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My Background

• Masters Electrical Engineering at TU/e

• PhD work at TU/e

• Thesis work with Prof. Dr. Henk Corporaal
• Topic: Improving the Efficiency of Deep Convolutional Networks

• Staff Scientist at Thermo Fisher Scientific (formerly FEI Company)

• Electron  Microscopy Imaging Challenges
• Manager Research & Development

• Leading a research team to progress microscopy with cutting edge algorithms
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3 Proprietary & Confidential

• $24 billion in revenues

• >$900 million spent on R&D

• >70,000 employees

• 5 premier brands 

We enable our

customers to make the world 

healthier, cleaner and safer

• Technology innovation leadership

• Unique customer value proposition

• Unparalleled global reach

The World Leader in Serving Science



4 Proprietary & Confidential

• Queen Maxima at the group of Prof. Eric Snijder at LUMC 

Recent News: Queen Maxima visiting the researchers working on vaccines for Corona

Older generation of microscopes

Not yet very data driven 

and not suited for cryo-EM



High Performance Data Processing: Combining Domains
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High Performance Computing  
and Algorithms 

The key method to study the
mechanics of the spikes 
of the new Corona virus



Imaging Cryo-Specimen: Need 4 Signal

Contrast problems

• Radiation damage
• Low electron dose

• Solutions to extract info
• Cameras + Algorithms
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Adenovirus, Phoebe 
Stewart, Tecnai Polara, 

Vanderbilt



Single Particle Analysis (SPA) workflow
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The key method to 
study the

mechanics of the spikes 
of the new Corona virus



Detailed ACE2 receptor: How does it bind to the human 
cell?

Side and top views of the pre-fusion structure of the COVID-19 S protein with a single RBD in the up 
conformation. The two RBD-down protomers are shown as cryo-EM density in either white or grey and 
the RBD-up protomer is shown in ribbons coloured green (credit: adapted from Wrapp, D, et al.).

https://science.sciencemag.org/content/early/2020/02/19/science.abb2507


Single Particle Analysis (SPA) workflow

Biological sample
(ThermoFisher)

Sample 
Preparation 
(FEI)

CryoHolder Image Acquisition
Titan Krios (FEI)

EPU 
(FEI)

Particle extraction 
(FEI WIP)

3D Reconstruction
(Academic opensource)

Amira Visualization
(FEI)
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Image processing challenges in SPA workflow
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Large volume data acquisition – Mapping the brain
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What are Neural Networks?
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Presynaptic neuron Postsynaptic neuron

Cell body Synapses



Perceptron Model (1957)

Feed forward processing

Tuning the weights by learning

Non-linear separability (1969)
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Convergence of different domains
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Multi Layer Perceptron (1979)

Training is done by error back-propagation
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Training a network: Stochastic Gradient Descent (SGD)

• Collect annotated training data

• The neural network is a function of inputs 𝑥𝑖 and weights 𝜃: 𝑓 𝑥𝑖; 𝜃

• Start with feed forward run through the network: 𝑥𝑖 ➙ ෞ𝑦𝑖

• Evaluate predictions, i.e. results and labels into a loss function: ℒ 𝑦, 𝑓 𝑥𝑖 , 𝜃
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Training a network: Stochastic Gradient Descent (SGD) 2
• Compute the error gradients

• Update the coefficients to reduce error

• Repeat 𝜕ℒ 𝜃; ො𝑦, 𝑓

𝜕 ො𝑦
𝜕 ො𝑦

𝜕𝑓

𝜕𝑓 𝑥𝑖; 𝜃

𝜕𝜃
𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑡𝛻𝜃 ℒ
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Optimization Through Gradient Descent (3)

Follow the path towards local minima in the parameter space

Stochastic Gradient Descent

Every random sample update the parameter space
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Generalization

Take an abstract representation

Add details

Add too many details

A common challenge in Machine Learning problems
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The Hype Curve of Neural Networks 
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Deep Big Neural Networks

Deep Big Neural networks outperform SVM

Complex models with over a billion of parameters

Unreasonably effective at classification tasks

≥ 5 layers

1000s of nodes

connection constraints
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Big Deep
Network

Why would this 
be so effective?



Data is Everywhere
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Large Scale Visual Recognition Challenge

• 2012 Classification

• Many training samples: 1,281,167

• Large number of classes:  1000

• ImageNet 2013 

Complete top 10 used Deep Nets
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Submission Method Error Rate

SuperVision Convolutional Net 0.164

ISI
Other stuff…
(SIFT, SVMs)

0.262

XRCE/INRIA 0.271

OXFORD_VGG 0.273

9.8%

1.2%



Data set growth over time
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70,000 
samples
32x32 pixels

350,000 
samples
2x96x96 
pixels

10,000,000 
samples
3x250x250 
pixels

300,000,000 
samples
3x340x340 
pixels



Huge amounts of data for training

Large datasets help a lot:

• Less overfitting

• Accurate classification

Better Machine Learning
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Deep Neural Networks
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Deep learning applications are changing our lives
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Face Detection
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Intelligent vision applications are everywhere

Applications in many domains

Examples: Security, Industrial, Medical, Automotive
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Old man
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Classical recognition systems are developer limited

Design is based on knowledge of the task

Carefully tuned pipeline of algorithms

Really complex for real world problems

Design must be redone if the task changes
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Train a Neural Network for the task

• Focus on data instead of algorithm complexity

• Pre-process data to generate more examples

• Use a test set to verify generalization
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30 km/h 50 km/h 60 km/h 70 km/h 80 km/h 90 km/h 100 km/h

Background images hard to suppress Random background image patches



Building more restricted neurons
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Building more restricted neurons
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Biologically inspired object recognition

Convolutional Neural Network
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Detection and Recognition Application
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Define shape for each layer

Shape varies across layers

• H – Height of input fmap (activations)
• W – Width of input fmap (activations)
• C – Number of 2D input fmaps / filters (channels)
• R – Height of 2D filter (weights)
• S – Width of 2D filter (weights)
• M – Number of 2D output fmaps (channels)
• E – Height of output fmap (activations)
• F – Width of output fmap (activations)
• N – Number of input fmaps/output fmaps (batch size)

AlexNet (2012) ILSVRC winner:

• 8 layers, 62Mparameters

• 1.4 GFLOP inference
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What Else Can Deep Neural Nets Do?

Classification Approximation

Optimization Clustering

40



Application: Super Resolution from NNs

Low Resolution 
Image

Kim et al. “Accurate Image Super-Resolution Using Very Deep Convolutional Networks” CVPR16
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Very Deep Super Resolution: VDSR

• Residual learning

Kim et al. “Accurate Image Super-Resolution Using Very Deep Convolutional Networks” CVPR16
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Deep Neural Networks
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Deep learning models have become huge

• Image Recognition

• AlexNet (2012) ILSVRC winner

• 8 layers, 62Mparameters
• 1.4 GFLOP inference
• 16% error rate

• ResNet (2015) ILSVRC winner

• 152 layers, 60Mparameters
• 22.6 GFLOP inference
• 6.16% error rate
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Bigger = Better



The first challenge: Model Size

• Competition winning networks like AlexNet (2012) and ResNet152 (2015) are large

• About 60M parameters resulting in a coefficient file of 240MB
• Hard to distribute large models through over-the-air updates
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The second challenge: Speed

• Network design and training time have become a huge bottleneck

Error rate Training time

ResNet 18: 10.76% 2.5 days

ResNet 50: 7.02% 5 days

ResNet 101: 6.21% 1 week

ResNet 152: 6.16% 1.5 weeks

Training time benchmarked with fb.resnet.torch using four M40 GPUs

• Such a long training time limits the productivity of ML researchers 
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Transistors are not getting more efficient

Slowdown of Moore’s law
and Dennard Scaling

General purpose
microprocessors

not getting faster or
more efficient

48

1

100

10000

1000000

2000 2002 2004 2006 2008 2010 2012 2014 2016

Year of introduction

Transistors (x1000) Frequency (MHz) Performance TDP (W) Cores



Performance scaling is slowing down
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The third challenge: Energy Efficiency

50

1920 GPUs and 280 GPUs, $3000 electric bill per game

On smartphone: battery drains quickly
On data-center: Increased TCO



Where is the Energy Consumed?

• Larger model → More memory references → More energy
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Operation Energy [pJ]

32 bit int ADD 0.1

32 bit fload ADD 0.9

32 bit Register File 1

32 bit int MULT 3.1

32 bit float MULT 3.7

32 bit SRAM Cache 5

32 bit DRAM Memory 640

1 10 100 1000 10000

Relative Energy Cost



Where is the Energy Consumed?

• Deep learning models with many parameters are expensive!
• Reduce parameters to improve efficiency
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Toward Heterogeneous Systems

Efficient accelerators

Multi-purpose ASICs

Accelerators for Neural Networks

Flexible functionality

State-of-the-art results

Parallelism
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Accelerator Challenges

Data Movement: Get parameters + activations from RAM

Data movement is expensive

• Energy, latency, bandwidth

Focus on data locality
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Host ProcessorExternal RAM

Accelerator 
2

Accelerator 
3

Accelerator 
1 Local

Buffer

Data path

acc* +

acc* +

*Action Energy Relative

ALU op 1 pJ – 4 pJ 1x

SRAM Read 5 pJ – 20 pJ 5x

Move 10mm
across chip

26 pJ – 44 pJ 25x

Send to DRAM 200 pJ – 800 
pJ

200x

Read from image
sensor

3.2 nJ – 4 nJ 4,000x

Send over LTE 50 uJ – 600 uJ 50,000,000
x



DianNao (2014)

Split Buffers for BW

Vector vector multiply

Hardware adder tree

Partial layer computation

Fetch input neurons

Fetch synapses
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DianNao (2014)

Multiply

Sum neuron inputs

Buffer partial sums

56

According to V. Sze et al. “Efficient Processing of Deep Neural Networks”
Proceedings of the IEEE 2017

Non Local Reuse Architecture



In-depth analysis of the Google Tensor Processing Unit

• 2013: Google prepares for the success-disaster of new DNN apps

• Users speaking to phones 3 minutes per day:
With only CPUS, need 2X-3X times whole datacenter fleet

• DNNs applicable to a wide range of problems, so hardware accelerator can be reused for 
speech, vision, language translation, search ranking, etc.

• Goal: Custom hardware to reduce TCO of DNN inference by 10X vs. CPUs

• Must run existing apps developed for CPUs and GPUs

• Very short development cycle: Project start 2014, running in datacenter 15 months later

• Architecture invention, Compiler invention, Hardware, Design, Build, Test, Deploy

57
Based upon: In-Data Center Performance Analysis of a tensor Processing Unit
ISCA 2017, Jouppi, Young, Patil, Patterson, et al. 



What came out: TPUv1 card & package

• Accelerator card for servers

• Up to 4 cards / server

• Coprocessor on the PCIe I/O bus

• Host CPU sends TPU instructions to
execute (to simplify HW design)

• Unlike GPU that fetches and executes
own instructions

• Large parallel chunks of work 
done in custom hardware
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Implement large 2D systolic matrix multiplication unit

• Systolic Execution to compute data on the fly in buffers

• Pipeline control and data

• Relies on data from different directions arriving at
regular intervals and being combined
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Implement large 2D systolic matrix multiplication unit

• Systolic Execution to compute data on the fly in buffers

• Pipeline control and data

• Relies on data from different directions arriving at
regular intervals and being combined
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Implement large 2D systolic matrix multiplication unit

• Systolic Execution to compute data on the fly in buffers

• Pipeline control and data

• Relies on data from different directions arriving at
regular intervals and being combined
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Implement large 2D systolic matrix multiplication unit

• Systolic Execution to compute data on the fly in buffers

• Pipeline control and data

• Relies on data from different directions arriving at
regular intervals and being combined
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Implement large 2D systolic matrix multiplication unit

• Systolic Execution to compute data on the fly in buffers

• Pipeline control and data

• Relies on data from different directions arriving at
regular intervals and being combined
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Implement large 2D systolic matrix multiplication unit

• Systolic Execution to compute data on the fly in buffers

• Pipeline control and data

• Relies on data from different directions arriving at
regular intervals and being combined

• Matrix Matrix Multiply takes more cycles and has better utilization
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High-level Chip Architecture

• Matrix Unit: 65,536 (256x256)
8-bit multiply-accumulate units

• 700 MHz clock rate

• Peak: 92 Tera operations/second

• 65,536 * 2 * 700M

• 4 MiB of on-chip Accumulator mem.

• 24 MiB of on-chip Unified Buffer
(activation memory)

• 8 GiB of off-chip weight DRAM mem.

• Two 2133MHz DDR3 DRAM channels
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TPUv1 Chip area breakdown

• Main focus:

• On-chip memory 35%

• Matrix Multiply Unit 24%

• Control is just 2% 
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TPUv1 from a programmer’s view

• 5 main (CISC) instructions

• Read_Host_Memory
• Reads memory from the CPU memory into the unified buffer

• Read_Weights
• Reads weights from the Weight Memory into the Weight FIFO as input to the Matrix Unit

• MatrixMatrixMultiply/Convolve
• Perform a matrix-matrix multiply, a vector-matrix multiply, an element-wise matrix multiply, 

an element-wise vector multiply, or a convolution from Unified Buffer into the accumulators
• Takes a variable-sized B*256 input, multiplies it by a 256x256 constant input, and produce a 

B*256 output, taking B pipelined cycles to complete

• Activate (ReLU, Sigmoid, Maxpool, LRN, …)
• Computes activation function

• Write_Host_Memory
• Writes data from unified buffer into host memory
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TPUv1 from a programmer’s view

• Average Clock cycles per instruction: >10

• 4-stage overlapped execution, 1 instruction type / stage

• Execute other instructions while matrix multiplier busy

• Complexity in SW: No branches, in-order issue, SW controlled buffers, SW 
controlled pipeline synchronization
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Relative TPU Performance: 3 Contemporary Chips 2015

TPUv1 is less than half die size of the Intel Haswell processor
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Processor mm2 Clock 
[MHz]

TDP 
[Watts]

Idle 
[Watts]

Memory 
GB/sec

Peak TOPS/Chip

8b int. 32b FP

CPU: 
Haswell 
(18 core)

662 2300 145 41 51 2.6 1.3

GPU: 
Nvidia K80 
(2/card)

561 560 150 25 160 -- 2.8

TPUv1 <331 700 75 28 34 91.8 --



Relative Performance of TPUv1 server

Processor Chips / 
Server

DRAM TDP Watts Idle Watts Observed Busy 
Watts in 

Datacenter

CPU: Haswell (18 cores) 2 256GB 504 159 455

NVIDIA K80 (2 die per card; 4 
cards per server)

8 256GB (host) + 12GB x 8 1838 357 991

TPUv1 (1Core) 4 256GB (host) + 8GB x 4 861 290 384
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Performance: Inference Datacenter Workload (95%)
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Roofline Visual Performance Model

2 Limits to performance

1. Peak Computation

2. Peak Memory Bandwidth
(for apps with large data that
don’t fit in chache)

Arithetic Intensity (FLOP/Byte 
or reuse) determines which limit

Weight-reuse = Arithmetic
Intensity for DNN roofline

72
Samuel Williams, Andrew Waterman, and David Patterson. "Roofline: an insightful visual
performance model for multicore architectures."Communications of the ACM 52.4 (2009): 65-76.



TPUv1 Die Roofline
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Haswell (CPU) Die Roofline
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K80 (GPU) Die Roofline
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Many benchmark far below roofline, e.g. MLP0

Increase Batch Size = More Weight Reuse
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Combined log rooflines CPU, GPU, TPUv1
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Perf/Watt TPUv1 vs CPU & GPU
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TPUv1 success due to…

• Large Matrix Multiply Unit

• Software controlled on-chip memory

• Omission of GPU features small, low power die

• Use of 8-bit integers in quantized apps

• Apps in Tensorflow are easy to port at speed

• 15-month design & live introduction

• 30x faster than Haswell CPU, K80 GPU (inference)

• <0.5 die size, 0.5 Watts
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Previous architectures are "Non Local Reuse Architectures"

• Use of large global buffers as shared storage

• Reduce DRAM accesses

• Multicast activations, single cast weights, accumulate partial sums spatially

• Often matrix multiplication based
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Neuro Vector Engine (2016)

Operate on vectors

• Dual port vector memory

• Vector shuffle registers

• Vector MACC array

• Vector Activation

81
M. Peemen et al. “The neuro vector engine: Flexibility to improve convolutional net efficiency” DATE2016 
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Output Stationary

Minimize partial sum R/W
energy consumption

Maximize local accumulation

Broadcast filter weights and
reuse activations spatially
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According to V. Sze et al. “Efficient Processing of Deep Neural 
Networks” Proceedings of the IEEE 2017
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Energy-efficient dataflow Eyeriss

Row Stationary

• Maximize reuse and accumulation at register file

• Optimize for overall energy efficiency instead on one data type

• Filter row in RF

• Activation sliding window in RF

• Partial sum accumulation in RF

Accumulator can move in out
memory and between PE
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Y-H. Chen et al. “Eyeriss: an Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks”, ISSCC 2016



GPU: NVIDIA Volta V100  (GTC May 2017)

84

• up to 80 cores, 5120 PEs (FP32)
• 20 MB register space 
• 815 mm2

• 21.1 Btransistors
• 12 nm
• 300 W
• peak: 120 TFlops/s
• (FP16) => 2.5 pJ/op



1 SM core

Units:

• 8 tensor cores/SM

• 64 Int units

• 64 FP32

• 32 FP64

• 32 Ld/St

• 4 SFUs

• 128 LB L1 Data $

• 4 warp schedulers
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Tensor core operation

• D = AxB + C, all 4x4 matrices

• 64 floating point MAC operations per clock
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HotChips 2018: Xilinx adds Vector blocks

87

Speedup:
• ML: 20 x
• MIMO/5G: 4 x



Xilinx Versal AI cores: scalable VLIW vector units
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Compute efficiency for neural network acceleration

Well known paradigm that can be made quantitative

• Energy Efficiency: Gops/Watt

• Sometimes expressed as:  pJ/op

• Area Efficiency: Gops/mm2

89

Accelerator mW V Tech. MHz Gops Gops/W On-Chip Mem. Control mm2 Gops/mm2

NeuFlow [110] 600 1.0 45 SOI 400 294 490 75 kB Dataflow 12.5 23.5
Origami [15] 93 0.8 umc 65 189 55 803 43 kB Config 1.31 42
NVE [109] 54 - TSMC 40 1000 30 559 20 kB VLIW 0.26 115
DianNao [20] 485 - TSMC 65 980 452 931 44 kB FSM 3.02 149.7
ShiDianNao [46] 320 - TSMC 65 1000 128* 400 288 kB FSM 4.86 26.3
Desoli et al. [43] 51 0.58 28 FD-SOI 200 78 1277 6 MB Config 34 2.29
Shin et al. [132] 35 0.77 65 1P8M 50 73 2100** 290 kB FSM 16 4.5
TPU [77] 40,000 - 28 nm 700 46,000 1150 28 MB CISC <331 >139
* Only gives theoretical peak performance, as opposed to actual measurements on a real network.
** Q-table lookup of precomputed multiplication results



Network Efficiency is Important

Network Original Size Compressed 
Size

Compression 
Ratio

Original 
Accuracy

Compressed 
Accuracy

Lenet-5 1720KB 44KB 39x 99.20% 99.26%

AlexNet 240MB 6.9MB 35x 80.27% 80.30%

VGGNet 550MB 11.3MB 49x 88.68% 89.09%

GoogleNet 28MB 2.8MB 10x 88.90% 88.92%
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S.Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding” 

Less compute and storage without loss of accuracy

• This sounds too good to be true?



Examples of inefficiency

TPU (256x256 systolic array)

Effective utilization for small (efficient)
network layers?

• E.g. 16 kernels of 3x3

• Where to obtain the parallelism?

Matrix conversion overhead?
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N.P. Jouppi et al. “In-Datacenter Performance Analysis of a Tensor Processing Unit” ISCA 2017

Transposed Convolution

Filter Input Fmap Output Fmap

V. Sze et al. “Efficient Processing of Deep Neural Networks”, Proceedings of the IEEE 2017



Improving flexibility and efficiency

Processing 1D vectors more flexible than 2D systolic:

More programming flexibility

Operations that perform vector
permute and merge

Register files like Intel AVX
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NVE Compiler needed

Abstract from the hardware

Task Graph 
Generation

Block 
Scheduling

Schedule 
Bundling

Assembling
.xml 

ConvNet
VLIW 

program

Wr[c3,i0-i7], 4

Wr[c3,i8-i15], 5

Wr[c3,i16-i19 - - - -], 6

Read Local
Ld a 0, [b0 w0-1]

Ld ab 4 5, [c0,i0-15]

Ld b 6, [c0,i16-17] Set W0

Reg Operation

Set i0 i1, Shift W

Set i3, Shift i0 i1, Shift W

Set, b0

EX VMAC

MAC,w0, c0 i0

MAC,w1, c0 i1

MAC,w2, c0 i2

MAC,w3, c1 i0

Shift i0 i1, Set W2

Set i0 i1, Shift W

Set i0 i1, Shift W

Ld b 9, [c1,i16-17]

Ld ab 7 8, [c1,i0-15]

Shift i0 i1, Set W1

Set i3, Shift i0 i1, Shift WLd ab 10 11, [c2,i0-15]

MAC,w4, c1 i1

MAC,w5, c1 i2

Ld a  2, [w5-8]

MAC,w6, c2 i0

MAC,w7, c2 i1

MAC,w8, c2 i2

Shift i0 i1, Shift W

Ld a 1, [w2-4]

Ld b 12, [c2,i16-17]

Write Local WB Sgm

Sigm0, Wrback

Sigm1, Wrback

NOP

Set i3, Shift i0 i1, Shift W
10 Cycles

M.Peemen e.a., VLIW Code Generation for 
Convolutional  Network Accelerator
SCOPS 2015
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AivoTTA architecture

Convolutional Network optimized datapath based on Transport-Triggered Architecture (TTA) 
Template

Weight datapath

94
J.IJzerman et al., “AivoTTA: An Energy Efficient Programmable Accelerator for CNN-Based 
Object Recognition” SAMOS 2018 (research from Tampere Univ of Technology and TU/e)

bus 0-2: general-purpose scalar 32-bit

bus 3-5: scalar weights, 32-bit

bus 6: input vectors, 256-bit
bus 7: accumulator vectors, 1024-bit 



AivoTTA (several vector units)

C and OpenCL programmable
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Flexibility has its price

Where does the energy go?

RISC @ 45 nm, 0.9 V

ADD op. 0.5 pJ out of 70 pJ for the ADD instruction

Overall efficiency:
1 / 850 = 0.12 %
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Reduce the price of flexibility: SIMD

Perform more effective work per instruction

Very programmable

1/140 vs 16/180  →  10 times efficiency improvement



Further improve efficiency

Maximize effective operations

Minimize load stores

E.g. 1/5 effective vs 9/11 →  additional 4 times efficiency increase

~40 times 
efficiency 

improvement



The importance of Loop Transformations

Reduce external memory accesses

• Tiling

• Loop interchange
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Loop Tiling

Original loop

for(j=0; j<N; j++)
for(i=0; i<M; i++)
B[j][i]+=A[i]+C[j];

0

0

N

M

j

i



Loop, after Tiling

Tile i loop into (i, ii)

Interchange j and ii - loops

for(i=0; i<M; i+=Ti)
for(j=0; j<N; j++)
for(ii=i; ii<i+Ti; ii++)
B[j][i]+=A[i]+C[j];

0

0

N

M

j

i



Data reuse: Bandwidth reduction 327x

However: Huge on-chip memory required
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loop n

loop m

loop q

loop r

After using our code transformer:

• 64 times memory size reduction !!



Inter-tile data reuse optimization

C[][] A[][] B[][]

0 1 2 3 4 5 j

i

0

1

2

3

4

i

0

1

2

3

4

0

1

2

3

4

k

k j0 1 2 3 4 5 0 1 2 3 4 5

Operation List

for(i=0; i<Bi; i++){
for(j=0; j<Bj; j++){
C[i][j]=0;
for(k=0; k<Bk; k++){
C[i][j]+=A[i][k]*B[k][i];

}}}

Host ProcessorExternal RAM

Accelerator 
2

Accelerator 
3

Accelerator 
1 Local

Buffer

Data path

acc* +

acc* +

M. Peemen et al., “Inter-Tile Reuse Optimization.” (DATE 2015) 

External Access Reduction
Up to 2.4 times



The benefits of inter-tile reuse
Reuse data in a small local scratchpad

Reduce external communication by ~100x

Against state-of-the-art tiling 2.1x reduction

M. Peemen et al., “Inter-Tile Reuse Optimization.” (DATE 2015) 



Next step in loop transformations: FUSION

• Alwani e.a. Micro 2016

• AivoTTA (SAMOS 2018) 
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Summary

Huge processing and storage demands

A lot of research on 
efficiency improvements

DL networks get far more irregular

Flexible, but efficient, architectures needed

Select the sweet spot between flexibility and efficiency

Complex code: 

Advanced code transformations and automated code generation needed
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Data 
SRAM
12%

Weight 
SRAM
17%

Instruction 
SRAM…

Control 
logic
12%

Functional 
units…

Register files
4%

Energy breakdown AivoTTA, SAMOS 2018
400 MHz, total 11.3 mW



Being flexible does not have to be inefficient

Example AivoTTA

• Very efficient Gops/W

• Memory efficient
Gops/GB
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Tech.
(nm)

GOPS
/w

GOPS
/GB

Control

Neuflow 45 490 50 Dataflow

Origami 65 803 521 Config.

NVE 40 559 125 VLIW

DianNao 65 931 - FSM

ShiDianNao 65 400 - FSM

SoC 28 1542 - Config

DNPU 65 2100 - FSM

TPU 28 1150 1352 CISC

AivoTTA 0.6V 28 1434 1081 TTA



Deep Neural Networks
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Synapses as Memristors from Intel 

Memristor can be used as switch

Also analog storage of memristance
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Beyond Silicon 

Infineon NeuroChip

Directly uses biological networks

Difficult to connect to other devices
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Deep Neural Networks
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