Electronic Systems

Improving the Efficiency of Deep Learning

Accelerating Deep Learning Applications

By: Maurice Peemen

Date: 31-5-2017

Technische Universiteit
Eindhoven
University of Technology

Where innovation starts

The deep learning setup

Models are getting larger

IMAGE RECOGNITION

SPEECH RECOGNITION

Dally, NIPS'2016 workshop on Efficient Methods for Deep Neural Networks

The Efficiency Problem of Deep Learning

- Computation Intensive
- Memory Intensive
- Difficult to Deploy

 AlphaGo: 1920 CPUs and 280 GPUs \$3000 electric bill per game

The Problem of Large DNN Models

App developers suffer from the model size

Large DNN on Mobile

Large models => more references => more energy

Operation	Energy [pJ]	Relative Cost
32 bit int ADD	0.1	1
32 bit float ADD	0.9	9
32 bit Register File	1	10
32 bit int MULT	3.1	31
32 bit float MULT	3.7	37
32 bit SRAM Cache	5	50
32 bit DRAM Memory	640	6400

Figure 1: Energy table for 45nm CMOS process. Memory access is 2 orders of magnitude more energy expensive than arithmetic operations.

Advanced Algorithms for Efficient Inference

- Pruning
- Weight sharing
- Quantization
- Huffman Coding
- **Best paper ICLR 2016**

DEEP COMPRESSION: COMPRESSING DEEP NEURAL NETWORKS WITH PRUNING, TRAINED QUANTIZATION AND HUFFMAN CODING

Stanford University, Stanford, CA 94305, USA songhan@stanford.edu

Pruning Networks

- Not all parameters are important
- Remove some
- Retrain to reduce errors

0.5%

0.0%

ss -1.0% -1.5% -2.0% -2.5% -3.0%

-3.0% -3.5%

-4.0% -4.5%

after pruning

before pruning

Similar performance with less parameters

Speedup for Pruned FC layer

- Intel Core i7 5930K: MKL CBLAS GEMV, MKL SPBLAS CSRMV
- NVIDIA GeForce GTX Titan X: cuBLAS GEMV, cuSPARSE CSRMV
- NVIDIA Tegra K1: cuBLAS GEMV, cuSPARSE CSRMV

Energy Efficiency for Pruned FC Layer

Deep Compression Approach

- Pruning helps the reduction
- Advanced quantization reduces even more

Evaluation of Deep Compression

Compression to the extreme

Add Huffman Encoding

Deep Compression Results

Network	Original (Compressed Size	Compression Ratio	Original Accuracy	Compressed Accuracy
LeNet-300	1070KB -	→ 27KB	40x	98.36% -	→ 98.42%
LeNet-5	1720KB -	→ 44KB	39x	99.20% -	→ 99.26%
AlexNet	240MB —	→ 6.9MB	35x	80.27% -	→ 80.30%
VGGNet	550MB —	→11.3MB	49x	88.68% -	→ 89.09%
GoogleNet	28MB —	→ 2.8MB	10x	88.90% -	→ 88.92%
SqueezeNet	4.8MB —	→ 0.47MB	10x	80.32% -	→ 80.35%

Diannao (Electric Brain)

- Improved CNN computation efficiency by dedicated functional units + buffers optimized for CNN work
- Multiplier + adder tree + shifter + non-linear lookup
- Weights in off-chip DRAM
- 452 GOP/s, 3.02 mm², 485 mW

Figure 15. Layout (65nm).

Figure 11. Accelerator.

Component or Block	Area in μm^2	(%)	Power in mW	(%)	Critical path in ns
ACCELERATOR	3,023,077		485		1.02
Combinational	608,842	(20.14%)	89	(18.41%)	
Memory	1,158,000	(38.31%)	177	(36.59%)	
Registers	375,882	(12.43%)	86	(17.84%)	
Clock network	68,721	(2.27%)	132	(27.16%)	
Filler cell	811,632	(26.85%)			
SB	1,153,814	(38.17%)	105	(22.65%)	
NBin	427,992	(14.16%)	91	(19.76%)	
NBout	433,906	(14.35%)	92	(19.97%)	
NFU	846,563	(28.00%)	132	(27.22%)	
CP	141,809	(5.69%)	31	(6.39%)	
AXIMUX	9,767	(0.32%)	8	(2.65%)	
Other	9,226	(0.31%)	26	(5.36%)	

Table 6. Characteristics of accelerator and breakdown by component type (first 5 lines), and functional block (last 7 lines).

Diannao later variants

- DaDianNao (Bigger Computer)
 - Multi-processor and EDRAM to fit large models
 - 68mm²
 - 16 Watt
 - 12 M parameters

- ShiDiannao (Vision Computer)
 - 2D PE array
 - 4.86 mm²
 - 320 mWatt
 - 64K parameters

Eyeriss Architecture

Die Photo

Eyeriss: Reduce Memory Access by Row-Stationary Dataflow

RS uses 1.4× - 2.5× lower energy than other dataflows

EIE: Efficient Inference Engine

Weight decode

Address Accumulate

EIE: Efficient Inference Engine on Compressed Deep Neural Network

Song Han* Xingyu Liu* Huizi Mao* Jing Pu* Ardavan Pedram*

Mark A. Horowitz* William J. Dally*†

*Stanford University, †NVIDIA

*Stanford University, †NVIDIA

*Stanford, perdavan, horowitz, dally}@stanford.edu

EIE PE architecture

Figure 4. (a) The architecture of Leading Non-zero Detection Node. (b) The architecture of Processing Element.

THE IMPLEMENTATION RESULTS OF ONE PE IN EIE AND THE BREAKDOWN BY COMPONENT TYPE (LINE 3-7), BY MODULE (LINE 8-13). THE CRITICAL PATH OF EIE IS 1.15 NS

	Power (mW)	(%)	Area (μm^2)	(%)
Total	9.157		638,024	
memory	5.416	(59.15%)	594,786	(93.22%)
clock network	1.874	(20.46%)	866	(0.14%)
register	1.026	(11.20%)	9,465	(1.48%)
combinational	0.841	(9.18%)	8,946	(1.40%)
filler cell			23,961	(3.76%)
Act_queue	0.112	(1.23%)	758	(0.12%)
PtrRead	1.807	(19.73%)	121,849	(19.10%)
SpmatRead	4.955	(54.11%)	469,412	(73.57%)
ArithmUnit	1.162	(12.68%)	3,110	(0.49%)
ActRW	1.122	(12.25%)	18,934	(2.97%)
filler cell			23,961	(3.76%)

Energy Efficiency Evaluation

>10x improvement over Da-DianNao by compression

Future Intelligence on Mobile

Phones

Glasses

Drones

Self Driving Cars

Robots

Limited Resource Battery Constrained Cooling Constrained

Outlook: the Path for Computation

Thank you for your attention

PC

Mobile-First

Al-First

Computation

Mobile Computation

Brain-Inspired Intelligent Computation

