AT at the speed of Life.

GrAI Matter Labs

We provide brain-inspired chips for
intelligent devices at the Edge:

* Responsive
 Autonomous
e Low Power

* Low Latency

Al aKSpeed of Life

GrAI Matter Labs

—

Silicon Valley Paris Eindhoven

« Product Marketing & Sales, CEO - Science Center + Silicon Design Center

« Customer Solutions - System & Applications Engineering * SDK Engineering

Ultra-Low latency
Real-time Responses

Secure & Small End-
point AI

Edge AI
Requirements

Ease of Programmability
Fast Time To Market

Low Power
Fan-less design

High Accuracy
Reliable and Robust

Al at the Speed of Life

Life-Ready Ultra-Low Latency at Low
Power

latency
Resnet-50
224x224
80
62 Lower is better
50
40
30
20
10
0
Intel Myriad-X Google Coral Nvidia Nano GrAI VIP
Typical 5-10W < 0.5wW

https://coral.ai/docs/edgetpu/benchmarks/
https://docs.openvinotoolkit.org/latest/openvino_docs_performance_benchmarks.ht Al at'the Speed of Life
htifses oty el ptfr.nvidia.com/embedded/jetson-beachindifkdased on GrAIFlow SDK estimates

Brain i1nsplired Computing

Brain-inspired computing: scalability

* Very simple distributed structure replicated over and over

Brain-inspired computing: low power

Animal vision much more power efficient than silicon.
There must be something we can learn from it.

This leads us to bio-mimicry.

* But how does the brain do what it does?

Human Vision 6 W

GPU ~250W

Neuromorphic Model: Spiking Neural networks

Artificial neurons that closely mimic brain cell
behavior:

* neurons communicate through value-less spikes.
« weighted synapses with delayed spike transport
* neurons with persistent state

 temporal execution model

 synaptic relay of spikes includes a temporal
delay

* neuron state decays over time

* requires a global concept of time and time base
functions

Challenges for Neuromorphic going Digital

 spikes offer little/no gain over values due to addressing and
memory access overhead.

 temporal behavior: simulating ”brain” time requires costly global
synchronization.

« exponential decay of neuron state is very costly

Intel’s Loihi

IBM’s TrueNorth

Avoiding the pitfalls of biomimicry

We discovered how to fly by
getting inspiration from birds
but not by exactly mimicking birds.

Focus on the secret sauce.

"Just as the Wright brothers did not design an
aircraft with wings that flap, but still gained
inspiration from observing how birds glide and
turn, a practicable approach for replicating animal- il ltin
like intelligence is to combine mimicry of selected " Image from www.leonardodavinci.net
aspects of neurobiological solutions with entirely
different implementation mechanisms, such as
silicon-based electronics.”

McDonnel et al "Engineering intelligent electronic systems based on computational neuroscience”

10

7
s @&% Q ‘
. k\/\ S &=
[\/\ &o -~
—
K \e 00 =

Sparsity

Sparsity

_* Sparsity in structure

* Pruning of needless weights

* In many image-processing networks >70% weights can be

pruned without significant loss of accuracy.

Sparsity in activation

e Many pixels have no relevant feature data.
* resulting in ©-valued activations.

* With RELU: ~50% of activations are 0-valued

Ty * Even without training for activation suppression!!!

 Sparsity in time
« Image changes little from instant to instant

12 * why should we always re-process whole frames?

GPUs, NPUs..

Key To
Life-Ready AI:
Exploiting Sparsity

Sparse Compute

Process everything

e Sparsity in time e Sparsity of connections e Sparsity in activation

13

Key To
Life-Ready AI:
Exploiting
Sparsity

Sparse Compute

GPUs, NPUs..

e Sparsity in time e

Sparsity of connections e

Process everything

Sparsity in activation

14

Key To
Life-Ready AI:
Exploiting
Sparsity

Sparse Compute

GPUs, NPUs.. Process everything

e Sparsity in time e Sparsity of connections e Sparsity in activation

15

Key To
Life-Ready AI:
Exploiting
Sparsity

Sparse Compute

e Sparsity in time e

GPUs, NPUs..

Sparsity of connections e

Process everything

Sparsity in activation

16

Key To
Life-Ready AI:
Exploiting
Sparsity

Sparse Compute

GPUs, NPUs.. Process everything

GrAI
Matter
Labs

NeuronFlow

e Sparsity in time e Sparsity of connections e Sparsity in activation

17

Key To
Life-Ready AI:
Exploiting
Sparsity

Sparse Compute

GPUs, NPUs.. Process everything

GrAl
Matter
Labs

NeuronFlow

e Sparsity in time e Sparsity of connections e Sparsity in activation

18

Key To
Life-Ready AI:
Exploiting
Sparsity

Sparse Compute

GPUs, NPUs.. Process everything

vV VY

GrAI
Matter
Labs

NeuronFlow

e Sparsity in time e Sparsity of connections e Sparsity in activation

19

S pars 1t)4 number of operations per frame
in Pilot Net —— Sparse Inference

Avg Sparse Inference :

28.2 | Normal inference |
10 }
17
0 0.5 1 1.5 2

frame %104

GrAl Matter Labs, Inc. ©2021 All rights reserved.

CONFIDENTIAL 20

21

PilotNet 1in SparNet

SparNet: Sparse and Event-Based

execution model

Red = active links and
activated neurons

Exploits time-sparsity in a time
series;

Converts frame-based network to
event-based inference;

Event-based: change is sent
sporadically, so no frame
structure to input data;

Only propagates changes, thus
less work needs to be done;

Requires resilient neuron state;

Threshold: per neuron, defines
how much change is needed to
warrant propagation.

To convert a CNN to SparNet, we
set a threshold per neuron.

22

28.2

MOQOps per frame

MOps per Second

number of operations per frame

Sparse Inference
Avg Sparse Inference
Normal inference ||

10t

MRHM | M

—

1.7

WUWWW

’UWN T

0 0.5

1 1.5 2

frame %104

SpArNet
= == CNN

10000 r

5000 1 s

500 r£

3060 120

240 480

Frames Per Second

23

PilotNet using
SparNet

 SparNet dramatically reduces the number
of operations required.

« Effect is dramatic at high fps:
e same amount change per same time interval,;

* but for frame-based processing, load
increases linearly with frame rate;

« higher fps => lower sampling period =>
lower latency

Consequences of Sparsity
Exploitation for Computer
Architecture

Temporal sparsity requires resilient neurons

suggests in/near memory computation;

Sparsity reduces regularity in compute demand:

fewer sequential memory accesses as sparsity increases;

reduced value of caching, network bursts, dma

Eg: for loop over input array leads to resource

wastage;
g ? Feature maps

suggests event-driven scheduling;

I f.maps

24

Convolutions Subsampling Convolutions Subsampling Fully connected

Impact of training in perfomance

 Activation suppression yields great benefits

« event-driven: each event suppressed eliminates all

computation triggered by the event..

e particularly efficient for RELU activation

* Weight pruning removes many computations

e 70% weight pruning in image networks is not uncommon.

* Weight pruning and quantization affect mappability

by dramatically reducing memory requirements.

The Neuronflow Architecture

Neuronflow Array

Sizeable memory per core
» local storage of neuron states and weights
* near-memory computation

Scalable, distributed execution.

Sparse computation, event-driven scheduling:

« avoid bulk data movement

« in-place updates;
data-flow synchronization.
axon computation unit dramatically reduces
network configuration memory
GrAI ViP: 12x12 cores, 256KB mem per core
GrAlI ViP: FP16 SIMDx4 datapath

27

Neuron
Core

Neuron
Core

Neuron
Core

Neuron
Core

) 4

A

Neuron Neuron Neuron
Core Core Core
y A
Neuron Neuron Neuron
Core Core Core
v \ 4
y A
Neuron Neuron Neuron
Core Core Core
A\ 4 \ 4
y A
Neuron Neuron Neuron
Core Core Core

A

) 4

A

) 4

NeuronFlow Core

Synapse
Memory

update)

ﬁ Events in

{ neuron state update

Neuron
Memory

neuron)

Datapath

Axon
Computation

result >

Events out @

Network-on-Chip

Core memory layout

Input event

Synapse
Memory

[Xi,Yi,zi, val

EFM*g

KS

)

ﬁ Events in

neuron state update

Neuron
Memory

EMs

e

U

Datapath

=

Axon
Computation

Co*

]

Events out @

Network-on-Chip

« Synapse memory: entries represent neuron populations
« (Xi, Yi, Zi) to a 3D map of weight kernels and output neuron addresses

« Neuron memory: stores output neuron states (FMs)

« Axon memroy: send output event (Xo,Yo,Zo) to target (Core, Population)

#MACs triggered per input event: #FMs * KN2 -> computational intensity

29

Input-stationary and SIMD

read 4

r?ad states
weights
—

(X,Y,Z1)
16b

|

X, Y, Zi event

(e

16b 64b word

write to mem

|

16b

|

16b

« SIMD: static data paralelism in Z (channel first)
« 4 channels per cycle, 1 weight per kernel per cycle

« Per cycle read weights, neuron states, write neuron states,
Z first, then XY

Input-stationary and SIMD

FM1

accum —T=—(X,Y)

Kil

(X, Y, Zi) event accum —(X,Y)

(e

] accum ///(X,Y)

accum /(X,Y)

Input-stationary and SIMD

FM5

accum —T=—(X,Y)

Ki5

(X, Y, Zi) event accum —(X,Y)

(e

] accum ///(X,Y)

accum /(X,Y)

Input-stationary and SIMD

_ FM1
Kil
I accum | -(X+1,Y)
o
KiD FM2
(X, Y, Zi) event ”._& - (X+1,Y)
[val
: FM3
Ki3
| acam - (X+1,Y)
" FM4

T accum (X+1,Y)
T O

Input-stationary and SIMD

. FM5
Ki5
I accum -(X+1,Y)
>
<ic FM6
(X, Y, Zi) event ”._& (X+1,Y)
[val
. FM7
Ki7/
aceem (X+1,Y)
3 FM8

T accum (X+1,Y)
T O

Input-stationary and SIMD

| FM1
Kil
l accum (X+2,Y)
>
- FM2
(X, Y, Zi) event w (X+2,Y)
o
[val
. FM3
=g o (X+2,Y)
EE=L o
FM4

. e (X+2,Y)
SEEE .

Input-stationary and SIMD

| FM5
Ki5
l accum (X+2,Y)
>
| FM6
(X, Y, Zi) event w (X+2,Y)
o
[val
| FM7
=g om0 (X+2,Y)
EE=L o
FMS

. e (X+2,Y)
SEEE .

Input-stationary and SIMD

_ FM1
Kil
accum (X,Y+1)
S
FM2
(X, Y, Zi) event accum (X,Y+1)
S
[val
FM3
dCCum (X,Y+1)
0
FM4
daccum (X,Y+1)

Input-stationary and SIMD

_ FM5
Ki5
accum (X,Y+1)
o
FM6
(X, Y, Zi) event accum (X,Y+1)
e
[val
FM7/
dCCum (X,Y+1)
Il
FM8
daccum (X,Y+1)

Input-stationary and SIMD

| FM1
Kil
e (X+1,Y+1)
A i
- FM2
(X, Y, Zi) event ceurn (X+1,Y+1)
L
[val J
<3 FM3
cur (X+1,Y+1)
L
Kid FM4
(X+1,Y+1)

dCcum
= - S

Input-stationary and SIMD

. FM5
Ki5
Accum (X+1,Y+1)
s i
Ki6 FM6
(X, Y, Zi) event Sccum (X+1,Y+1)
s
[val J
Ki7 FM7
ccum (X+1,Y+1)
a g
Ki8 FM8
(X+1,Y+1)

' accum =

Input-stationary and SIMD

i1 FM1
|
+2,Y+1)
accum /@<
At i
Ki2 FM2
(X, Y, Zi) event /X+2,Y+ 1)
accum
- Chd
[val]
Ki3 FM3
+2,Y+1
1 accum | /(/X)
" FM4

(X+2,Y+1)

\. accum

Input-stationary and SIMD

i FM5
|
+2,Y+1)
accum /@<
N in
Ki6 FM6
(X, Y, Zi) event /()<+2,Y+1)
accum f
[val /"
Ki7 FM7
+2,Y+1
1 accum | /(/X)
iS FM8

(X+2,Y+1)

\. accum

Input-stationary and SIMD

_ FM1
Kil
(X,Y+2)
ﬂ/~ﬂ
mult KiD FM2
(X, Y, Zi) event (X,Y+2)
[val mult accum 1
mult Ki3 FM3
(X,Y+2)
mult accum
Kid FM4
(X,Y+2)

accum H

Input-stationary and SIMD

. FM5
Ki5
(X,Y+2)
ﬂ/~ﬂ
mult Ki6 FM6
(X, Y, Zi) event (X,Y+2)
[val mult accum 1
mult Ki7 FM7/
(X,Y+2)
mult accum
Ki8 FM8
(X,Y+2)

accum H

Input-stationary and SIMD

_ FM1
Kil
(X+1,Y+2)
I N nain
mult KiD FM2
(X, Y, Zi) event (X+1,Y+2)
[val mult *L——»ﬁ
mult Ki3 FM3
(X+1,Y+2)
ult accum
Kid FM4
(X+1,Y+2)

accum

Input-stationary and SIMD

. FM5
Ki5
(X+1,Y+2)
B N s ain
mult Ki6 FM6
(X, Y, Zi) event (X+1,Y+2)
[val mult *L——»ﬁ
mult Ki7 FM7/
(X+1,Y+2)
ult accum
Ki8 FM8
(X+1,Y+2)

accum

Input-stationary and SIMD

_ FM1
Kil
(X+2,Y+2)
accum ______»H7_‘
Ki2 FM2
(X, Y, Zi) event (X+2,Y+2)
[val _,.L———F
Ki3 FM3
(X+2,Y+2)
\[accum
Ki4 FM4
(X+2,Y+2)
' accum

Input-stationary and SIMD

. FM5
Ki5
(X+2,Y+2)
accum ______»H7_‘
Ki6 FM6
(X, Y, Zi) event (X+2,Y+2)
[val _,.L———F
Ki7 FM7/
(X+2,Y+2)
\[accum
Ki8 FM8
(X+2,Y+2)
' accum

Memory Fragmentation

« With dedicated memories

« neuron/weight ratio varies significantly per

layer;

« memory lost to fragmentation.

Core allocated to 1st layer

Core allocated to Last layer

weights

RESNET18

channe

Is
input
convl 3
conv2_1 64
conv2_2 64
conv2_3 64
conv2_4 64
conv3_1 64
conv3_2 128
conv3_3 128
conv3_4 128
conv4_1 128
convé4_2 256
conv4_3 256
convé4_4 256
conv5_1 256
conv5_2 512
conv5_3 512
conv5_4 512
fc 512
Total

neurons

150528
802816

200704
200704
200704

200704
100352

100352
100352
100352
50176
50176
50176
50176
25088
25088
25088

25088
1000

2.459.624

weights

9408
36864
36864
36864

36864
73728

147456
147456
147456
294912
589824
589824
589824
1179648
2359296
2359296

2359296
512000

11.506.880

weight/neuron

0,012
0,184
0,184
0,184
0,184
0,735
1,469
1,469
1,469
5,878
11,755
11,755
11,755
47,020
94,041
94,041

94,041
512

4,678308554

Unified Memory: avoiding

fragmentation

Dedicated memory arch

Data memories

Event List r— Event Controller

Neuron States

Synapse sharing

Event Generator

Configuration
memories

Synapse Memory
(populations, weights)

Axon Memory

Unified memory arch

Unified memory

Event Controller

Synapse sharing

]

4xSIMD ALU

Event generator

Unified Memory
64b words

events, neuron states, weight tables and axons all must fit in 64b words
...but uniform memory instances simplify layout (see layout slide later on).

Memory view: unified SRAM

Memory choice: maximize bw, minimizing size, Unified memory arch
consumption
.+ 64 bit words: 4 FP16 neuron states per entry. Unified memory
« 4 memory banks means 4x64b accesses per cycle
* 4x SIMD Event Controller
Requirement: one synapse per MAC per cycle
Per cycle needs: SAE(ER Sl
* read 4 neuron states (64b) 3 Unified Memory
- read 4 kernel weights (64b max) 4xSIMD ALU PESMOIES
« depends on quantization and pruning...

« write 4 neuron states (write-back) (64b)
Per input event:read one population
Per output event: read one or more axons

Pipeline constraint: read and write of neurons
state must not access same bank in same cycle

51

Pipelined scheduling

Pipelining: each layer is allocated statically to one core.
Requires buffers to store the output results of one full layer.

Sensor T i 7 Frame
Core 1 Layer 1 Layer 1 Layer 1 Layer 1
Core 2 Layer 2 Layer 2 Layer 2
Core 3 Layer 3 Layer 3
Core4 Layer 4

—

Note: this is very simplified. In practice we can execute several layers per core, and we

split layers in several cores (more on that later). Mostly the layer to core allocation is
constrained by the size of each layer in weights and the amount of memory per core.

Time

Striping

Striping:
Execution of a layer starts when enough data is ready to start partial evaluation (eg, line by line).
Much smaller output buffers, lower latency.

Frame Frame Po— Frame
Sensor 1 2 3 :
Core 1 11 11 1 11 11 L1 1 11 L1 L1 11 11111111
|
Core 2 12 12 2 12 12 12 2 L2 2 2 12 L2 12 L2 2 L 12 L2 L2 L2
Core 3 13 13 13 13 13 13 13 13 13 13 13|13 13 13 13 L3 13 13 13 13
Core 4 14 14 14 L4 14 14 14 14 14 14 14 14 14 14 L4 L4 14 14 L4

—

Time

Programming Tool Flow

(images, video, etc)

[BIN | Binary
10110 Model
— 01001} Artifact

User Training for
Dataset Optimization : Model

Reference Pruning, Compilation, Deployment
Training Quantization, Mapping and GrAI VIP

Activation Scheduling
Suppression,

GMI__ Model
Zoo

Analysis

Metrics

CFG

User Config for

Flow Specification Srotlen

v

Al at the Speed of Life

Mapping units: Cuts

Neuronflow is a self-contained architecture
* no external DRAM access
« No DRAM power consumption, latency...
« But the size of the model is very important
« all parameters and buffers must reside in device memory.
« Static layer (cut) to core assignment
« all weights and input/output buffers must be stored in the memory of the cores
Layers are cut to fit in core memory.
Cuts are the units of mapping.
Cuts can be done in X, Y or Z, but Z is better in terms of resource usage.

Cuts can be used to increase performance by adding more cores to the processing of one layer.

Simple Cut 1in Z

No duplicated weights in memory.

Input event executes in parallel.

A cut includes a number of FMs and all
the weights for each FM it contains.

In the example we use an 8 channel
layer that receives input from 4 channels
in a 4x8 conv.

Core 2

Core 3

56

Pipelined schedule: cutting for
performance

Simple model: Slowest stage of the pipeline limits the throughput - critical stage of the pipe

Core 1 Layer 1 Layer 1 Layer 1
Core 2 Layer 2 Layer 2 Layer 2
Core 3
Time
Execution time of Layer 1 =t
Execution time of Layer 2 = 2t

Latency per stripe = t+2t = 3t
Throughput = min (1/2, 1/2t) = 1/2t

Pipelined schedule: cutting for
performance

Throughput can be increased by allocating more cores to a bottleneck layer.
Feature map must be cut.

Core 1 Layer 1 Layer 1 Layer 1
Core 2 Layer 2.1 Layer 2.1 Layer 2.1
Core 3 Layer 2.2 Layer 2.2 Layer 2.1

—
Time

t
2t

Execution time of Layer 1
Execution time of Layer 2
Cut layer 2 by 2 cores
Latency per stripe = t+t = 2t
Throughput = min (1/t, 1/t, 1/t) = 1/t

How training affects
mapping/performance

Weight quantization and
prunning lower memory
requirements per layer which
frees cores to cut slow layers to
improve latency and
throughput.

Prunning also reduces number
of macs per inference.

Activation suppression
decreases the number of events
to process, lowering load per
core and power consumption

ARTS combines prunning and
activation suppression.

Event-based Convolution

Non-zero activations

Savings

60%

1

100%

80%

60%

40%

20%

Deployment

—_—

Energy

2.2x 3.2X 2.5x 2.4X 1.6x
- I ==

Latency

2.2x 2.9x

0] 2.1x 2.1X 1.6x

Event-based Processor

09

Non-zero activations Savings
Resnet18/Cifar 14.1x 13.6x Energy
= MobileNetV1/Cifar .
MobileNetV1-SSD/KITTI 7.2X
BN ResNetV1-SSD/KITTI 47X 53
B Fastdepth/NYU Depth V2 1
= o Latenc
5.9x Y
.J 3.7X 2.5X
- HE

Figure 1. Our proposed method (ARTS) progressively enforces
the amount of zeros in the activation maps, leveraged by event-
based processors to achieve significant inference energy savings

and latency reduction.

59

GrAlI VIP

Vision Inference Processor

Life-Ready AI in silicon

GrAI VIP |V

Inference
Processor
GrAICore
NeuronFlow enabled
Dual CPU
One core for user
applications

Camera Interfaces

High-speed access to

cameras System Interfaces

High-speed access to host

Alafﬁ::::iedofLﬁe

GrAI One to GrAIl VIP: Improvements

7.5mm

GrAl One GrAl VIP

Technology scaling:

B

U

3
Silicon Area (mm?2) 3 2.8x
Silicon Complexity: ~318M ~14x
(transistors)
Package size (mm):

0.7x

Package pins: 2 7x 324
Neuron Capacity: 200,704 90x [~18,000,000
Max Nr of Parameters: 250,000 190x | ~48,000,000

Updates

GrAI One to GrAI VIP

EREBE ﬂ.m?ﬂ

éﬂﬂéﬁ:

2x MIPI Tx/Rx

nwm,...umlmz,mﬂ.&x”m%wwm?ﬁl

Sensor interfaces:
Image capture:

2x ISP+F2E

FP16

16-bit INT

GrAl Core technology:
Neuron Engines:

144

196

PCle
USB3
2 x CM7

AER

Host interface(s):

ARM:

ARM CS600

Debug:

QSPI flash

12S, 12C, SPI, GPIO, UART

w,
<
(]
S
(]
1S
©
c
-
(V]
=
x
[NN]

=
=
>
+—
(6]
()
C
[
o
(&)
—
(]
e
-
o

Software
Development Support

Model Zoo

GrAlFlow

Al a*thé:eed of Life

the Speed of Life

Y
| at the speed o
———\

L
Y =
1

