose: extract task level parallelism from dataflow graph

statement Ñ process
flow dependence Ñ communication channel

ñ requires dataflow analysis
Processes are mapped to parallel hardware (e.g., FPGA)

Example:

for (int i = 0; i < n; ++i) {
S: t = f1(A[i]);
T: B[i] = f2(t);
}

for (int i = 0; i < n; ++i)
write(fifo , f1(A[i]));

for (int i = 0; i < n; ++i)
B[i] = f2(read(fifo));

Polyhedral Compilation Operations May 30, 2017 54 / 82

Polyhedral Process Networks [24]

Main purpose: extract task level parallelism from dataflow graph

statement Ñ process
flow dependence Ñ communication channel

ñ requires dataflow analysis
Processes are mapped to parallel hardware (e.g., FPGA)

Example:

for (int i = 0; i < n; ++i) {
S: t = f1(A[i]);
T: B[i] = f2(t);
}

for (int i = 0; i < n; ++i)
write(fifo , f1(A[i]));

for (int i = 0; i < n; ++i)
B[i] = f2(read(fifo));

Polyhedral Compilation Operations May 30, 2017 54 / 82

Polyhedral Process Networks [24]

Main purpose: extract task level parallelism from dataflow graph

statement Ñ process
flow dependence Ñ communication channel

ñ requires dataflow analysis
Processes are mapped to parallel hardware (e.g., FPGA)

Example:

for (int i = 0; i < n; ++i) {
S: t = f1(A[i]);
T: B[i] = f2(t);
}

for (int i = 0; i < n; ++i)
write(fifo , f1(A[i]));

for (int i = 0; i < n; ++i)
B[i] = f2(read(fifo));

Polyhedral Compilation Operations May 30, 2017 55 / 82

Process Networks with Dynamic Control

for (int i = 0; i < n; ++i) {
S1: t = f1(i);
S2: A[i] = t;
S3: t = f2(i);
S4: if (f3(i))
S5: t = f4(i);
S6: B[i] = t;
}

Run-time dependent dataflow:
t S1ris Ñ S2ris; S3ris Ñ S6ris : βS5

S6 “ 0;

S5ris Ñ S6ris : βS5
S6 “ 1; S4ris Ñ S5ris u

f1

out_1ND_0

in_0ND_1

ED_1

f2

out_1ND_2

in_2ND_5

ED_2

f3

out_1ND_3

in_0ND_4

ED_0

f4

out_2ND_4dc0_ND_4_b

in_0ND_5

ED_3dc0_ND_5_b

CED_4

in_0ND_5

Polyhedral Compilation Operations May 30, 2017 55 / 82

Process Networks with Dynamic Control

for (int i = 0; i < n; ++i) {
S1: t = f1(i);
S2: A[i] = t;
S3: t = f2(i);
S4: if (f3(i))
S5: t = f4(i);
S6: B[i] = t;
}

Run-time dependent dataflow:
t S1ris Ñ S2ris; S3ris Ñ S6ris : βS5

S6 “ 0;

S5ris Ñ S6ris : βS5
S6 “ 1; S4ris Ñ S5ris u

f1

out_1ND_0

in_0ND_1

ED_1

f2

out_1ND_2

in_2ND_5

ED_2

f3

out_1ND_3

in_0ND_4

ED_0

f4

out_2ND_4dc0_ND_4_b

in_0ND_5

ED_3dc0_ND_5_b

CED_4

in_0ND_5

Polyhedral Compilation Software May 30, 2017 56 / 82

Polyhedral Software [4, 7, 8, 9, 10, 11, 16, 18, 19, 20, 21, 22, 23, 29, 31, 34]

http://polyhedral.info/software.html

Core set manipulation libraries
§ integer sets: isl, omega(+), . . .
§ rational sets: PolyLib, PPL, . . .

Model extraction
§ clan, pet, . . .

Dependence analysis
§ petit, candl, isl, FADA, . . .

Scheduler libraries
§ LetSee, isl, . . .

AST generation
§ omega(+), CLooG, isl, . . .

Source-to-source polyhedral compilers
§ Pluto, PoCC, PPCG, . . .

Compilers using polyhedral compilation
§ gcc/graphite, LLVM/Polly, . . .

http://polyhedral.info/software.html

PPCG May 30, 2017 57 / 82

Outline
1 Loop Transformations

Loop Distribution
Loop Fusion
Loop Tiling

2 Polyhedral Compilation
Introduction
Polyhedral Model
Schedules
Operations
Software

3 PPCG
Overview
Model Extraction
Dependence Analysis
Scheduling
Device Mapping

PPCG Overview May 30, 2017 58 / 82

CARP Project (2011–2015)
Design tools and techniques to aid
Correct and Efficient Accelerator Programming

GPUs CPUs FPGAs Other accelerators

OpenCL

pencil
Platform-Neutral

Compute Intermediate Language

Domain Specific Languages

Optimizing, auto-parallelizing
pencil Ñ OpenCL compiler

DSL Ñ pencil compilers

Direct OpenCL
programming

Direct pencil
programming
(hand written
pencil code)

PPCG Overview May 30, 2017 58 / 82

CARP Project (2011–2015)
Design tools and techniques to aid
Correct and Efficient Accelerator Programming

GPUs CPUs FPGAs Other accelerators

OpenCL

pencil
Platform-Neutral

Compute Intermediate Language

Domain Specific Languages

Optimizing, auto-parallelizing
pencil Ñ OpenCL compiler

DSL Ñ pencil compilers

Direct OpenCL
programming

Direct pencil
programming
(hand written
pencil code)

PPCG Overview May 30, 2017 59 / 82

PPCG Overview [31]

pen

c

il

PPCG OpenCL

CUDA

OpenMP

PPCG:
detect/expose parallelism
map parts of the code to an accelerator
copy data to/from device
introduce local copies of data

pencil:
C99 with restrictions and some extra builtins and pragmas pencil

PPCG Overview May 30, 2017 59 / 82

PPCG Overview [31]

pen

c

il

PPCG OpenCL

CUDA

OpenMP

PPCG:
detect/expose parallelism
map parts of the code to an accelerator
copy data to/from device
introduce local copies of data

pencil:
C99 with restrictions and some extra builtins and pragmas pencil

PPCG Overview May 30, 2017 59 / 82

PPCG Overview [31]

pencil PPCG OpenCL

CUDA

OpenMP

PPCG:
detect/expose parallelism
map parts of the code to an accelerator
copy data to/from device
introduce local copies of data

pencil:
C99 with restrictions and some extra builtins and pragmas pencil

PPCG Overview May 30, 2017 60 / 82

PPCG Internal Structure [31]

C extraction accesses
schedule

instances

context

dependence analysis dependences

dead code
elimination

instancesschedule constraintsschedulingschedule

mapping to device schedule AST generation AST

OpenCL CUDA

Note: as currently implemented (version 0.07), not necessarily how it should be implemented

PPCG Overview May 30, 2017 61 / 82

Connection with other Libraries and Tools

LLVM imath GMP

clang isl NTL PolyLib

Polly pet barvinok

PPCG isa iscc

pencilcc

Licenses:
BSD/MIT
LGPL
GPL

isl: manipulates parametric affine sets and relations
pet: extracts polyhedral model from clang AST
PPCG: Polyhedral Parallel Code Generator
pencilcc: pencil compiler

PPCG Model Extraction May 30, 2017 62 / 82

Instance Set
Region that needs to be extracted may be

marked by

#pragma scop
#pragma endscop

autodetected (--pet-autodetect)

Internal structured dynamic control is encapsulated

for (int x = 0; x < n; ++x) {
A: s = f();
B: while (P(x, s))

s = g(s);
C: h(s);
}

Instance set: t Arxs : 0 ď x ă n; Brxs : 0 ď x ă n; Crxs : 0 ď x ă n u

Note: currently, internal order of accesses is lost
ñ possible loss of accuracy in dependence analysis

PPCG Model Extraction May 30, 2017 62 / 82

Instance Set
Region that needs to be extracted may be

marked by

#pragma scop
#pragma endscop

autodetected (--pet-autodetect)

Internal structured dynamic control is encapsulated

for (int x = 0; x < n; ++x) {
A: s = f();
B: while (P(x, s))

s = g(s);
C: h(s);
}

Instance set: t Arxs : 0 ď x ă n; Brxs : 0 ď x ă n; Crxs : 0 ď x ă n u

Note: currently, internal order of accesses is lost
ñ possible loss of accuracy in dependence analysis

PPCG Model Extraction May 30, 2017 62 / 82

Instance Set
Region that needs to be extracted may be

marked by

#pragma scop
#pragma endscop

autodetected (--pet-autodetect)

Internal structured dynamic control is encapsulated

for (int x = 0; x < n; ++x) {
A: s = f();
B: while (P(x, s))

s = g(s);
C: h(s);
}

Instance set: t Arxs : 0 ď x ă n; Brxs : 0 ď x ă n; Crxs : 0 ď x ă n u

Note: currently, internal order of accesses is lost
ñ possible loss of accuracy in dependence analysis

PPCG Model Extraction May 30, 2017 63 / 82

Inlining

Enabled through C99 inline keyword on function definition

inline void set_diagonal(int n,
float A[const restrict static n][n], float v)

{
for (int i = 0; i < n; ++i)

U: A[i][i] = v;
}

void f(int n, float A[const restrict static n][n])
{
#pragma scop
S: set_diagonal(n, A, 0.f);

for (int i = 0; i < n; ++i)
for (int j = i + 1; j < n; ++j)

T: A[i][j] += A[i][j - 1] + 1;
#pragma endscop
}

Instance set: t Uris : 0 ď i ă n; Tri , js : 0 ď i ă j ă n u

PPCG Model Extraction May 30, 2017 63 / 82

Inlining

Enabled through C99 inline keyword on function definition

inline void set_diagonal(int n,
float A[const restrict static n][n], float v)

{
for (int i = 0; i < n; ++i)

U: A[i][i] = v;
}

void f(int n, float A[const restrict static n][n])
{
#pragma scop
S: set_diagonal(n, A, 0.f);

for (int i = 0; i < n; ++i)
for (int j = i + 1; j < n; ++j)

T: A[i][j] += A[i][j - 1] + 1;
#pragma endscop
}

Instance set: t Uris : 0 ď i ă n; Tri , js : 0 ď i ă j ă n u

PPCG Model Extraction May 30, 2017 63 / 82

Inlining

Enabled through C99 inline keyword on function definition

inline void set_diagonal(int n,
float A[const restrict static n][n], float v)

{
for (int i = 0; i < n; ++i)

U: A[i][i] = v;
}

void f(int n, float A[const restrict static n][n])
{
#pragma scop
S: set_diagonal(n, A, 0.f);

for (int i = 0; i < n; ++i)
for (int j = i + 1; j < n; ++j)

T: A[i][j] += A[i][j - 1] + 1;
#pragma endscop
}

Instance set: t Uris : 0 ď i ă n; Tri , js : 0 ď i ă j ă n u

PPCG Model Extraction May 30, 2017 64 / 82

Access Relations and Function Calls

void set_diagonal(int n,
float A[const restrict static n][n], float v)

{
for (int i = 0; i < n; ++i)

U: A[i][i] = v;
}

void f(int n, float A[const restrict static n][n])
{
#pragma scop
S: set_diagonal(n, A, 0.f);

for (int i = 0; i < n; ++i)
for (int j = i + 1; j < n; ++j)

T: A[i][j] += A[i][j - 1] + 1;
#pragma endscop
}

May-write: t Srs Ñ Ari , is : 0 ď i ă n; Tri , js Ñ Ari , js : 0 ď i ă j ă n u
Must-write: t Srs Ñ Ari , is : 0 ď i ă n; Tri , js Ñ Ari , js : 0 ď i ă j ă n u

PPCG Model Extraction May 30, 2017 64 / 82

Access Relations and Function Calls

void set_diagonal(int n,
float A[const restrict static n][n], float v)

{
for (int i = 0; i < n; ++i)

U: A[i][i] = v;
}

void f(int n, float A[const restrict static n][n])
{
#pragma scop
S: set_diagonal(n, A, 0.f);

for (int i = 0; i < n; ++i)
for (int j = i + 1; j < n; ++j)

T: A[i][j] += A[i][j - 1] + 1;
#pragma endscop
}

May-write: t Srs Ñ Ari , is : 0 ď i ă n; Tri , js Ñ Ari , js : 0 ď i ă j ă n u
Must-write: t Srs Ñ Ari , is : 0 ď i ă n; Tri , js Ñ Ari , js : 0 ď i ă j ă n u

PPCG Model Extraction May 30, 2017 65 / 82

Access Relations and Structures [26]

struct s {
int a;
int b;

};

int f()
{

struct s a, b[10];

S: a.b = 57;
T: a.a = 42;

for (int i = 0; i < 10; ++i)
U: b[i] = a;
}

Must-write:
t Srs Ñ a_brars Ñ brss; Trs Ñ a_arars Ñ arss;

Uris Ñ b_arbris Ñ arss; Uris Ñ b_brbris Ñ brss u

PPCG Model Extraction May 30, 2017 65 / 82

Access Relations and Structures [26]

struct s {
int a;
int b;

};

int f()
{

struct s a, b[10];

S: a.b = 57;
T: a.a = 42;

for (int i = 0; i < 10; ++i)
U: b[i] = a;
}

Must-write:
t Srs Ñ a_brars Ñ brss; Trs Ñ a_arars Ñ arss;

Uris Ñ b_arbris Ñ arss; Uris Ñ b_brbris Ñ brss u

PPCG Model Extraction May 30, 2017 66 / 82

Summary Functions [2, 26]

Analysis of accesses in called function may be inaccurate or even infeasible
missing body (library function without source)
unstructured control
aliasing
pattern inside dynamic control is ignored
additional information not explicitly expressed in code

ñ explicitly specify accesses in summary function pencil

PPCG Model Extraction May 30, 2017 67 / 82

Summary Function Example
int f(int i); int maybe (); struct s { int a; };
void set_odd_summary(int n, struct s A[static n]) {

for (int i = 1; i < n; i += 2)
if (maybe ())

A[i].a = 0;
}
__attribute__ ((pencil_access(set_odd_summary)))
void set_odd(int n, struct s A[static n])
{

for (int i = 0; i < n; ++i)
A[2 * f(i) + 1].a = i;

}
void foo(int n, struct s B[static 2 * n])
{
#pragma scop
S: set_odd (2 * n, B);
#pragma endscop
}

May-write: t Srs Ñ B_arBris Ñ arss : 0 ď i ă 2n u

PPCG Model Extraction May 30, 2017 67 / 82

Summary Function Example
int f(int i); int maybe (); struct s { int a; };
void set_odd_summary(int n, struct s A[static n]) {

for (int i = 1; i < n; i += 2)
if (maybe ())

A[i].a = 0;
}
__attribute__ ((pencil_access(set_odd_summary)))
void set_odd(int n, struct s A[static n])
{

for (int i = 0; i < n; ++i)
A[2 * f(i) + 1].a = i;

}
void foo(int n, struct s B[static 2 * n])
{
#pragma scop
S: set_odd (2 * n, B);
#pragma endscop
}

May-write: t Srs Ñ B_arBris Ñ arss : 0 ď i ă 2n u

PPCG Model Extraction May 30, 2017 67 / 82

Summary Function Example
int f(int i); int maybe (); struct s { int a; };
void set_odd_summary(int n, struct s A[static n]) {

for (int i = 1; i < n; i += 2)
if (maybe ())

A[i].a = 0;
}
__attribute__ ((pencil_access(set_odd_summary)))
void set_odd(int n, struct s A[static n])
{

for (int i = 0; i < n; ++i)
A[2 * f(i) + 1].a = i;

}
void foo(int n, struct s B[static 2 * n])
{
#pragma scop
S: set_odd (2 * n, B);
#pragma endscop
}

May-write: t Srs Ñ B_arBris Ñ arss : 0 ď i ă 2n u

PPCG Model Extraction May 30, 2017 67 / 82

Summary Function Example
int f(int i); int maybe (); struct s { int a; };
void set_odd_summary(int n, struct s A[static n]) {

for (int i = 1; i < n; i += 2)
if (maybe ())

A[i].a = 0;
}
__attribute__ ((pencil_access(set_odd_summary)))
void set_odd(int n, struct s A[static n])
{

for (int i = 0; i < n; ++i)
A[2 * f(i) + 1].a = i;

}
void foo(int n, struct s B[static 2 * n])
{
#pragma scop
S: set_odd (2 * n, B);
#pragma endscop
}

May-write: t Srs Ñ B_arBris Ñ arss : 0 ď i ă 2n u

PPCG Model Extraction May 30, 2017 67 / 82

Summary Function Example
int f(int i); int maybe (); struct s { int a; };
void set_odd_summary(int n, struct s A[static n]) {

for (int i = 1; i < n; i += 2)
if (maybe ())

A[i].a = 0;
}
__attribute__ ((pencil_access(set_odd_summary)))
void set_odd(int n, struct s A[static n])
{

for (int i = 0; i < n; ++i)
A[2 * f(i) + 1].a = i;

}
void foo(int n, struct s B[static 2 * n])
{
#pragma scop
S: set_odd (2 * n, B);
#pragma endscop
}

May-write: t Srs Ñ B_arBris Ñ arss : 0 ď i ă 2n ^ i mod 2 “ 1 u

PPCG Model Extraction May 30, 2017 68 / 82

Context

The context collects constraints on the symbolic constants
derived by pet

§ exclude values that result in undefined behavior
‹ negative array sizes
‹ out-of-bounds accesses
‹ signed integer overflow

§ __builtin_assume or __pencil_assume pencil

ñ any constraint can be specified
ñ only quasi-affine constraints on symbolic constants are exploited

specified on PPCG command line
§ --ctx
§ --assume-non-negative-parameters

Main purpose: simplify generated AST

PPCG Dependence Analysis May 30, 2017 69 / 82

Dependence analysis in isl [27, 28]

isl contains generic dependence analysis engine
ñ determines dependence relations between “sources” and “sinks”

Input:
Sink K : I Ñ D

May-source Y : I Ñ D

Kill L : I Ñ D

Schedule S on I ñ defines “before” and “intermediate”

Output:
May-dependence relation: triples pi, k, aq

§ i has a may-source to a
§ k has a sink to a
§ i is scheduled before k
§ there is no intermediate kill to a

May-no-source: sinks kÑ a with no kill to a before k

PPCG Dependence Analysis May 30, 2017 69 / 82

Dependence analysis in isl [27, 28]

isl contains generic dependence analysis engine
ñ determines dependence relations between “sources” and “sinks”

Input:
Sink K : I Ñ D

May-source Y : I Ñ D

Kill L : I Ñ D

Schedule S on I ñ defines “before” and “intermediate”
Output:

May-dependence relation: triples pi, k, aq
§ i has a may-source to a
§ k has a sink to a
§ i is scheduled before k
§ there is no intermediate kill to a

May-no-source: sinks kÑ a with no kill to a before k

PPCG Dependence Analysis May 30, 2017 69 / 82

Dependence analysis in isl [27, 28]

isl contains generic dependence analysis engine
ñ determines dependence relations between “sources” and “sinks”

Input:
Sink K : I Ñ D

May-source Y : I Ñ D

Kill L : I Ñ D

Schedule S on I ñ defines “before” and “intermediate”
Output:

May-dependence relation: triples pi, k, aq
§ i has a may-source to a
§ k has a sink to a
§ i is scheduled before k
§ there is no intermediate kill to a

May-no-source: sinks kÑ a with no kill to a before k

PPCG Dependence Analysis May 30, 2017 70 / 82

Dependence analysis in PPCG [28]

isl:
May-dependence relation: triples pi, k, aq

§ i has a may-source to a
§ k has a sink to a
§ i is scheduled before k
§ there is no intermediate kill to a

May-no-source: sinks kÑ a with no kill to a before k

PPCG (without live-range reordering):
flow dependences (without a) and live-in (may-no-source)

§ sink: may-read
§ may-source: may-write
§ kill: must-write

or pure kill

false dependences (without a)
§ sink: may-write
§ may-source: may-read or may-write
§ kill: must-write

killed writes (without k) (ñ removed from may-write to get live-out)
§ sink: must-write

or pure kill

§ may-source: may-write

PPCG Dependence Analysis May 30, 2017 71 / 82

Live-Range Reordering [26, 28]

a = f1();
f2(a);
a = f3();
f4(a);

: flow
: false

Reordering rejected due to false dependences

allows such live-ranges to be reordered
using somewhat different classification of dependences
computed using different calls to the same dependence analysis engine

PPCG Dependence Analysis May 30, 2017 71 / 82

Live-Range Reordering [26, 28]

a = f1();
f2(a);
a = f3();
f4(a);

: flow
: false

Reordering rejected due to false dependences

allows such live-ranges to be reordered
using somewhat different classification of dependences
computed using different calls to the same dependence analysis engine

PPCG Dependence Analysis May 30, 2017 71 / 82

Live-Range Reordering [26, 28]

a = f1();
f2(a);
a = f3();
f4(a);

: flow
: false

Reordering rejected due to false dependences

Live-range reordering
allows such live-ranges to be reordered
using somewhat different classification of dependences
computed using different calls to the same dependence analysis engine

PPCG Dependence Analysis May 30, 2017 72 / 82

Pure Kills [26]

Basic idea:
Must-writes kill dependences to earlier writes
Pure kills can also be useful
Used only as kills during dependence analysis, not as source

Kills can be inserted
automatically by pet

§ Variable declared within SCoP
ñ kill at declaration
ñ kill at end of enclosing block (if within SCoP)

§ Variable declared in scope that contains SCoP, only used inside
ñ kill at end of SCoP

manually by the user
§ __pencil_kill pencil

PPCG Dependence Analysis May 30, 2017 73 / 82

Dependence analysis in PPCG [28]

isl:
May-dependence relation: triples pi, k, aq

§ i has a may-source to a
§ k has a sink to a
§ i is scheduled before k
§ there is no intermediate kill to a

May-no-source: sinks kÑ a with no kill to a before k

PPCG (without live-range reordering):
flow dependences (without a) and live-in (may-no-source)

§ sink: may-read
§ may-source: may-write
§ kill: must-write

or pure kill

false dependences (without a)
§ sink: may-write
§ may-source: may-read or may-write
§ kill: must-write

killed writes (without k) (ñ removed from may-write to get live-out)
§ sink: must-write

or pure kill

§ may-source: may-write

PPCG Dependence Analysis May 30, 2017 73 / 82

Dependence analysis in PPCG [28]

isl:
May-dependence relation: triples pi, k, aq

§ i has a may-source to a
§ k has a sink to a
§ i is scheduled before k
§ there is no intermediate kill to a

May-no-source: sinks kÑ a with no kill to a before k

PPCG (without live-range reordering):
flow dependences (without a) and live-in (may-no-source)

§ sink: may-read
§ may-source: may-write
§ kill: must-write or pure kill

false dependences (without a)
§ sink: may-write
§ may-source: may-read or may-write
§ kill: must-write

killed writes (without k) (ñ removed from may-write to get live-out)
§ sink: must-write or pure kill
§ may-source: may-write

PPCG Dependence Analysis May 30, 2017 74 / 82

Kill Example
void f(int n, int A[restrict static n],

int B[restrict static n])
{

int t;
#pragma scop

for (int i = 0; i < n; ++i) {
t = A[i];
B[i] = t;

}
__pencil_kill(t);

#pragma endscop
}

Without kill of t, compiler needs to assume t may be used after loop
ñ last write needs to remain last
ñ limited scheduling freedom (even with live-range reordering)

Note: kill inserted automatically by pet (if t not used after SCoP)

PPCG Dependence Analysis May 30, 2017 74 / 82

Kill Example
void f(int n, int A[restrict static n],

int B[restrict static n])
{

int t;
#pragma scop

for (int i = 0; i < n; ++i) {
t = A[i];
B[i] = t;

}
__pencil_kill(t);

#pragma endscop
}

Without kill of t, compiler needs to assume t may be used after loop
ñ last write needs to remain last
ñ limited scheduling freedom (even with live-range reordering)

Note: kill inserted automatically by pet (if t not used after SCoP)

PPCG Dependence Analysis May 30, 2017 74 / 82

Kill Example
void f(int n, int A[restrict static n],

int B[restrict static n])
{

int t;
#pragma scop

for (int i = 0; i < n; ++i) {
t = A[i];
B[i] = t;

}
__pencil_kill(t);

#pragma endscop
}

Without kill of t, compiler needs to assume t may be used after loop
ñ last write needs to remain last
ñ limited scheduling freedom (even with live-range reordering)

Note: kill inserted automatically by pet (if t not used after SCoP)

PPCG Dependence Analysis May 30, 2017 75 / 82

Absence of Loop Carried Dependences [26]

void foo(int n, int A[restrict static n][n],
int B[restrict static n][n])

{
for (int i = 0; i < n; ++i)

#pragma pencil independent
for (int j = 0; j < n; ++j)

B[i][A[i][j]] = i + j;
}

Assume each row of A has distinct elements
ñ no loop-carried dependences, but PPCG cannot tell
ñ add #pragma pencil independent pencil

Note: not handled very efficiently in current version of PPCG
ñ only add when needed

PPCG Dependence Analysis May 30, 2017 75 / 82

Absence of Loop Carried Dependences [26]

void foo(int n, int A[restrict static n][n],
int B[restrict static n][n])

{
for (int i = 0; i < n; ++i)

#pragma pencil independent
for (int j = 0; j < n; ++j)

B[i][A[i][j]] = i + j;
}

Assume each row of A has distinct elements
ñ no loop-carried dependences, but PPCG cannot tell
ñ add #pragma pencil independent pencil

Note: not handled very efficiently in current version of PPCG
ñ only add when needed

PPCG Dependence Analysis May 30, 2017 75 / 82

Absence of Loop Carried Dependences [26]

void foo(int n, int A[restrict static n][n],
int B[restrict static n][n])

{
for (int i = 0; i < n; ++i)

#pragma pencil independent
for (int j = 0; j < n; ++j)

B[i][A[i][j]] = i + j;
}

Assume each row of A has distinct elements
ñ no loop-carried dependences, but PPCG cannot tell
ñ add #pragma pencil independent pencil

Note: not handled very efficiently in current version of PPCG
ñ only add when needed

PPCG Scheduling May 30, 2017 76 / 82

Optimization Criteria for PPCG

Two levels of parallelism
ñ blocks and threads (work groups and work items)
ñ parallelism

In PPCG, second level obtained through tiling
ñ tilability

Reduced working set for some arrays
ñ mapping to shared memory or registers

Obtained through tiling
ñ tilability

Reduced data movement
ñ locality

Simple schedules
ñ schedule used in several subsequent steps, including AST generation
ñ simplicity

PPCG Scheduling May 30, 2017 76 / 82

Optimization Criteria for PPCG

Two levels of parallelism
ñ blocks and threads (work groups and work items)
ñ parallelism

In PPCG, second level obtained through tiling
ñ tilability

Reduced working set for some arrays
ñ mapping to shared memory or registers

Obtained through tiling
ñ tilability

Reduced data movement
ñ locality

Simple schedules
ñ schedule used in several subsequent steps, including AST generation
ñ simplicity

PPCG Scheduling May 30, 2017 77 / 82

Scheduling Constraints [28]

Validity aÑ b
ñ statement instance b needs to be executed after a
ñ f pbq ě f paq

Proximity aÑ b
ñ statement instance b preferably executed close to a
ñ f pbq ´ f paq as small as possible

Coincidence aÑ b
ñ statement instance b preferably executed together with a
ñ f pbq “ f paq
ñ band member only considered “coincident” if it coschedules all pairs

Conditional validity (live-range reordering)
§ condition bÑ c (ø flow dependences)
§ conditioned validity aÑ b, cÑ d (ø order dependences)

Schedule constraints only relevant if coscheduled by outer nodes
Other schedule constraints are said to be carried by some outer node

PPCG Scheduling May 30, 2017 77 / 82

Scheduling Constraints [28]

Validity aÑ b
ñ statement instance b needs to be executed after a
ñ f pbq ě f paq

Proximity aÑ b
ñ statement instance b preferably executed close to a
ñ f pbq ´ f paq as small as possible

Coincidence aÑ b
ñ statement instance b preferably executed together with a
ñ f pbq “ f paq
ñ band member only considered “coincident” if it coschedules all pairs

Conditional validity (live-range reordering)
§ condition bÑ c (ø flow dependences)
§ conditioned validity aÑ b, cÑ d (ø order dependences)

Schedule constraints only relevant if coscheduled by outer nodes
Other schedule constraints are said to be carried by some outer node

PPCG Scheduling May 30, 2017 77 / 82

Scheduling Constraints [28]

Validity aÑ b
ñ statement instance b needs to be executed after a
ñ f pbq ě f paq

Proximity aÑ b
ñ statement instance b preferably executed close to a
ñ f pbq ´ f paq as small as possible

Coincidence aÑ b
ñ statement instance b preferably executed together with a
ñ f pbq “ f paq
ñ band member only considered “coincident” if it coschedules all pairs

Conditional validity (live-range reordering)
§ condition bÑ c (ø flow dependences)
§ conditioned validity aÑ b, cÑ d (ø order dependences)

Schedule constraints only relevant if coscheduled by outer nodes
Other schedule constraints are said to be carried by some outer node

PPCG Scheduling May 30, 2017 78 / 82

Dependences and Schedule Constraints [28]

Traditional dependences
flow dependences
ñ validity constraints
ñ proximity constraints
ñ coincidence constraints (when parallelism is important)

false dependences
ñ validity constraints
ñ coincidence constraints (when parallelism is important)
ñ proximity constraints (optional for memory reuse)

pairs of reads with shared write (“input dependences”)
ñ proximity constraints (optional)

Live-range reordering
somewhat different classification of dependences
slightly different mapping to schedule constraints

Current PPCG
adds false dependences to proximity constraints for historical reasons
does not consider input dependences
uses live-range reordering by default

PPCG Scheduling May 30, 2017 79 / 82

Forced Outer Coincidence Scheduler
Recall:

Feautrier
§ maximal inner parallelism
ñ carry as many dependences as possible at outer bands

Pluto
§ tilable bands
§ locality: f pjq ´ f piq small
ñ parallelism as extreme case: f pjq ´ f piq “ 0

PPCG uses variant of Pluto-algorithm with Feautrier fallback
ñ force outer coincidence in each band
ñ locally fall back to Feautrier if infeasible (single step)

Members in bands constructed by Pluto-algorithm are permutable
ñ if outer member cannot be coincident, then no member can be

Each step in Feautrier algorithm carries as many dependences as possible
ñ subsequent application of Pluto more likely to find coincident member

PPCG Scheduling May 30, 2017 79 / 82

Forced Outer Coincidence Scheduler
Recall:

Feautrier
§ maximal inner parallelism
ñ carry as many dependences as possible at outer bands

Pluto
§ tilable bands
§ locality: f pjq ´ f piq small
ñ parallelism as extreme case: f pjq ´ f piq “ 0

PPCG uses variant of Pluto-algorithm with Feautrier fallback
ñ force outer coincidence in each band
ñ locally fall back to Feautrier if infeasible (single step)

Members in bands constructed by Pluto-algorithm are permutable
ñ if outer member cannot be coincident, then no member can be

Each step in Feautrier algorithm carries as many dependences as possible
ñ subsequent application of Pluto more likely to find coincident member

PPCG Device Mapping May 30, 2017 80 / 82

Device Mapping [31]

Input: schedule tree

If schedule tree contains no coincident band member
ñ generate pure CPU code

Otherwise:
select subtree for mapping to the device
is entire schedule tree, except

§ coincidence-free children of outer set node
§ coincidence-free initial children of outer sequence node

within selected subtree, generate kernels for
§ outermost bands with coincident members
§ maximal coincidence-free subtrees
ñ insert zero-dimensional band node

add data copying to/from device around selected subtree
add device initialization and clean-up around entire schedule tree

PPCG Device Mapping May 30, 2017 80 / 82

Device Mapping [31]

Input: schedule tree

If schedule tree contains no coincident band member
ñ generate pure CPU code

Otherwise:
select subtree for mapping to the device
selected subtree is entire schedule tree, except

§ coincidence-free children of outer set node
§ coincidence-free initial children of outer sequence node

within selected subtree, generate kernels for
§ outermost bands with coincident members
§ maximal coincidence-free subtrees
ñ insert zero-dimensional band node

add data copying to/from device around selected subtree
add device initialization and clean-up around entire schedule tree

PPCG Device Mapping May 30, 2017 81 / 82

Data Copying to/from Device
Copy-out:

take may-writes
remove writes only needed for dataflow inside selected subtree
approximate to entire array

May-persist:
elements that may need to be preserved by selected subtree
consists of

§ elements that may need to be preserved by entire SCoP
ñ elements not definitely written and not definitely killed

§ elements in potential dataflow across selected subtree

May-not-written: pcopy-outXran may-persistq zmust-write

Copy-in: live-inYmay-not-written

Note: if array elements are structures, then entire structures are copied

PPCG Device Mapping May 30, 2017 81 / 82

Data Copying to/from Device
Copy-out:

take may-writes
remove writes only needed for dataflow inside selected subtree
approximate to entire array

May-persist:
elements that may need to be preserved by selected subtree
consists of

§ elements that may need to be preserved by entire SCoP
ñ elements not definitely written and not definitely killed

§ elements in potential dataflow across selected subtree

May-not-written: pcopy-outXran may-persistq zmust-write

Copy-in: live-inYmay-not-written

Note: if array elements are structures, then entire structures are copied

PPCG Device Mapping May 30, 2017 81 / 82

Data Copying to/from Device
Copy-out:

take may-writes
remove writes only needed for dataflow inside selected subtree
approximate to entire array

May-persist:
elements that may need to be preserved by selected subtree
consists of

§ elements that may need to be preserved by entire SCoP
ñ elements not definitely written and not definitely killed

§ elements in potential dataflow across selected subtree

May-not-written: pcopy-outXran may-persistq zmust-write

Copy-in: live-inYmay-not-written

Note: if array elements are structures, then entire structures are copied

PPCG Device Mapping May 30, 2017 81 / 82

Data Copying to/from Device
Copy-out:

take may-writes
remove writes only needed for dataflow inside selected subtree
approximate to entire array

May-persist:
elements that may need to be preserved by selected subtree
consists of

§ elements that may need to be preserved by entire SCoP
ñ elements not definitely written and not definitely killed

§ elements in potential dataflow across selected subtree

May-not-written: pcopy-outXran may-persistq zmust-write

Copy-in: live-inYmay-not-written

Note: if array elements are structures, then entire structures are copied

PPCG Device Mapping May 30, 2017 81 / 82

Data Copying to/from Device
Copy-out:

take may-writes
remove writes only needed for dataflow inside selected subtree
approximate to entire array

May-persist:
elements that may need to be preserved by selected subtree
consists of

§ elements that may need to be preserved by entire SCoP
ñ elements not definitely written and not definitely killed

§ elements in potential dataflow across selected subtree

May-not-written: pcopy-outXran may-persistq zmust-write

Copy-in: live-inYmay-not-written

Note: if array elements are structures, then entire structures are copied

PPCG Device Mapping May 30, 2017 82 / 82

Data Copying Example

__pencil_kill(A);
for (int i = 0; i < n; i++)

if (B[i] > 0)
A[i] = B[i];

A may be written
ñ A in copy-out
A may also not be written (completely)

, but no data can flow across kill

ñ parts of A may (be expected to) survive
ñ A also needs to be in copy-in

PPCG Device Mapping May 30, 2017 82 / 82

Data Copying Example

__pencil_kill(A);
for (int i = 0; i < n; i++)

if (B[i] > 0)
A[i] = B[i];

A may be written
ñ A in copy-out
A may also not be written (completely), but no data can flow across kill
ñ parts of A may (be expected to) survive
ñ A also needs to be in copy-in

May 30, 2017 1 / 10

References I

[1] Péricles Alves, Fabian Gruber, Johannes Doerfert,
Alexandros Lamprineas, Tobias Grosser, Fabrice Rastello, and
Fernando Magno Quintão Pereira. “Runtime Pointer
Disambiguation”. In: Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications. OOPSLA 2015. Pittsburgh, PA, USA:
ACM, 2015, pp. 589–606. doi: 10.1145/2814270.2814285.

[2] Riyadh Baghdadi, Ulysse Beaugnon, Albert Cohen, Tobias Grosser,
Michael Kruse, Chandan Reddy, Sven Verdoolaege, Javed Absar,
Sven van Haastregt, Alexey Kravets, Anton Lokhmotov, Adam Betts,
Alastair F. Donaldson, Jeroen Ketema, Róbert Dávid, and
Elnar Hajiyev. “PENCIL: A Platform-Neutral Compute Intermediate
Language for Accelerator Programming”. In: Proc. Parallel
Architectures and Compilation Techniques (PACT’15). Oct. 2015.
doi: 10.1109/PACT.2015.17.

http://dx.doi.org/10.1145/2814270.2814285
http://dx.doi.org/10.1109/PACT.2015.17

May 30, 2017 2 / 10

References II

[3] Riyadh Baghdadi, Albert Cohen, Sven Verdoolaege, and
Konrad Trifunovic. “Improved loop tiling based on the removal of
spurious false dependences”. In: TACO 9.4 (2013), p. 52. doi:
10.1145/2400682.2400711.

[4] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. “The Parma
Polyhedra Library: Toward a Complete Set of Numerical Abstractions
for the Analysis and Verification of Hardware and Software Systems”.
In: Science of Computer Programming 72.1–2 (2008), pp. 3–21.

[5] Denis Barthou, Albert Cohen, and Jean-François Collard. “Maximal
static expansion”. In: POPL ’98: Proceedings of the 25th ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages. San Diego, California, United States: ACM, 1998,
pp. 98–106. doi: 10.1145/268946.268955.

http://dx.doi.org/10.1145/2400682.2400711
http://dx.doi.org/10.1145/268946.268955

May 30, 2017 3 / 10

References III

[6] Denis Barthou, Jean-François Collard, and Paul Feautrier. “Fuzzy
Array Dataflow Analysis”. In: J. Parallel Distrib. Comput. 40.2
(1997), pp. 210–226. doi: 10.1006/jpdc.1996.1261.

[7] Cédric Bastoul. Generating loops for scanning polyhedra. Tech. rep.
2002/23. Versailles University, 2002.

[8] Cédric Bastoul. Extracting polyhedral representation from high level
languages. Tech. rep. LRI, Paris-Sud University, May 2008.

[9] Marouane Belaoucha, Denis Barthou, Adrien Eliche, and
Sid-Ahmed-Ali Touati. “FADAlib: an open source C++ library for
fuzzy array dataflow analysis”. In: Intl. Workshop on Practical
Aspects of High-Level Parallel Programming. Vol. 1. 1. Amsterdam,
The Netherlands, May 2010, pp. 2075–2084. doi:
DOI:10.1016/j.procs.2010.04.232.

http://dx.doi.org/10.1006/jpdc.1996.1261
http://dx.doi.org/DOI: 10.1016/j.procs.2010.04.232

May 30, 2017 4 / 10

References IV

[10] Uday Bondhugula, Muthu Baskaran, Sriram Krishnamoorthy,
J. Ramanujam, A. Rountev, and P. Sadayappan. “Automatic
Transformations for Communication-Minimized Parallelization and
Locality Optimization in the Polyhedral Model”. In: International
Conference on Compiler Construction (ETAPS CC). Apr. 2008. doi:
10.1007/978-3-540-78791-4_9.

[11] Candl.
http://icps.u-strasbg.fr/~bastoul/development/candl/.

[12] Alain Darte, Robert Schreiber, and Gilles Villard. “Lattice-Based
Memory Allocation”. In: IEEE Trans. Comput. 54.10 (2005),
pp. 1242–1257. doi: 10.1109/TC.2005.167.

[13] Paul Feautrier. “Array expansion”. In: ICS ’88: Proceedings of the
2nd international conference on Supercomputing. St. Malo, France:
ACM Press, 1988, pp. 429–441. doi: 10.1145/55364.55406.

http://dx.doi.org/10.1007/978-3-540-78791-4_9
http://icps.u-strasbg.fr/~bastoul/development/candl/
http://dx.doi.org/10.1109/TC.2005.167
http://dx.doi.org/10.1145/55364.55406

May 30, 2017 5 / 10

References V

[14] Paul Feautrier. “Dataflow analysis of array and scalar references”. In:
International Journal of Parallel Programming 20.1 (1991),
pp. 23–53. doi: 10.1007/BF01407931.

[15] Paul Feautrier. “Some Efficient Solutions to the Affine Scheduling
Problem. Part II. Multidimensional Time”. In: International Journal
of Parallel Programming 21.6 (Dec. 1992), pp. 389–420. doi:
10.1007/BF01379404.

[16] Tobias Grosser, Armin Größlinger, and Christian Lengauer. “Polly -
Performing polyhedral optimizations on a low-level intermediate
representation”. In: Parallel Processing Letters 22.04 (2012). doi:
10.1142/S0129626412500107.

[17] François Irigoin and Rémi Triolet. “Supernode partitioning”. In: 15th
Annual ACM Symposium on Principles of Programming Languages.
San Diego, California, Jan. 1988, pp. 319–329.

http://dx.doi.org/10.1007/BF01407931
http://dx.doi.org/10.1007/BF01379404
http://dx.doi.org/10.1142/S0129626412500107

May 30, 2017 6 / 10

References VI
[18] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and

D. Wonnacott. New user interface for Petit and other interfaces: user
guide. Tech. rep. Available as petit/doc/petit.ps in the Omega
distribution. University of Maryland, Dec. 1996.

[19] Wayne Kelly, Vadim Maslov, William Pugh, Evan Rosser,
Tatiana Shpeisman, and David Wonnacott. The Omega Library.
Tech. rep. University of Maryland, Nov. 1996.

[20] The Polyhedral Compiler Collection.
http://www.cse.ohio-state.edu/~pouchet/software/pocc/.
2012.

[21] Louis-Noël Pouchet, Cédric Bastoul, and Albert Cohen. LetSee: the
LEgal Transformation SpacE Explorator. Third International
Summer School on Advanced Computer Architecture and
Compilation for Embedded Systems (ACACES’07), L’Aquila, Italia.
Extended abstract, pp 247–251. July 2007.

http://www.cse.ohio-state.edu/~pouchet/software/pocc/

May 30, 2017 7 / 10

References VII

[22] Konrad Trifunovic, Albert Cohen, David Edelsohn, Feng Li,
Tobias Grosser, Harsha Jagasia, Razya Ladelsky, Sebastian Pop,
Jan Sjödin, and Ramakrishna Upadrasta. “GRAPHITE two years
after: First lessons learned from real-world polyhedral compilation”.
In: GCC Research Opportunities Workshop (GROW’10). 2010.

[23] Sven Verdoolaege. “isl: An Integer Set Library for the Polyhedral
Model”. In: Mathematical Software - ICMS 2010. Ed. by
Komei Fukuda, Joris Hoeven, Michael Joswig, and Nobuki Takayama.
Vol. 6327. Lecture Notes in Computer Science. Springer, 2010,
pp. 299–302. doi: 10.1007/978-3-642-15582-6_49.

[24] Sven Verdoolaege. “Polyhedral process networks”. In: Handbook of
Signal Processing Systems. Ed. by Shuvra Bhattacharrya,
Ed Deprettere, Rainer Leupers, and Jarmo Takala. Springer, 2010,
pp. 931–965. doi: 10.1007/978-1-4419-6345-1_33.

http://dx.doi.org/10.1007/978-3-642-15582-6_49
http://dx.doi.org/10.1007/978-1-4419-6345-1_33

May 30, 2017 8 / 10

References VIII

[25] Sven Verdoolaege. “Counting Affine Calculator and Applications”.
In: First International Workshop on Polyhedral Compilation
Techniques (IMPACT’11). Chamonix, France, Apr. 2011. doi:
10.13140/RG.2.1.2959.5601.

[26] Sven Verdoolaege. PENCIL support in pet and PPCG. Tech. rep.
RT-457, version 2. INRIA Paris-Rocquencourt, May 2015. doi:
10.13140/RG.2.1.4063.7926.

[27] Sven Verdoolaege. Presburger Formulas and Polyhedral Compilation.
2016. doi: 10.13140/RG.2.1.1174.6323.

[28] Sven Verdoolaege and Albert Cohen. “Live-Range Reordering”. In:
Proceedings of the sixth International Workshop on Polyhedral
Compilation Techniques. Prague, Czech Republic, Jan. 2016. doi:
10.13140/RG.2.1.3272.9680.

http://dx.doi.org/10.13140/RG.2.1.2959.5601
http://dx.doi.org/10.13140/RG.2.1.4063.7926
http://dx.doi.org/10.13140/RG.2.1.1174.6323
http://dx.doi.org/10.13140/RG.2.1.3272.9680

May 30, 2017 9 / 10

References IX

[29] Sven Verdoolaege and Tobias Grosser. “Polyhedral Extraction Tool”.
In: Second International Workshop on Polyhedral Compilation
Techniques (IMPACT’12). Paris, France, Jan. 2012. doi:
10.13140/RG.2.1.4213.4562.

[30] Sven Verdoolaege, Serge Guelton, Tobias Grosser, and Albert Cohen.
“Schedule Trees”. In: Proceedings of the 4th International Workshop
on Polyhedral Compilation Techniques. Vienna, Austria, Jan. 2014.
doi: 10.13140/RG.2.1.4475.6001.

[31] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen,
José Ignacio Gómez, Christian Tenllado, and Francky Catthoor.
“Polyhedral parallel code generation for CUDA”. In: ACM Trans.
Archit. Code Optim. 9.4 (2013), p. 54. doi:
10.1145/2400682.2400713.

http://dx.doi.org/10.13140/RG.2.1.4213.4562
http://dx.doi.org/10.13140/RG.2.1.4475.6001
http://dx.doi.org/10.1145/2400682.2400713

May 30, 2017 10 / 10

References X

[32] Sven Verdoolaege, Hristo Nikolov, and Todor Stefanov. “On Demand
Parametric Array Dataflow Analysis”. In: Third International
Workshop on Polyhedral Compilation Techniques (IMPACT’13).
Berlin, Germany, Jan. 2013. doi: 10.13140/RG.2.1.4737.7441.

[33] Sven Verdoolaege, Rachid Seghir, Kristof Beyls, Vincent Loechner,
and Maurice Bruynooghe. “Counting integer points in parametric
polytopes using Barvinok’s rational functions”. In: Algorithmica 48.1
(June 2007), pp. 37–66. doi: 10.1007/s00453-006-1231-0.

[34] Doran K. Wilde. A Library for doing polyhedral operations.
Tech. rep. 785. IRISA, Rennes, France, 1993, 45 p.

[35] Jingling Xue. Loop tiling for parallelism. Kluwer Academic
Publishers, 2000.

http://dx.doi.org/10.13140/RG.2.1.4737.7441
http://dx.doi.org/10.1007/s00453-006-1231-0

	Loop Transformations
	Loop Distribution
	Loop Fusion
	Loop Tiling

	Polyhedral Compilation
	Introduction
	Polyhedral Model
	Schedules
	Operations
	Software

	PPCG
	Overview
	Model Extraction
	Dependence Analysis
	Scheduling
	Device Mapping

	Appendix

