
1

2

3

C++ tutorial
for C users

This book enunciates and illustrates features and basic principles of C++. It
is aimed at experienced C users who wish to learn C++. It can also be
interesting for beginner C++ users who leaved out some possibilities of the
language. The original text is www.4p8.com/eric.brasseur/cppcen.html

I wish to thank Didier Bizzarri, Toni Ronkko, Frédéric Cloth, Jack Lam,
Morten Brix Pedersen, Elmer Fittery, Ana Yuseepi, William L. Dye, Bahjat
F. Qaqish, Muthukumar Veluswamy, Marco Cimarosti, Jarrod Miller,
Nikolaos Pothitos and Ralph Wu for their inspiration, advice, help, data, bug
reports, references and bad practice busting.

Toni Ronkko: hytti.uku.fi/~tronkko
Frédéric Cloth: www.4p8.com/
Morten Brix Pedersen: www.wtf.dk/hp
Ralph Wu: blog.donews.com/ralix

This printed version is available at www.lulu.com/content/258714
© 1998 - 2006 Eric Brasseur

4

Table of Contents

1. A new way to include libraries...7

2. // for one-line remarks...9

3. Console input and output streams..11

4. Variable declarations can be put inside the code without using hooks...13

5. Variables can be initialized by a calculation involving other variables. .15

6. Variables can be declared inside a for loop declaration..........................17

7. Global variables can be accessed even if a local variables has the same
name..19

8. It is possible to declare a REFERENCE towards another variable.........21

9. Namespaces can be declared...27

10. A function can be declared inline...29

11. The exception structure has been added..31

12. A function can have default parameters..33

13. PARAMETERS OVERLOAD: several functions can be declared with
the same name provided there is a difference in their parameters list.....35

14. The symbolic operators (+ - * / ...) can be defined for new data types...37

15. Different functions for different data types will automatically be
generated provided you define a template function...............................39

16. The keywords new and delete are much better to allocate and deallocate
memory..41

17. To a class or struct you can add METHODS...43

18. The CONSTRUCTOR and the DESTRUCTOR can be used to initialize
and destroy an instance of a class..47

19. Complex classes need the COPY CONSTRUCTOR and an overload of
the = operator...51

5

20. The method bodies can be defined below the class definition (and
Makefile usage example)..53

21. The keyword this is a pointer towards the instance a method is acting
upon...59

22. Arrays of instances can be declared..61

23. An example of complete class declaration..63

24. static variables inside a class definition..69

25. const variables inside a class definition..71

26. A class can be DERIVED from another class...73

27. If a method is declared virtual the program will always first check the
type of an instance that is pointed to and will use the appropriate method
...75

28. A class can be derived from more than one base classes........................77

29. Class derivation allows to write generic methods...................................79

30. ENCAPSULATION: public, protected and private.............................83

31. Brief examples of file I/O..89

32. Character arrays can be used like files..91

33. An example of formated output...93

6

7

1. A new way to include libraries

There is a new way to #include libraries (the old method still works yet the
compiler roars). The .h extension is no more written and the names of
standard C libraries are written beginning with a c. In order for the program
to use these libraries correctly using namespace std; has to be added:

using namespace std;
#include <iostream>
#include <cmath>

int main ()
{
 double a;

 a = 1.2;
 a = sin (a);

 cout << a << endl;

 return 0;
}

8

Hints for beginners:

To compile this program, type it inside (or copy & paste it to) a text editor
(gedit, kwrite, kate, kedit, vi, emacs, nano, pico, mcedit...), save it as a file
named say test01.cpp (if you are a newbie, best put this file inside your
home directory, that is say /home/jones on a Unix-like box).

To compile this source code file, type this command (on most open-source
Unix-like boxes) in a console or terminal window:

g++ test01.cpp -o test01

To run the binary executable file test01 that has been produced by the
compilation (if there were no errors), type this:

./test01

Each time you modify the test01.cpp source code file, you need to compile it
again if you want the modifications to echo in the test01 executable file (type
the upward arrow key on your keyboard to recall commands).

9

2. // for one-line remarks

You can use // to type a remark:

using namespace std; // Using the standard library namespace.
#include <iostream> // The iostream library is often used.

int main () // The program's main routine.
{
 double a; // Declaration of variable a.

 a = 456.47;
 a = a + a * 21.5 / 100; // A calculation.

 cout << a << endl; // Display the content of a.

 return 0; // Program end.
}

The possibility to use // to type remarks has been added to C in C99 and
ANSI C 2000.

10

11

3. Console input and output streams

Input from keyboard and output to screen can be performed through cout <<
and cin >>:

using namespace std;
#include <iostream>

void main()
{
 int a; // a is an integer variable
 char s [100]; // s points to a string of max 99 characters

 cout << "This is a sample program." << endl;

 cout << endl; // Just a line feed (end of line)

 cout << "Type your age : ";
 cin >> a;

 cout << "Type your name: ";
 cin >> s;

 cout << endl;

 cout << "Hello " << s << " you're " << a << " old." << endl;
 cout << endl << endl << "Bye!" << endl;

 return 0;
}

12

13

4. Variable declarations can be put inside
the code without using hooks

Variables can be declared everywhere inside the code without using hooks:

using namespace std;
#include <iostream>

int main ()
{
 double a;

 cout << "Hello, this is a test program." << endl;

 cout << "Type parameter a: ";
 cin >> a;

 a = (a + 1) / 2;

 double c;

 c = a * 5 + 1;

 cout << "c contains : " << c << endl;

 int i, j;

 i = 0;
 j = i + 1;

 cout << "j contains : " << j << endl;

 return 0;
}

Maybe try to use this feature to make your source codes more readable and
not to mess them up :-).

14

Like in C, variables can be encapsulated between { } hooks. Then they are
local to the zone encapsulated between the { and }. Whatever happens with
such variables inside the encapsulated zone will have no effect outside the
zone:

using namespace std;
#include <iostream>

int main ()
{
 double a;

 cout << "Type a number: ";
 cin >> a;

 {
 int a = 1;
 a = a * 10 + 4;
 cout << "Local number: " << a << endl;
 }

 cout << "You typed: " << a << endl;

 return 0;
}

15

5. Variables can be initialized by a
calculation involving other variables

A variable can be initialized by a calculation involving other variables:

using namespace std;
#include <iostream>

int main ()
{
 double a = 12 * 3.25;
 double b = a + 1.112;

 cout << "a contains: " << a << endl;
 cout << "b contains: " << b << endl;

 a = a * 2 + b;

 double c = a + b * a;

 cout << "c contains: " << c << endl;

 return 0;
}

16

17

6. Variables can be declared inside a for
loop declaration

C++ allows an iterator to be local to a for loop:

using namespace std;
#include <iostream>

int main ()
{
 int i; // Simple declaration of i
 i = 487;

 for (int i = 0; i < 4; i++) // Local declaration of i
 {
 cout << i << endl; // This outputs 0, 1, 2 and 3
 }

 cout << i << endl; // This outputs 487

 return 0;
}

In case the variable is not declared somewhere above the loop, you may be
tempted to use it below the loop. Some early C++ compilers accept this.
Then the variable has the value it had when the loop ended. You shouldn't do
this. It's a bad practice:

using namespace std;
#include <iostream>

int main ()
{

 for (int i = 0; i < 4; i++)
 {
 cout << i << endl;
 }

 cout << i << endl; // Bad practice!
 i += 5; // Bad practice!
 cout << i << endl; // Bad practice!

 return 0;
}

18

19

7. Global variables can be accessed even
if a local variables has the same name

A global variable can be accessed even if another variable with the same
name has been declared inside the function:

using namespace std;
#include <iostream>

double a = 128;

int main ()
{
 double a = 256;

 cout << "Local a: " << a << endl;
 cout << "Global a: " << ::a << endl;

 return 0;
}

20

21

8. It is possible to declare a REFERENCE
towards another variable

It is possible to make one variable be another:

using namespace std;
#include <iostream>

int main ()
{
 double a = 3.1415927;

 double &b = a; // b is a

 b = 89;

 cout << "a contains: " << a << endl; // Displays 89.

 return 0;
}

If you are used at pointers and want to know what happens, simply think
double &b = a is translated to double *b = &a and all subsequent b are
replaced by *b.

The value of REFERENCE b cannot be changed after its declaration. For
example you cannot write, a few lines further, &b = c expecting now b is c.
It won't work. Everything is said on the declaration line of b. Reference b
and variable a are married on that line and nothing will separate them.

22

References can be used to allow a function to modify a calling variable:

using namespace std;
#include <iostream>

void change (double &r, double s)
{
 r = 100;
 s = 200;
}

int main ()
{
 double k, m;

 k = 3;
 m = 4;

 change (k, m);

 cout << k << ", " << m << endl; // Displays 100, 4.

 return 0;
}

If you are used at pointers in C and wonder how exactly the program above
works, here is how the C++ compiler would translate it to C:

using namespace std;
#include <iostream>

void change (double *r, double s)
{
 *r = 100;
 s = 200;
}

int main ()
{
 double k, m;

 k = 3;
 m = 4;

 change (&k, m);

 cout << k << ", " << m << endl; // Displays 100, 4.

 return 0;
}

23

A reference can be used to let a function return a variable:

using namespace std;
#include <iostream>

double &biggest (double &r, double &s)
{
 if (r > s) return r;
 else return s;
}

int main ()
{
 double k = 3;
 double m = 7;

 cout << "k: " << k << endl; // Displays 3
 cout << "m: " << m << endl; // Displays 7
 cout << endl;

 biggest (k, m) = 10;

 cout << "k: " << k << endl; // Displays 3
 cout << "m: " << m << endl; // Displays 10
 cout << endl;

 biggest (k, m) ++;

 cout << "k: " << k << endl; // Displays 3
 cout << "m: " << m << endl; // Displays 11
 cout << endl;

 return 0;
}

24

Again, provided you're used at pointer arithmetics and if you wonder how the
program above works, just think the compiler translated it into the following
standard C program:

using namespace std;
#include <iostream>

double *biggest (double *r, double *r)
{
 if (*r > *s) return r;
 else return s;
}

int main ()
{
 double k = 3;
 double m = 7;

 cout << "k: " << k << endl;
 cout << "m: " << m << endl;
 cout << endl;

 (*(biggest (&k, &m))) = 10;

 cout << "k: " << k << endl;
 cout << "m: " << m << endl;
 cout << endl;

 (*(biggest (&k, &m))) ++;

 cout << "k: " << k << endl;
 cout << "m: " << m << endl;
 cout << endl;

 return 0;
}

25

To end with, for people who have to deal with pointers yet do not like it,
references are useful to un-pointer variables. Beware this is considered a bad
practice. You can go into trouble. See for example
www.embedded.com/story/OEG20010311S0024

using namespace std;
#include <iostream>

double *silly_function () // Returns a pointer to a double
{
 static double r = 342;
 return &r;
}

int main ()
{
 double *a;

 a = silly_function();

 double &b = *a; // Now b is the double towards which a points!

 b += 1; // Great!
 b = b * b; // No need to write *a everywhere!
 b += 4;

 cout << "Content of *a, b and r: " << b << endl;

 return 0;
}

26

27

9. Namespaces can be declared

Namespaces can be declared. The variables declared within a namespace can
be used thanks to the :: operator:

using namespace std;
#include <iostream>
#include <cmath>

namespace first
{
 int a;
 int b;
}

namespace second
{
 double a;
 double b;
}

int main ()
{
 first::a = 2;
 first::b = 5;

 second::a = 6.453;
 second::b = 4.1e4;

 cout << first::a + second::a << endl;
 cout << first::b + second::b << endl;

 return 0;
}

28

29

10. A function can be declared inline

If they contain just simple lines of code (use no for loops or the like), C++
functions can be declared inline. This means their code will be inserted right
everywhere the function is used. That's somehow like a macro. Main
advantage is the program will be faster. A drawback is it will be bigger,
because the full code of the function is inserted everywhere it is used:

using namespace std;
#include <iostream>
#include <cmath>

inline double hypothenuse (double a, double b)
{
 return sqrt (a * a + b * b);
}

int main ()
{
 double k = 6, m = 9;

 // Next two lines produce exactly the same code:

 cout << hypothenuse (k, m) << endl;
 cout << sqrt (k * k + m * m) << endl;

 return 0;
}

The possibility to use inline functions has been added to C in C99 and ANSI
C 2000.

30

31

11. The exception structure has been added

You know the classical structures of C: for, if, do, while, switch... C++ adds
one more structure named EXCEPTION:

using namespace std;
#include <iostream>
#include <cmath>

int main ()
{
 int a, b;

 cout << "Type a number: ";
 cin >> a;
 cout << endl;

 try
 {
 if (a > 100) throw 100;
 if (a < 10) throw 10;
 throw a / 3;
 }
 catch (int result)
 {
 cout << "Result is: " << result << endl;
 b = result + 1;
 }

 cout << "b contains: " << b << endl;
 cout << endl;

 // another example of exception use:
 char zero [] = "zero";
 char pair [] = "pair";
 char notprime [] = "not prime";
 char prime [] = "prime";

 try
 {
 if (a == 0) throw zero;
 if ((a / 2) * 2 == a) throw pair;
 for (int i = 3; i <= sqrt (a); i++)
 {
 if ((a / i) * i == a) throw notprime;
 }
 throw prime;
 }
 catch (char *conclusion)
 {
 cout << "The number you typed is "<< conclusion << endl;
 }

32

 cout << endl;

 return 0;
}

33

12. A function can have default parameters

It is possible to define default parameters for functions:

using namespace std;
#include <iostream>

double test (double a, double b = 7)
{
 return a - b;
}

int main ()
{
 cout << test (14, 5) << endl; // Displays 14 - 5
 cout << test (14) << endl; // Displays 14 - 7

 return 0;
}

34

35

13. PARAMETERS OVERLOAD: several
functions can be declared with the same
name provided there is a difference in
their parameters list

One important advantage of C++ is the OPERATOR OVERLOAD. Different
functions can have the same name provided something allows to distinguish
between them: number of parameters, type of parameters...

using namespace std;
#include <iostream>

double test (double a, double b)
{
 return a + b;
}

int test (int a, int b)
{
 return a - b;
}

int main ()
{
 double m = 7, n = 4;
 int k = 5, p = 3;

 cout << test(m, n) << " , " << test(k, p) << endl;

 return 0;
}

36

37

14. The symbolic operators (+ - * / ...) can be
defined for new data types

The OPERATORS OVERLOAD can be used to define the basic symbolic
operators for new sorts of parameters:

using namespace std;
#include <iostream>

struct vector
{
 double x;
 double y;
};

vector operator * (double a, vector b)
{
 vector r;

 r.x = a * b.x;
 r.y = a * b.y;

 return r;
}

int main ()
{
 vector k, m; // No need to type "struct vector"

 k.x = 2; // To be able to write
 k.y = -1; // k = vector (2, -1)
 // see chapter 19

 m = 3.1415927 * k; // Magic!

 cout << "(" << m.x << ", " << m.y << ")" << endl;

 return 0;
}

Besides multiplication, 43 other basic C++ operators can be overloaded,
including +=, ++, the array [], and so on...

38

The operation cout << is an overload of the binary shift of integers. That way
the << operator is used a completely different way. It is possible to overload
the << operator for the output of say vectors:

using namespace std;
#include <iostream>

struct vector
{
 double x;
 double y;
};

ostream& operator << (ostream& o, vector a)
{
 o << "(" << a.x << ", " << a.y << ")";
 return o;
}

int main ()
{
 vector a;

 a.x = 35;
 a.y = 23;

 cout << a << endl; // Displays (35, 23)

 return 0;
}

39

15. Different functions for different data
types will automatically be generated
provided you define a template function

Tired of defining five times the same function? One definition for int type
parameters, one definition for double type parameters, one definition for
float type parameters... Didn't you forget one type? What if a new data type
is used? No problem: the C++ compiler can generate automatically every
version of the function that is necessary! Just tell him how the function looks
like by declaring a template function:

using namespace std;
#include <iostream>

template <class ttype>
ttype minimum (ttype a, ttype b)
{
 ttype r;

 r = a;
 if (b < a) r = b;

 return r;
}

int main ()
{
 int i1, i2, i3;
 i1 = 34;
 i2 = 6;
 i3 = minimum (i1, i2);
 cout << "Most little: " << i3 << endl;

 double d1, d2, d3;
 d1 = 7.9;
 d2 = 32.1;
 d3 = minimum (d1, d2);
 cout << "Most little: " << d3 << endl;

 cout << "Most little: " << minimum (d3, 3.5) << endl;

 return 0;
}

40

The function minimum is used three times in above program yet the C++
compiler generates only two versions of it: int minimum (int a, int b) and
double minimum (double a, double b). That does the job for the whole
program.

Would you have tried something like calculating minimum (i1, d1) the
compiler would have reported this as an error. Indeed the template tells both
parameters are of the same type.

You can use a random number of different template data types in a template
definition. And not all parameter types must be templates, some of them can
be of standard types or user defined (char, int, double...). Here is an
example where the minimum function takes parameters of any, possibly
different, types and outputs a value that has the type of the first parameter:

using namespace std;
#include <iostream>

template <class type1, class type2>
type1 minimum (type1 a, type2 b)
{
 type1 r, b_converted;
 r = a;
 b_converted = (type1) b;
 if (b_converted < a) r = b_converted;
 return r;
}

int main ()
{
 int i;
 double d;

 i = 45;
 d = 7.41;

 cout << "Most little: " << minimum (i, d) << endl;
 cout << "Most little: " << minimum (d, i) << endl;
 cout << "Most little: " << minimum ('A', i) << endl;

 return 0;
}

41

16. The keywords new and delete are much
better to allocate and deallocate
memory

The keywords new and delete can be used to allocate and deallocate
memory. They are much sweeter than the functions malloc and free from
standard C.

new [] and delete [] are used for arrays.

using namespace std;
#include <iostream>
#include <cstring>

int main ()
{
 double *d; // d is a variable whose purpose
 // is to contain the address of a
 // zone where a double is located

 d = new double; // new allocates a zone of memory
 // large enough to contain a double
 // and returns its address.
 // That address is stored in d.

 *d = 45.3; // The number 45.3 is stored
 // inside the memory zone
 // whose address is given by d.

 cout << "Type a number: ";
 cin >> *d;

 *d = *d + 5;

 cout << "Result: " << *d << endl;

 delete d; // delete deallocates the
 // zone of memory whose address
 // is given by pointer d.
 // Now we can no more use that zone.

 d = new double[15]; // allocates a zone for an array
 // of 15 doubles. Note each 15
 // double will be constructed.
 // This is pointless here but it
 // is vital when using a data type
 // that needs its constructor be
 // used for each instance.

42

 d[0] = 4456;
 d[1] = d[0] + 567;

 cout << "Content of d[1]: " << d[1] << endl;

 delete [] d; // delete [] will deallocate the
 // memory zone. Note each 15
 // double will be destructed.
 // This is pointless here but it
 // is vital when using a data type
 // that needs its destructor be
 // used for each instance (the ~
 // method). Using delete without
 // the [] would deallocate the
 // memory zone without destructing
 // each of the 15 instances. That
 // would cause memory leakage.

 int n = 30;

 d = new double[n]; // new can be used to allocate an
 // array of random size.
 for (int i = 0; i < n; i++)
 {
 d[i] = i;
 }

 delete [] d;

 char *s;

 s = new char[100];

 strcpy (s, "Hello!");

 cout << s << endl;

 delete [] s;

 return 0;
}

43

17. To a class or struct you can add
METHODS

In standard C a struct just contains data. In C++ a struct definition can also
include functions. Those functions are own to the struct and are meant to
operate on the data of the struct. Those functions are called METHODS.
Example below defines the method surface() on the struct vector:

using namespace std;
#include <iostream>

struct vector
{
 double x;
 double y;

 double surface ()
 {
 double s;
 s = x * y;
 if (s < 0) s = -s;
 return s;
 }
};

int main ()
{
 vector a;

 a.x = 3;
 a.y = 4;

 cout << "The surface of a: " << a.surface() << endl;

 return 0;
}

In the example above, a is an INSTANCE of struct "vector". (Note that the
keyword "struct" was not necessary when declaring vector a.)

Just like a function, a method can be an overload of any C++ operator, have
any number of parameters (yet one parameter is always implicit: the instance
it acts upon), return any type of parameter, or return no parameter at all.

44

What is a class? It's a struct yet that tends to keep its data hidden. Only the
methods of the class can access the data. You can't access the data directly,
unless authorized by the public: directive. Here is an example of a class
definition. It behaves exactly the same way as the struct example above
because the class data x and y are kept public:

using namespace std;
#include <iostream>

class vector
{
public:

 double x;
 double y;

 double surface ()
 {
 double s;
 s = x * y;
 if (s < 0) s = -s;
 return s;
 }
};

int main ()
{
 vector a;

 a.x = 3;
 a.y = 4;

 cout << "The surface of a: " << a.surface() << endl;

 return 0;
}

In the example above, the main() function changes the data of instance a
directly, using a.x = 3 and a.y = 4. This is made possible by the public:
directive in the class definition. This is a bad practice. See chapter 30.

45

A method is allowed to change the variables of the instance it is acting upon:

using namespace std;
#include <iostream>

class vector
{
public:

 double x;
 double y;

 vector its_oposite()
 {
 vector r;

 r.x = -x;
 r.y = -y;

 return r;
 }

 void be_oposited()
 {
 x = -x;
 y = -y;
 }

 void be_calculated (double a, double b, double c, double d)
 {
 x = a - c;
 y = b - d;
 }

 vector operator * (double a)
 {
 vector r;

 r.x = x * a;
 r.y = y * a;

 return r;
 }
};

int main ()
{
 vector a, b;

 a.x = 3;
 b.y = 5;

 b = a.its_oposite();

 cout << "Vector a: " << a.x << ", " << a.y << endl;
 cout << "Vector b: " << b.x << ", " << b.y << endl;

 b.be_oposited();
 cout << "Vector b: " << b.x << ", " << b.y << endl;

 a.be_calculated (7, 8, 3, 2);

46

 cout << "Vector a: " << a.x << ", " << a.y << endl;

 a = b * 2;
 cout << "Vector a: " << a.x << ", " << a.y << endl;

 a = b.its_oposite() * 2;
 cout << "Vector a: " << a.x << ", " << a.y << endl;

 cout << "x of oposite of a: " << a.its_oposite().x << endl;

 return 0;
}

47

18. The CONSTRUCTOR and the
DESTRUCTOR can be used to initialize
and destroy an instance of a class

Very special and essential methods are the CONSTRUCTOR and
DESTRUCTOR. They are automatically called whenever an instance of a
class is created or destroyed (variable declaration, end of program, new,
delete...).

The constructor will initialize the variables of the instance, do some
calculation, allocate some memory for the instance, output some text...
whatever is needed.

Here is an example of a class definition with two overloaded constructors:

using namespace std;
#include <iostream>

class vector
{
public:

 double x;
 double y;

 vector () // same name as class
 {
 x = 0;
 y = 0;
 }

 vector (double a, double b)
 {
 x = a;
 y = b;
 }

};

int main ()
{
 vector k; // vector () is called

 cout << "vector k: " << k.x << ", " << k.y << endl << endl;

 vector m (45, 2); // vector (double, double) is called

 cout << "vector m: " << m.x << ", " << m.y << endl << endl;

48

 k = vector (23, 2); // vector created, copied to k, then erased

 cout << "vector k: " << k.x << ", " << k.y << endl << endl;

 return 0;
}

It is a good practice to try not to overload the constructors. Best is to declare
only one constructor and give it default parameters wherever possible:

using namespace std;
#include <iostream>

class vector
{
public:

 double x;
 double y;

 vector (double a = 0, double b = 0)
 {
 x = a;
 y = b;
 }
};

int main ()
{
 vector k;
 cout << "vector k: " << k.x << ", " << k.y << endl << endl;

 vector m (45, 2);
 cout << "vector m: " << m.x << ", " << m.y << endl << endl;

 vector p (3);
 cout << "vector p: " << p.x << ", " << p.y << endl << endl;

 return 0;
}

49

The destructor is often not necessary. You can use it to do some calculation
whenever an instance is destroyed or output some text for debugging... But if
variables of the instance point towards some allocated memory then the role
of the destructor is essential: it must free that memory! Here is an example of
such an application:

using namespace std;
#include <iostream>
#include <cstring>

class person
{
public:

 char *name;
 int age;

 person (char *n = "no name", int a = 0)
 {
 name = new char [100]; // better than malloc!
 strcpy (name, n);
 age = a;
 cout << "Instance initialized, 100 bytes allocated" << endl;
 }

 ~person () // The destructor
 {
 delete name; // instead of free!

 // delete [] name would be more
 // academic but it is not vital
 // here since the array contains
 // no C++ sub-objects that need
 // to be deleted.

 cout << "Instance going to be deleted, 100 bytes freed" << endl;
 }
};

int main ()
{
 cout << "Hello!" << endl << endl;

 person a;
 cout << a.name << ", age " << a.age << endl << endl;

 person b ("John");
 cout << b.name << ", age " << b.age << endl << endl;

 b.age = 21;
 cout << b.name << ", age " << b.age << endl << endl;

 person c ("Miki", 45);
 cout << c.name << ", age " << c.age << endl << endl;

 cout << "Bye!" << endl << endl;

 return 0;
}

50

Here is a short example of an array class definition. A method that is an
overload of the [] operator and that outputs a reference (&) is used in order to
generate an error if it is tried to access outside the limits of an array:

using namespace std;
#include <iostream>
#include <cstdlib>

class array
{
public:
 int size;
 double *data;

 array (int s)
 {
 size = s;
 data = new double [s];
 }

 ~array ()
 {
 delete [] data;
 }

 double &operator [] (int i)
 {
 if (i < 0 || i >= size)
 {
 cerr << endl << "Out of bounds" << endl;
 exit (EXIT_FAILURE);
 }
 else return data [i];
 }
};

int main ()
{
 array t (5);

 t[0] = 45; // OK
 t[4] = t[0] + 6; // OK
 cout << t[4] << endl; // OK

 t[10] = 7; // error!

 return 0;
}

51

19. Complex classes need the COPY
CONSTRUCTOR and an overload of the
= operator

If you cast an object like a vector, everything will happen all right. For
example if vector k contains (4, 7), after the cast m = k the vector m will
contain (4, 7) too. The values of k.x and k.y have simply been copied to m.x
and m.y. Now suppose you're playing with objects like the person class
above. Those objects contain a pointer to a character string. If you cast such
person object by writing p = r it is necesary that some function does the
work to make p be a correct copy of r. Indeed otherwise p.name will point to
the physical same character string as r.name. What's more the former
character string pointed towards by p.name is lost and becomes a memory
zombie. The result will be catastrophic: a mess of pointers and lost data. The
methods that will do the job are the COPY CONSTRUCTOR and an
overload of the = operator:

using namespace std;
#include <iostream>
#include <cstring>

class person
{
public:

 char *name;
 int age;

 person (char *n = "no name", int a = 0)
 {
 name = new char[100];
 strcpy (name, n);
 age = a;
 }

 person (const person &s) // The COPY CONSTRUCTOR
 {
 name = new char[100];
 strcpy (name, s.name);
 age = s.age;
 }

 person& operator= (const person &s) // overload of =
 {
 strcpy (name, s.name);
 age = s.age;
 return *this;

52

 }

 ~person ()
 {
 delete [] name;
 }
};

int main ()
{
 person p;
 cout << p.name << ", age " << p.age << endl << endl;

 person k ("John", 56);
 cout << k.name << ", age " << k.age << endl << endl;

 p = k;
 cout << p.name << ", age " << p.age << endl << endl;

 p = person ("Bob", 10);
 cout << p.name << ", age " << p.age << endl << endl;

 return 0;
}

The copy constructor allows your program to make copies of instances when
doing calculations. It is a key method. During calculations, instances are
created to hold intermediate results. They are modified, casted and destroyed
without you being aware. This is why those methods can be useful even for
simple objects (see chapter 14.).

In all the examples above the methods are defined inside the class definition.
That makes them automatically be inline methods.

53

20. The method bodies can be defined
below the class definition (and Makefile
usage example)

If a method cannot be inline, if you do not want it to be inline, if you want
the class definition contain the minimum of information (or simply if you
want the usual separated .h header file and .cpp source code file), then you
must just put the prototype of the method inside the class and define the
method below the class (or in a separated .cpp source file):

using namespace std;
#include <iostream>

class vector
{
public:

 double x;
 double y;

 double surface(); // The ; and no {} show it is a prototype
};

double vector::surface() // This is the method
{
 double s = 0;

 for (double i = 0; i < x; i++)
 {
 s = s + y;
 }

 return s;
}

int main ()
{
 vector k;

 k.x = 4;
 k.y = 5;

 cout << "Surface: " << k.surface() << endl;

 return 0;
}

54

For beginners:

If you intent to develop a serious C++ software, you need to separate the
source code in .h header files and .cpp source files (just like for C). This is a
short example of how it is done. The program above is split in three files:

A header file vector.h:

class vector
{
public:

 double x;
 double y;

 double surface();
};

A source code file vector.cpp:

using namespace std;
#include "vector.h"

double vector::surface()
{
 double s = 0;

 for (double i = 0; i < x; i++)
 {
 s = s + y;
 }

 return s;
}

And a source code file main.cpp:

using namespace std;
#include <iostream>
#include "vector.h"

int main ()
{
 vector k;

 k.x = 4;
 k.y = 5;

55

 cout << "Surface: " << k.surface() << endl;

 return 0;
}

Assuming vector.cpp is perfect, you compile it once and for all into a .o
"object file". The command below produces that object code file, that will
bear the name vector.o:

g++ -c vector.cpp

Each time you modify the main.cpp source code file you compile it into say
a test20 executable file. You tell the compiler explicitely it has to link the
vector.o object file into the final test20 executable:

g++ main.cpp vector.o -o test20

Run the executable this way:

./test20

This has several advantages:

• The source code of vector.cpp need to be compiled only once. This
spares a lot of time on big softwares. (Linking the vector.o file into
the test20 executable is very fast.)

• You can give somebody the .h file and the .o file(s). That way he can
use your software but not change it because he doesn't have the .cpp
file(s) (don't rely too much on this, wait till you master these
questions).

Note you can compile main.cpp too into an object file and then link it with
vector.o:

g++ -c main.cpp

g++ main.o vector.o test20

56

If you want to look like a real C or C++ programmer you need to condense
all this in a Makefile and compile using the make command. The file
content beneath is an oversimplified version of such a Makefile. Copy it in a
file named Makefile. You must not use spaces before the g++ commands.
Instead use the Tab character.

test20: main.o vector.o
 g++ main.o vector.o -o test20

main.o: main.cpp vector.h
 g++ -c main.cpp

vector.o: vector.cpp vector.h
 g++ -c vector.cpp

In order to compile, making use of that Makefile, type this command:

make test20

The make command will parse through the file Makefile and infer what it
has to do. To start with it will understand that test20 depends on main.o and
vector.o. So it will automatically launch "make main.o" and "make
vector.o". Then it will check if test20 allready exists and check for the date
stamps of test20, main.o and vector.o. If test20 allready exists and main.o
and vector.o have a date stamp earlier than test20, the make command
understands current version of test20 is up to date so it has nothing to do. It
will just report it did nothing. Otherwise, if test20 does not exist, or main.o
or vector.o are more recent than test20, the command that creates an up to
date version of test20 is executed, that is g++ main.o vector.o -o test20.

This next version of Makefile is closer to a standard Makefile:

all: test20

test20: main.o vector.o
 g++ main.o vector.o -o test20

main.o: main.cpp vector.h
 g++ -c main.cpp

vector.o: vector.cpp vector.h
 g++ -c vector.cpp

clean:
 rm -f *.o test20 *~ #*

57

You trigger the compilation by just typing the make command. The first line
in the Makefile implies that if you just type make you intent "make test20":

make

This command erases all the files produced during compilation and all text
editors backup files:

make clean

58

59

21. The keyword this is a pointer towards
the instance a method is acting upon

When a method is applied to an instance, that method may use the instance's
variables, modify them... But sometimes it is necessary to know the address
of the instance. The keyword this is intended therefore:

using namespace std;
#include <iostream>
#include <cmath>

class vector
{
public:

 double x;
 double y;

 vector (double a = 0, double b = 0)
 {
 x = a;
 y = b;
 }

 double module()
 {
 return sqrt (x * x + y * y);
 }

 void set_length (double a = 1)
 {
 double length;

 length = this->module();

 x = x / length * a;
 y = y / length * a;
 }
};

int main ()
{
 vector c (3, 5);
 cout << "The module of vector c: " << c.module() << endl;

 c.set_length(2); // Transforms c in a vector of size 2.
 cout << "The module of vector c: " << c.module() << endl;

 c.set_length(); // Transforms b in an unitary vector.
 cout << "The module of vector c: " << c.module() << endl;

60

 return 0;
}

61

22. Arrays of instances can be declared

Of course it is possible to declare arrays of objects:

using namespace std;
#include <iostream>
#include <cmath>

class vector
{
public:

 double x;
 double y;

 vector (double a = 0, double b = 0)
 {
 x = a;
 y = b;
 }

 double module ()
 {
 return sqrt (x * x + y * y);
 }
};

int main ()
{
 vector s [1000];

 vector t[3] = {vector(4, 5), vector(5, 5), vector(2, 4)};

 s[23] = t[2];

 cout << t[0].module() << endl;

 return 0;
}

62

63

23. An example of complete class
declaration

Here is an example of a full class declaration:

using namespace std;
#include <iostream>
#include <cmath>

class vector
{
public:

 double x;
 double y;

 vector (double = 0, double = 0);
 vector operator + (vector);
 vector operator - (vector);
 vector operator - ();
 vector operator * (double);
 double module();
 void set_length (double = 1);
};

vector::vector (double a, double b)
{
 x = a;
 y = b;
}

vector vector::operator + (vector a)
{
 return vector (x + a.x, y + a.y);
}

vector vector::operator - (vector a)
{
 return vector (x - a.x, y - a.y);
}

vector vector::operator - ()
{
 return vector (-x, -y);
}

vector vector::operator * (double a)
{
 return vector (x * a, y * a);
}

64

double vector::module()
{
 return sqrt (x * x + y * y);
}

void vector::set_length (double a)
{
 double length = this->module();
 x = x / length * a;
 y = y / length * a;
}

ostream& operator << (ostream& o, vector a)
{
 o << "(" << a.x << ", " << a.y << ")";
 return o;
}

int main ()
{
 vector a;
 vector b;
 vector c (3, 5);

 a = c * 3;
 a = b + c;
 c = b - c + a + (b - a) * 7;
 c = -c;

 cout << "The module of vector c: " << c.module() << endl;
 cout << "The content of vector a: " << a << endl;
 cout << "The oposite of vector a: " << -a << endl;

 c.set_length(2); // Transforms c in a vector of size 2.

 a = vector (56, -3);
 b = vector (7, c.y);

 b.set_length(); // Transforms b in an unitary vector.
 cout << "The content of vector b: " << b << endl;

 double k;
 k = vector(1, 1).module(); // k will contain 1.4142.
 cout << "k contains: " << k << endl;

 return 0;
}

It is also possible to define the sum of vectors without mentioning it inside
the vector class definition. Then it will not be a method of the class vector.
Just a function that uses vectors:

vector operator + (vector a, vector b)
{
 return vector (a.x + b.x, a.y + b.y);
}

65

In the example above of a full class definition, the multiplication of a vector
by a double is defined. Suppose we want the multiplication of a double by a
vector be defined too. Then we must write an isolated function outside the
class:

vector operator * (double a, vector b)
{
 return vector (a * b.x, a * b.y);
}

Of course the keywords new and delete work for class instances too. What's
more, new automatically calls the constructor in order to initialize the
objects, and delete automatically calls the destructor before deallocating the
zone of memory the instance variables take:

using namespace std;
#include <iostream>
#include <cmath>

class vector
{
public:

 double x;
 double y;

 vector (double = 0, double = 0);

 vector operator + (vector);
 vector operator - (vector);
 vector operator - ();
 vector operator * (double);
 double module();
 void set_length (double = 1);
};

vector::vector (double a, double b)
{
 x = a;
 y = b;
}

vector vector::operator + (vector a)
{
 return vector (x + a.x, y + a.y);
}

vector vector::operator - (vector a)
{
 return vector (x - a.x, y - a.y);
}

66

vector vector::operator - ()
{
 return vector (-x, -y);

}

vector vector::operator * (double a)
{
 return vector (a * x, a * y);
}

double vector::module()
{
 return sqrt (x * x + y * y);
}

void vector::set_length (double a)
{
 vector &the_vector = *this;

 double length = the_vector.module();

 x = x / length * a;
 y = y / length * a;
}

ostream& operator << (ostream& o, vector a)
{
 o << "(" << a.x << ", " << a.y << ")";
 return o;
}

int main ()
{
 vector c (3, 5);

 vector *r; // r is a pointer to a vector.

 r = new vector; // new allocates the memory necessary
 cout << *r << endl; // to hold a vectors' variable,
 // calls the constructor who will
 // initialize it to 0, 0. Then finally
 // new returns the address of the vector.

 r->x = 94;
 r->y = 345;
 cout << *r << endl;

 *r = vector (94, 343);
 cout << *r << endl;

 *r = *r - c;
 r->set_length(3);
 cout << *r << endl;

 *r = (-c * 3 + -*r * 4) * 5;
 cout << *r << endl;

 delete r; // Calls the vector destructor then
 // frees the memory.

 r = &c; // r points towards vector c
 cout << *r << endl;

67

 r = new vector (78, 345); // Creates a new vector.
 cout << *r << endl; // The constructor will initialise
 // the vector's x and y at 78 and 345

 cout << "x component of r: " << r->x << endl;
 cout << "x component of r: " << (*r).x << endl;

 delete r;

 r = new vector[4]; // creates an array of 4 vectors

 r[3] = vector (4, 5);
 cout << r[3].module() << endl;

 delete [] r; // deletes the array

 int n = 5;
 r = new vector[n]; // Cute!

 r[1] = vector (432, 3);
 cout << r[1] << endl;

 delete [] r;

 return 0;
}

68

69

24. static variables inside a class definition

A class' variable can be declared static. Then only one instance of that
variable exists, shared by all instances of the class. It must be initialized
outside the class declaration:

using namespace std;
#include <iostream>

class vector
{
public:

 double x;
 double y;
 static int count;

 vector (double a = 0, double b = 0)
 {
 x = a;
 y = b;
 count++;
 }

 ~vector()
 {
 count--;
 }
};

int vector::count = 0;

int main ()
{
 cout << "Number of vectors:" << endl;

 vector a;
 cout << vector::count << endl;

 vector b;
 cout << vector::count << endl;

 vector *r, *u;

 r = new vector;
 cout << vector::count << endl;

 u = new vector;
 cout << a.count << endl;

 delete r;
 cout << vector::count << endl;

70

 delete u;
 cout << b.count << endl;

 return 0;
}

71

25. const variables inside a class definition

A class variable can also be constant. That's just like static, except it is
alocated a value inside the class declaration and that value cannot be
modified:

using namespace std;
#include <iostream>

class vector
{
public:

 double x;
 double y;
 const static double pi = 3.1415927;

 vector (double a = 0, double b = 0)
 {
 x = a;
 y = b;
 }

 double cilinder_volume ()
 {
 return x * x / 4 * pi * y;
 }
};

int main()
{
 cout << "The value of pi: " << vector::pi << endl << endl;

 vector k (3, 4);

 cout << "Result: " << k.cilinder_volume() << endl;

 return 0;
}

72

73

26. A class can be DERIVED from another
class

A class can be DERIVED from another class. The new class INHERITS the
variables and methods of the BASE CLASS. Additional variables and/or
methods can be added:

using namespace std;
#include <iostream>
#include <cmath>

class vector
{
public:

 double x;
 double y;

 vector (double a = 0, double b = 0)
 {
 x = a;
 y = b;
 }

 double module()
 {
 return sqrt (x*x + y*y);
 }

 double surface()
 {
 return x * y;
 }
};

class trivector: public vector // trivector is derived from vector
{
public:
 double z; // added to x and y from vector

 trivector (double m=0, double n=0, double p=0): vector (m, n)
 {
 z = p; // vector constructor will
 } // be called before trivector
 // constructor, with parameters
 // m and n

 trivector (vector a) // What to do if a vector is
 { // cast to a trivector
 x = a.x;
 y = a.y;

74

 z = 0;
 }

 double module () // define module() for trivector
 {
 return sqrt (x*x + y*y + z*z);
 }

 double volume ()
 {
 return this->surface() * z; // or x * y * z
 }
};

int main ()
{
 vector a (4, 5);
 trivector b (1, 2, 3);

 cout << "a (4, 5) b (1, 2, 3) *r = b" << endl << endl;

 cout << "Surface of a: " << a.surface() << endl;
 cout << "Volume of b: " << b.volume() << endl;
 cout << "Surface of base of b: " << b.surface() << endl;

 cout << "Module of a: " << a.module() << endl;
 cout << "Module of b: " << b.module() << endl;
 cout << "Module of base of b: " << b.vector::module() << endl;

 trivector k;
 k = a; // thanks to trivector(vector) definition
 // copy of x and y, k.z = 0
 vector j;
 j = b; // copy of x and y. b.z leaved out

 vector *r;
 r = &b;

 cout << "Surface of r: " << r->surface() << endl;
 cout << "Module of r: " << r->module() << endl;

 return 0;
}

75

27. If a method is declared virtual the
program will always first check the type
of an instance that is pointed to and will
use the appropriate method

In the program above, r->module() calculates the vector module, using x
and y, because r has been declared a vector pointer. The fact r actually
points towards a trivector is not taken into account. If you want the program
to check the type of the pointed object and choose the appropriate method,
then you must declare that method virtual inside the base class.

If at least one of the methods of the base class is virtual then a header of 4
bytes is added to every instance of the classes. This allows the program to
determine towards what a vector actually points.

using namespace std;
#include <iostream>
#include <cmath>

class vector
{
public:

 double x;
 double y;

 vector (double a = 0, double b = 0)
 {
 x = a;
 y = b;
 }

 virtual double module()
 {
 return sqrt (x*x + y*y);
 }
};

class trivector: public vector
{
public:
 double z;

 trivector (double m = 0, double n = 0, double p = 0)
 {
 x = m; // Just for the game,
 y = n; // here I do not call the vector

76

 z = p; // constructor and I make the
 } // trivector constructor do the
 // whole job. Same result.

 double module ()
 {
 return sqrt (x*x + y*y + z*z);
 }
};

void test (vector &k)
{
 cout << "Test result: " << k.module() << endl;
}

int main ()
{
 vector a (4, 5);
 trivector b (1, 2, 3);

 cout << "a (4, 5) b (1, 2, 3)" << endl << endl;

 vector *r;

 r = &a;
 cout << "module of vector a: " << r->module() << endl;

 r = &b;
 cout << "module of trivector b: " << r->module() << endl;

 test (a);

 test (b);

 vector &s = b;

 cout << "module of trivector b: " << s.module() << endl;

 return 0;
}

77

28. A class can be derived from more than
one base classes

Maybe you wonder if a class can be derived from more than one base classes.
Answer is yes:

using namespace std;
#include <iostream>
#include <cmath>

class vector
{
public:

 double x;
 double y;

 vector (double a = 0, double b = 0)
 {
 x = a;
 y = b;
 }

 double surface()
 {
 return fabs (x * y);
 }
};

class number
{
public:

 double z;

 number (double a)
 {
 z = a;
 }

 int is_negative ()
 {
 if (z < 0) return 1;
 else return 0;
 }
};

78

class trivector: public vector, public number
{
public:

 trivector(double a=0, double b=0, double c=0): vector(a,b),
number(c)
 {
 } // The trivector constructor calls the vector
 // constructor, then the number constructor,
 // and in this example does nothing more.

 double volume()
 {
 return fabs (x * y * z);
 }
};

int main ()
{
 trivector a(2, 3, -4);

 cout << a.volume() << endl;
 cout << a.surface() << endl;
 cout << a.is_negative() << endl;

 return 0;
}

79

29. Class derivation allows to write generic
methods

Class derivation allows to construct "more complicated" classes build above
base classes. There is another application of class derivation: allow the
programmer to write generic functions.

Suppose you define a base class with no variables. It makes no sense to use
instances of that class inside your program. But you write a function whose
purpose is to sort instances of that class. That function will be able to sort
any types of objects provided they belong to a class derived from that base
class! The only condition is that inside every derived class definition, all
methods the sort function needs are correctly defined:

using namespace std;
#include <iostream>
#include <cmath>

class octopus
{
public:

 virtual double module() = 0; // = 0 implies function is not
 // defined. This makes instances
 // of this class cannot be declared.
};

double biggest_module (octopus &a, octopus &b, octopus &c)
{
 double r = a.module();
 if (b.module() > r) r = b.module();
 if (c.module() > r) r = c.module();
 return r;
}

class vector: public octopus
{
public:

 double x;
 double y;

 vector (double a = 0, double b = 0)
 {
 x = a;
 y = b;
 }

 double module()

80

 {
 return sqrt (x * x + y * y);
 }
};

class number: public octopus
{
public:

 double n;

 number (double a = 0)
 {
 n = a;
 }

 double module()
 {
 if (n >= 0) return n;
 else return -n;
 }
};

int main ()
{
 vector k (1,2), m (6,7), n (100, 0);
 number p (5), q (-3), r (-150);

 cout << biggest_module (k, m, n) << endl;
 cout << biggest_module (p, q, r) << endl;

 cout << biggest_module (p, q, n) << endl;

 return 0;
}

81

Perhaps you think "okay, that's a good idea to derive classes from the class
octopus because that way I can apply to instances of my classes methods and
function that were designed a generic way for the octopus class. But what if
there exists another base class, named cuttlefish, which has very interesting
methods and functions too? Do I have to make my choice between octopus
and cuttlefish when I want to derive a class?" No, of course. A class can be
at the same time derived from octopus and from cuttlefish. That's
POLYMORPHISM. The derived class simply has to define the methods
necessary for octopus together with the methods necessary for cuttlefish:

class octopus
{
 virtual double module() = 0;
};

class cuttlefish
{
 virtual int test() = 0;
};

class vector: public octopus, public cuttlefish
{
 double x;
 double y;

 double module ()
 {
 return sqrt (x * x + y * y);
 }

 int test ()
 {
 if (x > y) return 1;
 else return 0;
 }
}

82

83

30. ENCAPSULATION: public, protected and
private

The public: directive means the variables or the methods below can be
accessed and used everywhere in the program.

If you want the variables and methods to be accessible only to methods of the
class AND to methods of derived classes then you must put the keyword
protected: above them.

If you want variables or methods be accessible ONLY to methods of the
class then you must put the keyword private: above them.

The fact variables or methods are declared private or protected means
nothing external to the class can access or use them. That's
ENCAPSULATION.

If you want to give to a specific function the right to access those variables
and methods then you must include that function's prototype inside the class
definition, preceded by the keyword friend.

84

The good practice is to encapsulate all the variables of a class. This can
sound strange if you're common to structs in C. Indeed a struct only makes
sense if you can access its data... In C++ you have to create methods to
access the data inside a class. Example below uses the basic example of
chapter 17 yet declares the class data is protected:

using namespace std;
#include <iostream>

class vector
{
protected:

 double x;
 double y;

public:

 void set_x (int n)
 {
 x = n;
 }

 void set_y (int n)
 {
 y = n;
 }

 double surface ()
 {
 double s;
 s = x * y;
 if (s < 0) s = -s;
 return s;
 }
};

int main ()
{
 vector a;

 a.set_x (3);
 a.set_y (4);

 cout << "The surface of a: " << a.surface() << endl;

 return 0;
}

85

The example above is a bit odd since the class data x and y can be set yet
they cannot be read back. Any attempt in function main () to read a.x or a.y
will result in a compilation error. In the next example x and y can be read
back:

using namespace std;
#include <iostream>

class vector
{
protected:

 double x;
 double y;

public:

 void set_x (int n)
 {
 x = n;
 }

 void set_y (int n)
 {
 y = n;
 }

 double get_x ()
 {
 return x;
 }

 double get_y ()
 {
 return y;
 }

 double surface ()
 {
 double s;
 s = x * y;
 if (s < 0) s = -s;
 return s;
 }
};

int main ()
{
 vector a;

 a.set_x (3);
 a.set_y (4);

 cout << "The surface of a: " << a.surface() << endl;
 cout << "The width of a: " << a.get_x() << endl;
 cout << "The height of a: " << a.get_y() << endl;

 return 0;
}

86

In C++ one is not supposed to access the data of a class directly. Methods
have to be declared. Why this? Many reasons exist. One is this allows to
change the way the data is memorized inside the class. Another reason is this
allows data inside the class to be "cross-dependent". Suppose x and y must
always be of the same sign, otherwize ugly things can happen... If one is
allowed to access the class data directly, it would be easy to impose say a
positive x and a negative y. In the example below this is severely controlled:

using namespace std;
#include <iostream>

int sign (double n)
{
 if (n >= 0) return 1;
 return -1;
}

class vector
{
protected:

 double x;
 double y;

public:

 void set_x (int n)
 {
 x = n;
 if (sign (x) != sign(y)) y = -y;
 }

 void set_y (int n)
 {
 y = n;
 if (sign (y) != sign(x)) x = -x;
 }

 double get_x ()
 {
 return x;
 }

 double get_y ()
 {
 return y;
 }

 double surface ()
 {
 double s;
 s = x * y;
 if (s < 0) s = -s;
 return s;
 }
};

87

int main ()
{
 vector a;

 a.set_x (-3);
 a.set_y (4);

 cout << "The surface of a: " << a.surface() << endl;
 cout << "The width of a: " << a.get_x() << endl;
 cout << "The height of a: " << a.get_y() << endl;

 return 0;
}

88

89

31. Brief examples of file I/O

Let's talk about input/output. In C++ that's a broad subject.

This is a program that writes to a file:

using namespace std;
#include <iostream>
#include <fstream>

int main ()
{
 fstream f;

 f.open("test.txt", ios::out);

 f << "This is a text output to a file." << endl;

 double a = 345;

 f << "A number: " << a << endl;

 f.close();

 return 0;
}

90

This is a program that reads from a file:

using namespace std;
#include <iostream>
#include <fstream>

int main ()
{
 fstream f;
 char c;

 cout << "What's inside the test.txt file:" << endl;
 cout << endl;

 f.open("test.txt", ios::in);

 while (! f.eof())
 {
 f.get(c); // Or c = f.get()
 cout << c;
 }

 f.close();

 return 0;
}

91

32. Character arrays can be used like files

Roughly said, it is possible to do on character arrays the same operations as
on files. This is useful to convert data or manage memory arrays.

This is a program that writes inside a character array:

using namespace std;
#include <iostream>
#include <strstream>
#include <cstring>
#include <cmath>

int main ()
{
 char a[1024];
 ostrstream b(a, 1024);

 b.seekp(0); // Start from first char.
 b << "2 + 2 = " << 2 + 2 << ends; // (ends, not endl)
 // ends is simply the
 // null character '\0'
 cout << a << endl;

 double v = 2;

 strcpy (a, "A sinus: ");

 b.seekp(strlen (a));
 b << "sin (" << v << ") = " << sin(v) << ends;

 cout << a << endl;

 return 0;
}

92

A program that reads from a character string:

using namespace std;
#include <iostream>
#include <strstream>
#include <cstring>

int main ()
{
 char a[1024];
 istrstream b(a, 1024);

 strcpy (a, "45.656");

 double k, p;

 b.seekg(0); // Start from first character.
 b >> k;

 k = k + 1;

 cout << k << endl;

 strcpy (a, "444.23 56.89");

 b.seekg(0);
 b >> k >> p;

 cout << k << ", " << p + 1 << endl;

 return 0;
}

93

33. An example of formated output

This program performs formated output two different ways. Note the width()
and setw() MODIFIERS are only effective on the next item output to the
stream. The second next item will not be influenced.

using namespace std;
#include <iostream>
#include <iomanip>

int main ()
{
 int i;

 cout << "A list of numbers:" << endl;
 for (i = 1; i <= 1024; i *= 2)
 {
 cout.width (7);
 cout << i << endl;
 }

 cout << "A table of numbers:" << endl;
 for (i = 0; i <= 4; i++)
 {
 cout << setw(3) << i << setw(5) << i * i * i << endl;
 }

 return 0;
}

94

You now have a basic knowledge of C++. Inside good books you will learn
many more things. The file management system is very powerful, it has
much more possibilities than those illustrated here. There is also a lot more to
say about classes: template classes, virtual classes...

In order to work correctly with C++ you will need a good reference book,
just like you need one for C. You will also need information on how C++ is
used in your particular domain of activity. The standards, the global
approach, the tricks, the typical problems encountered and their solutions...
The best reference is of course the books written by Bjarn Stroustrup himself
(I don't remind which one of them I read). Following book contains almost
every detail about C and C++ and is constructed a way similar to this text:

Jamsa's C/C++ Programmer's Bible
© 1998 Jamsa Press
Las Vegas, United States

French edition:
C/C++ La Bible du programmeur
Kris Jamsa, Ph.D - Lars Klander
France : Editions Eyrolles
www.eyrolles.com
Canada : Les Editions Reynald Goulet inc.
www.goulet.ca
ISBN 2-212-09058-7

Other references:
www.accu.org/bookreviews/public/reviews/0hr/index.htm
www.codersource.net/

If you are set back by the source code of important softwares, note lots of
them are developed using user interface builder software like Glade or
Qt Designer. Then use such a builder.

95

96

97

98

99

100

	1.	A new way to include libraries
	2.	// for one-line remarks
	3.	Console input and output streams
	4.	Variable declarations can be put inside the code without using hooks
	5.	Variables can be initialized by a calculation involving other variables
	6.	Variables can be declared inside a for loop declaration
	7.	Global variables can be accessed even if a local variables has the same name
	8.	It is possible to declare a REFERENCE towards another variable
	9.	Namespaces can be declared
	10.	A function can be declared inline
	11.	The exception structure has been added
	12.	A function can have default parameters
	13.	PARAMETERS OVERLOAD: several functions can be declared with the same name provided there is a difference in their parameters list
	14.	The symbolic operators (+ - * / ...) can be defined for new data types
	15.	Different functions for different data types will automatically be generated provided you define a template function
	16.	The keywords new and delete are much better to allocate and deallocate memory
	17.	To a class or struct you can add METHODS
	18.	The CONSTRUCTOR and the DESTRUCTOR can be used to initialize and destroy an instance of a class
	19.	Complex classes need the COPY CONSTRUCTOR and an overload of the = operator
	20.	The method bodies can be defined below the class definition (and Makefile usage example)
	21.	The keyword this is a pointer towards the instance a method is acting upon
	22.	Arrays of instances can be declared
	23.	An example of complete class declaration
	24.	static variables inside a class definition
	25.	const variables inside a class definition
	26.	A class can be DERIVED from another class
	27.	If a method is declared virtual the program will always first check the type of an instance that is pointed to and will use the appropriate method
	28.	A class can be derived from more than one base classes
	29.	Class derivation allows to write generic methods
	30.	ENCAPSULATION: public, protected and private
	31.	Brief examples of file I/O
	32.	Character arrays can be used like files
	33.	An example of formated output

