Introduction to gem5

Mohammad Tahghighi

Outline

- Introduction
 - What is Gem5 useful for ? and what NOT!
- Overview of the system simulator
 - Simulation modes
 - Behind the scene of a simulation
 - What's under the hood ?

Introduction

- Gem5 is the fusion of two projects
 - GEMS
 - detailed and flexible memory system model
 - Includes support for multiple cache coherence protocols and interconnect models
 - developed @ The University of Wisconsin Madison
 - M5
 - Highly configurable simulation framework to support multiple ISAs, and diverse CPU models
 - developed @ The University of Michigan
- System simulator
 - Good support of complex components interactions (OS / CPU / Caches / Devices / ...)
 - Accuracy depends on the model completeness
 - Lot of components available out-of-the-box (CPUs, memories, I/Os, ...)

What is Gem5 useful for ?

- Architectural exploration
 - Gem5 provides a fast and easy framework to interconnect hardware components and evaluate them !
- Hardware/software performance evaluation ?
 - Gem5 has a good support of various ISA and allows for realistic HW/SW performance evaluation

What is Gem5 NOT useful for ?

- Hardware/software verification ?
 - RTL functional verification is much more accurate !
- Software development and verification ?
 - Faster technologies are available through binary-translation (e.g. QEMU, OVP)

Simulation modes

- Full-system (FS)
 - Models bare-metal hardware
 - Includes the various specified devices, caches, ...
 - Boots an entire OS from scratch
 - Gem5 can boot Linux (several variants) or Android out of-the-box
- Syscall Emulation (SE)
 - Runs a single static application
 - System calls are emulated or forwarded to the host OS
 - Lot of simplifications (address translation, scheduling, no pthread ...)

Behind the scene of a simulation Compilation of the simulator

Behind the scene of a simulation Compilation of the simulator

What's under the hood ?

Simulation objects

 SimObjects follow a strict C++ class hierarchy for easier extension with code reuse

What's under the hood ? Events

- Gem5 is event-driven
 - Discrete event timing model

 Simulation objects schedule events for the next cycle after a specific time elapsed

What's under the hood ? CPU Models

- Supports: Alpha, ARM, MIPS, Power, SPARC, and x86
- Configurable CPU models : Supports 3 CPU models
 - Simple Atomic/Timing
 - Fast CPU model
 - InOrder
 - Detailed pipelined in-order CPU model
 - 03
 - Detailed pipelined out-of-order CPU model
- Supports a domain specific language to represent ISA details

What's under the hood ? Memory System

- Models a system running heterogeneous applications
 - running on heterogeneous processing tiles
 - using heterogeneous memories and interconnect

What's under the hood ? Memory System

- Two memory systems in Gem5
 - Classic
 - All components instantiated in a hierarchy along with CPUs, etc.
 - Only MOESI coherence protocol
 - Fast, but less detailed than Ruby
 - Ruby
 - Detailed simulation model of various cache hierarchies
 - Various cache coherence protocols (MESI, MOESI, ...)
 - Interconnection networks

What's under the hood ? Memory ports

- Memory ports are present on every MemObject
 - They model physical memory connections
 - You interconnect them during the hierarchy instantiation
 - E.g. a CPU data bus to a L1 cache
 - 1 master port always connects to 1 slave port
- Data is exchanged atomicly as packets

What's under the hood ? Memory ports

- 3 types of transport interfaces for packets
 - Functional
 - Instantaneous in a single function call
 - Caches and memories are updated at once
 - Atomic
 - Instantaneous
 - Approximate latency, but no contention nor delay
 - Timing
 - Transaction split into multiple phases
 - Models all timing in the memory system

Nice feature

Checkpointing

• Snapshot the relevant system state and restore it later

- Fast-forward
 - Idea is to start the simulation in atomic mode and switch over to detailed mode for important simulation period

Thanks!