
Introduction to gem5

Mohammad Tahghighi



Outline

• Introduction
• What is Gem5 useful for ? and what NOT!

• Overview of the system simulator
• Simulation modes
• Behind the scene of a simulation
• What’s under the hood ?



Introduction

• Gem5 is the fusion of two projects
• GEMS

• detailed and flexible memory system model
• Includes support for multiple cache coherence protocols and interconnect models
• developed @ The University of Wisconsin Madison

• M5
• Highly configurable simulation framework to support multiple ISAs, and diverse CPU 

models
• developed @ The University of Michigan

• System simulator
• Good support of complex components interactions (OS / CPU / Caches / 

Devices / …)
• Accuracy depends on the model completeness

• Lot of components available out-of-the-box (CPUs, memories, I/Os, …)



What is Gem5 useful for ?

• Architectural exploration
• Gem5 provides a fast and easy framework to interconnect hardware 

components and evaluate them !

• Hardware/software performance evaluation ?
• Gem5 has a good support of various ISA and allows for realistic HW/SW 

performance evaluation



What is Gem5 NOT useful for ?

• Hardware/software verification ?
• RTL functional verification is much more accurate !

• Software development and verification ?
• Faster technologies are available through binary-translation (e.g. QEMU, OVP)



Simulation modes

• Full-system (FS)
• Models bare-metal hardware

• Includes the various specified devices, caches, …
• Boots an entire OS from scratch

• Gem5 can boot Linux (several variants) or Android out of-the-box

• Syscall Emulation (SE)
• Runs a single static application
• System calls are emulated or forwarded to the host OS
• Lot of simplifications (address translation, scheduling, no pthread …)



Behind the scene of a simulation
Compilation of the simulator



Behind the scene of a simulation
Compilation of the simulator



What’s under the hood ?
Simulation objects

• SimObjects follow a strict C++ class hierarchy for easier extension 
with code reuse

 



What’s under the hood ?
Events

• Gem5 is event-driven
• Discrete event timing model

• Simulation objects schedule events for the next cycle after a specific 
time elapsed



What’s under the hood ?
CPU Models

• Supports: Alpha, ARM, MIPS, Power, SPARC, and x86
• Configurable CPU models : Supports 3 CPU models

• Simple Atomic/Timing 
• Fast CPU model

• InOrder
• Detailed pipelined in-order CPU model

• O3
• Detailed pipelined out-of-order CPU model

• Supports a domain specific language to represent ISA details



What’s under the hood ?
Memory System

• Models a system running heterogeneous applications
• running on heterogeneous processing tiles
• using heterogeneous memories and interconnect



What’s under the hood ?
Memory System

• Two memory systems in Gem5
• Classic

• All components instantiated in a hierarchy along with CPUs, etc.
• Only MOESI coherence protocol
• Fast, but less detailed than Ruby

• Ruby
• Detailed simulation model of various cache hierarchies
• Various cache coherence protocols (MESI, MOESI, …)
• Interconnection networks



What’s under the hood ?
Memory ports

• Memory ports are present on every MemObject
• They model physical memory connections
• You interconnect them during the hierarchy instantiation

• E.g. a CPU data bus to a L1 cache
• 1 master port always connects to 1 slave port

• Data is exchanged atomicly as packets



What’s under the hood ?
Memory ports

• 3 types of transport interfaces for packets
• Functional

• Instantaneous in a single function call
• Caches and memories are updated at once

• Atomic
• Instantaneous
• Approximate latency, but no contention nor delay

• Timing
• Transaction split into multiple phases
• Models all timing in the memory system 



Nice feature

• Checkpointing
• Snapshot the relevant system state and restore it later

• Fast-forward
• Idea is to start the simulation in atomic mode and switch over to detailed

mode for important simulation period 



Thanks!


