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Example 1 

Feedback control system: regulates the behavior of dynamical systems 

Control objective: Keep the pendulum upright.  
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Feedback control applications 

Adaptive cruise control Pedestrian detection system 

Suspension system 
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Modeling dynamical systems: system dynamics 

• The system states changes with time... 
• Generally, the dynamical systems are modeled by a set of 

differential equations... 

𝑚𝑚𝑙𝑙2 𝜃̈𝜃 = mg l sin𝜃𝜃   
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Stability and basic principle 

• Autonomous dynamical system: 𝑥̇𝑥=ax  
• Solution:  x(t) = 𝑒𝑒𝑎𝑎𝑎𝑎x(0) 
• Stability: a<0 implies x(t)→ 0 as t→ ∞ 
• Instability: a>0 implies x(t)→ ∞ as t→ ∞   

 
• General dynamical systems: 𝑥̇𝑥=ax + u  
• u = 0 (i.e., no control input): same as an autonomous system (open-

loop system) 
• Feedback controller: u = -Kx 
• Closed-loop system: 𝑥̇𝑥=ax + u = ax – Kx = (a-K)x 
• If (a-K)<0, we have a stable closed-loop system 
• Controller design: choose K such that (a-K)<0 

 
• General dynamical system (state-space model): 
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Example: system dynamics 

System dynamics: 

Given physical system: DC motor with inverted pendulum 
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System dynamics→state-space model 

(1) System dynamics: 

(3) States: 

(4) State-space:  

(2) Input and output: 
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      (1) Double integrator: 
 

(2) Input and output: 

(4) State-space:  

(3) States: 

System dynamics→state-space model 7 



Systems poles 

• System model:  
 

• System poles are the eigenvalues of A  
 

• Double integrator: 
 
   

Poles at 0, 0 Recall:  
System: 𝑥̇𝑥=ax  
Solution:  x(t) = 𝑒𝑒𝑎𝑎𝑎𝑎x(0) 
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Stability condition: continuous-time case 
• Stable system 
  All poles should have negative real part Ex. -3, (-3 + 2i) 
• Marginally stable system  
  One or multiple poles are on imaginary axis and all other poles have 

 negative real parts Ex. 2i, 
• Unstable system 
  One or more poles with positive real part. Ex. +3, (+3 + 2i) 

Stable Unstable 

Imaginary axis 

Recall:  
System: 𝑥̇𝑥=ax  
Solution:  x(t) = 𝑒𝑒𝑎𝑎𝑎𝑎x(0) 

Real axis 
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Simplest design problem 

• We have a linear system given by state-space model – 
 
 
 

• Objective – 
 
 

•  u = ? 
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State-feedback  

Closed-loop system with state-feedback control                              , 

Open-loop system, i.e., with u=0 

A 

B C r F 
+ 

+ 

K 

r = reference 
K = feedback gain 
F = static feedforward gain 
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Open-loop stability 

 
 
 
 

  
%% System matrix 
A = [0   1 
     5   6];  
%% System open-loop poles 
eigs(A) 

>> 6.74 
  -0.74 

Unstable! 

Open-loop poles 
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 Open-loop poles are at +6.74 and -0.74.  
 Assuming u=Kx, compute feedback gain K such that the closed-loop 

poles at -1 and -2. 
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Example 2 -- contd 

 
 
       

Desired pole locations at -1 and -2, that is the desired characteristics equation, 

Comparing above two equations, 
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%% System matrix 
A = [0   1 
     5   6];  
B = [0; 1]; 
 
%% Feedback gain 
K = [-7 -9]; 
%% System closed-loop poles 
eigs(A+B*K) 

>> -1 
  -2 closed-loop poles 

Stable!  
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• Choose the desired closed-loop poles are at  
 
 
 
 

• Ackermann’s formula: 
 
 
 
 
 
 

• Poles of (A+BK) are at  
 
 
 
 
 
 
 
 

Systematic design: Ackermann’s formula 16 



• Example 3 
 
 
 

 Open-loop poles are at +6.74 and -0.74. Compute feedback gain K 
such that the closed-loop poles at -1 and -2. 

 
Ackermann’s formula: 
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Example 3 contd 18 



 
 
       

Example 3 contd 

Feedback gain: 
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Cross-check 

%% System matrix 
A = [0   1 
     5   6];  
B = [0; 1]; 
 
gamma = [B A*B]; 
H = A^2 + 3*A+ 2*eye(2); 
 
%% Feedback gain 
K = -[0 1]*inv(gamma) *H 
%% System open-loop poles 
eigs(A+B*K) 
 
%% Matlab function call 
 K = -acker(A,B,[-1 -2]) 
%% System open-loop poles 
 eigs(A+B*K) 
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• Example  
 Given system dynamics   

 With input                           , find the feedback gain K to place the 

closed loop poles are located at -1 and -1.   
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Closed-loop poles 

Verify the results using MATLAB 
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• Example 
 
 
 
 

 Is it possible to place the system poles? 

γ is not invertible 

The system not controllable! 

Pole placement  
not possible 
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Controllability 

 
 
 
 
 
 

• Check if you can control (i.e., place pole) the system ?  
   
  
 Controllability matrix should be invertible. 

Controllability matrix: 
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 Open-loop poles are at +6.74 and -0.74. Compute feedback gain K 
such that the closed-loop poles at -1 and -2. 

       
 We got: u = Kx = [-7 -9]x 
     x(t) = ? as t → ∞ 
 
       

Recall:  
System: 𝑥̇𝑥=ax  
Solution:  x(t) = 𝑒𝑒𝑎𝑎𝑎𝑎x(0) 

 What if we want:  
 y(t) → 𝑟𝑟 as 𝑡𝑡 → ∞ 

 We apply the above method to achieve:  
 y(t)-r → 0 as 𝑡𝑡 → ∞ 

Feedforward gain 25 



Static feedforward gain 

Closed-loop  
system 

F should be chosen such that y(t) ! r (constant) as t ! 1 i.e., 

Using final value theorem 

Taking Laplace 
transform 
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Derivation of feedforward gain 

• 𝑥̇𝑥 = 𝐴𝐴 + 𝐵𝐵𝐵𝐵 𝑥𝑥 + 𝐵𝐵𝐵𝐵𝐵𝐵 
• Taking Laplace transform: 𝑠𝑠𝑠𝑠 𝑠𝑠 = 𝐴𝐴 + 𝐵𝐵𝐵𝐵 𝑋𝑋 𝑠𝑠 + 𝐵𝐵𝐵𝐵 𝑅𝑅 𝑠𝑠  
• Solve X(s): 𝑋𝑋 𝑠𝑠 = 𝑠𝑠𝑠𝑠 − 𝐴𝐴 − 𝐵𝐵𝐵𝐵 −1𝐵𝐵𝐵𝐵𝐵𝐵 𝑠𝑠  
• R(s)=𝑟𝑟

𝑠𝑠
 

• From y=Cx, we get 
𝑌𝑌 𝑠𝑠 = 𝐶𝐶𝐶𝐶 𝑠𝑠 = 𝐶𝐶 𝑠𝑠𝑠𝑠 − 𝐴𝐴 − 𝐵𝐵𝐵𝐵 −1𝐵𝐵𝐵𝐵𝐵𝐵 𝑠𝑠  

• Final value theorem: lim
𝑡𝑡→∞

𝑦𝑦 𝑡𝑡 = lim
𝑠𝑠→0

𝑠𝑠𝑠𝑠 𝑠𝑠 = 𝑟𝑟 (this is what we want) 

• The above implies using the expression of Y(s) and R(s): 
𝐶𝐶 𝑠𝑠𝑠𝑠 − 𝐴𝐴 − 𝐵𝐵𝐵𝐵 −1𝐵𝐵𝐵𝐵𝑟𝑟 = 𝑟𝑟 

• Further, the above results in a following solution for F: 



Overall design 

 
• Given system: 

 
• Control law: 

 
 
 

1.Check controllability of (A,B) ! must be controllable. γ must be 
invertible. 
 
 

2.Apply Ackermann’s formula 
 

3.Feedforward gain  
 
 
 
 
 

Objectives 
(i) Place system poles 
(ii) Achieve y ! r as t ! 1 
(iii)    Design K and F 
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Design example 

Source: /www.library.cmu.edu/ctms/ 
 Design a controller such that pitch angle  
 θ = 0.03 rad with time.  
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• Choose closed-poles at stable locations 
 
 

• Controllability matrix 
 
 

• Feedback gain  
 

• Feedforward gain 
 

• 𝛿𝛿 =K
𝛼𝛼
𝑞𝑞
𝜃𝜃

 + F × 0.03  
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𝛿𝛿 =K
𝛼𝛼
𝑞𝑞
𝜃𝜃

 + F × 0.03  



Design consideration: response time 
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Aggressive poles ! faster response 
Recall:  
System: 𝑥̇𝑥=ax  
Solution:  x(t) = 𝑒𝑒𝑎𝑎𝑎𝑎x(0) 
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Design consideration: input saturation 
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Aggressive poles ! higher input signal 
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• Reasonable to represent system performance by the poles 
 
 
 
 
 
 
 
 
 
 
 

Time- domain  
settling time, rise time, 

overshoot 

Frequency-domain  
Gain Margin,  
Phase Margin 

Specification Desired poles 

Pole choice 

External constraints  
Input saturation 

Apply the method  
to design a controller  
to achieve the desired poles 
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