NEURAL
ARCHITECTURE
SEARCH

PUBLIC

Willem Sanberg
Sr. Research Engineer Embedded Al Systems

NXP - CTO Automotive System Innovations
MARCH 2022

x SECURE CONNECTIONS
FOR A SMARTER WORLD

Intro & Background

m SECURE CONNECTIONS
FOR A SMARTER WORLD

PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V.
ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2020 NXP B.V. 1

ABOUT WILLEM SANBERG, REGARDING THIS TALK:

- PhD in “Computer Vision for Advanced Driver Assistance Systems”
@) - TU/e - Electrical Engineering - Mobile Perception Systems Lab
-~ - Stereo Camera-based environment perception
E - Algorithm/Software-oriented with several in-vehicle prototypes

- Sr. Research Engineer for embedded Al Systems
- NXP Semiconductors

- CTO Automotive System Innovations (‘R&D department’)

W _ My job in a nutshell:

= Scouting & analysing Al research (in-house and university collaborations) &
= Translate to NXP requirements & research projects
= Execute such a project in a team (small, but cross-NXP)

i

NXP headquarters in Eindhoven
(High Tech Campus)

NXP CTO (‘R&D’)
Automotive System Innovations (ASI)

- Prototyping systems
with NXP solutions, e.g.:

- In-house & collaborations

Demo*
- Pedestrian pose detection (left)

n (right)

Lane estimatio
28 § '

*Open source TPU-PoseNet code runs on the EdgeTPU, connected to NXP’s BlueBox2, where an optimized TU/e lanetracker algorithm runs on NXP Layerscape CPU

THE PORTFOLIO OF NXP IS BROAD OVER SEVERAL DIMENSIONS

- Functionality: - Data: - Applications: For Al deployment:

- Compute - Radar - Automotive - Applications
- Connectivity - UWB - loT/edge - Chips
- HMI - Analytics - Industrial automation - Constraints
- Vision - Drones - different requirements

on neural network architectures

Cloud Services . . i
NXP Embedded Inference Engines and Libraries
CvarthoAl | © Valide elQ™ Deployment of Neural Network Models
(OTA) i i

Secure : Body Control Domain QL S E’ QL o] -E g
Connectivity e HVAC NXP elQ e £ = E b " = z o = ™ E >
Network C s Seat Module iFifétarios o z é = g o z z
Management = Comfort Modules Engines and é g - % £ == = (¢] £ é £ é % é
EV/HEV Libraries = W ol = oz = | ICO 5 = '5 = o 2
E Engine 3 b '{5 8 OpenCV 8 8 5 o
F Transmission 5 E O E % 5 % 5 % 5 2 £
e b Chassis = Y kY = = ~ g 3

e = TR Service- ‘.. [N - 9, ‘. ‘. I

. Autonomous ik oriented

Vision | Piiving \HE)" NPU uNPU

Radar N, N ﬁk " | Compute
Ultrasonic (7 Y 3 . . -
Aut'—“::rsﬂxi l‘g—-""'— '.‘Q\ . : ~§' 3 Arm® Cortex®-M DSP Arm® Cortex®-A ML Accelerator
T— xpe = . s i.MX RT600 iMXRT600 iMX 8M Plus i.MX 8M Plus i.MX 8M Plus Future MCUs
' N T - i.MX RT1170 i.mMX 8 i.MX 8
\ —_—— i.MX RT1050 i.MX 8X i.MX 8X

= : i.MX RT1060 i.MX 8M i.MX &M
eCockpit (§)—— ; i.MX 8M Nano i.MX 8M Nano
ey = i.MX 8M Mini

4 INK

Slide courtesy: Gerardo Daalderop gerardo.daalderop@nxp.com

mailto:gerardo.daalderop@nxp.com

CONTENTS

« Neural Architectures

« Neural Architecture Search
- Overview & example

- Hardware-aware
Neural Architecture Search

- Overview and example

- Closing
- Summary and NXP research

| ™}

Lo |

Neural Architecture
Search: overview

m SECURE CONNECTIONS
FOR A SMARTER WORLD

NNN
=

NEURAL ARCHITECTURES

VGG-19 34-layer plain 34-layer residual
\m;ge image Image
bl | n:uiw,et]
[30wm6s |
v
nnnnnn posk 2
e 112 33 conv, 128
[: [] [J
343 conv, 128 conv, 64, /2 77 conv, 64,2
v v ¥
uuuuuuuuuu I3 poa, /2
sssss * ¥
[3x3c0mv, 256 [33conv6s |
¥ ¥
[mm;u,zsn [M(uwmi,ﬁl]
[3x3conv, 256 [33comes |
¥ ¥
[deom56 | [sacome |
¥)
[3acom,60
¥
[o, Bk
- peol, /2 ;ﬂmm‘,m_/z
o ¥
@2 T aomsn | [3G wow.im
¥ ¥
[(Taacomsaz | [!xZKW\"v,lZ!
[3x3conv. 512 [3x3conv,128
¥ ¥
[mcomsz | [aconv18 |
3G conv, 128
128

[sacony,]
¥
[3ewwus |
¥
:;‘('“‘1“: pna; ” [3a mv;,m,/z
[envsn | [!x)w;v,m
[3dems2 | [3a3 conv, 256
¥
[aaomsa | [Caocom25% |
¥ ¥
[3com.su2 [

nnnnnn

uuuuuu

Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-
dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows

more details and other variants.

- Neural architectures:
- well-structured patterns
- operations and connections,
- manually designed by D.L. experts

- However:
- Search space is much bigger

- Variety/constraints intractable for
manual design

= Accuracy, speed, energy, memory...

- NAS aims at automatically finding
‘better’ solutions in a scalable way

|clzL=.siﬁcr| |c|assiﬁcr|

Several randomly generated networks

outperform ResNet-50 on ImageNet classification
\ Y4

(+2% top-1 acc @ same #FLLOPS) 7 N

NEURAL ARCHITECTURE SEARCH FINDS EFFECTIVE & EFFICIENT SOLUTIONS

- Automated NAS finds significantly more accurate yet
efficient solutions than expert data scientist have created

"""" Hand-crafted architectures (most competitive solutions)
===~ Early Neural Architecture Search (2017) [2]
—— Recent Neural Architecture Search (2019) [1]

- NAS offers an automated approach especially
suitable for multi-objective optimization of DNNs

- Interesting hardware-aware secondary objectives:
#params, #ops, latency, energy, bandwidth, compute utilization, etc.

- Found solutions may incorporate complex structures
human experts would not intuitively design

[1] EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, ICML 2019

[2] Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018

841

Imagenet Top-1 Accuracy (%)

744

oo
2]

&

=J
oo

=1
(=]

L
«**" SENet
et
-**" ResNeXt-101
Lo”
_..+*"" Inception-ResNet-v2
e
-Xception
: eResNet-152
L]
_.'DenseNet-201
[]
ResNet-50
]
Inception-v2
[]
_ResNet-34 . ‘ ' ' . .
20 40 60 30 100 120 140 160

Number of Parameters (Millions)

[2]

Normal Cell

Reduction Cell

180

Slide credit: Sebastian Vogel (NXP)

https://arxiv.org/abs/1905.11946
https://openaccess.thecvf.com/content_cvpr_2018/html/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html

HOW DOES NAS WORK? NAS IS COARSELY DEFINED BY THREE ASPECTS:
1) SEARCH SPACE, 2) SEARCH STRATEGY, 3) PERFORMANCE ESTIMATION

- Methods differ based on three main aspects of NAS architeciure
. . R Search Space . - L Titf;ﬂ?ti]ni;
1) Search space - Which architectures & HPs" can be found? 1 Search Straveay) e
2) Search strategy - How to explore possible solutions? g:;ﬁfﬁ;ltgﬂgﬁ N

3) Performance estimation - How does a solution perform wrt. accuracy, hardware-cost, etc.?

Design decisions w.r.t these 3 aspects impact on NAS resource requirements and evaluation time

Search Space Search strategy Performance Estimation

1 1
® 3
O Multi-branch networks incl. HPs S Random search _5 Full training
Q . - . . © . .
7y - Chain structured DNNs GE; Reinforcement learning g Learning curve extrapolation
| . - —
o) = . . = » Sy
— -~ Cell-based = ~ Evolutionary/Genetic Alg. . Additionally, for 2ndary objectives:
(&) [
(,E) Macro-architecture/One-shot model = - Bayesian optimization esp. for HPs’ = Profiling, MIL*, HIL*
7 : : : @ .
. yrDifferentiable architecture search "% o Surrogate-model-based evaluation
Q
R =
5 = g
2 2 g
Q Q <
< 2 g
(]
Q
> > [}
(%]
#Params Epochs i
[1] S
o
o
* o # o H
mm HP — hyper parameters MIL — model in the loop 9 M §
[1] Neural Architecture Search: A Survey, JMLR 2019 ** DNN — deep neural network ~ ## HIL — hardware in the loop %

https://arxiv.org/abs/1808.05377

THE FIELD OF NAS IS EXPLODING

- multi-resolution
Y branches

Emergence of Neural Architecture Search
(#papers)

800

700 g

600 g

500 3

T

400 3

300

200

100

0 — I -
2016 2017 2018 2019 2020 2021
mHA-NAS =mNAS
0:9 28|,1 ?(2;.2 wall time (hours) 256,2
- Increasing number of commercial services around Real et al., Large-scale evolution of Image Classifiers (2017)
AutoML & NAS available

;!
£,
g 8 ..\ - ...\
]

[)
e anxaw) r |
- (5]
! Tensor, E (C.x2H=2W)||
) P P73 :

W
@i Microsoft Goog|e ‘_y
B Yo scpension tive
*no data on HA-NAS for 2021

- Microsoft NNI & ArchAl, Google AutoML, etc. ‘I‘;W“’"i““* o~
N . o ——_-__-' u—hnh
v\ X
' Ildofl\l

Neural Network Intelligence Cloud AutoML Vision

Layer-{i]

Layer-{i+1)

Wu et al., Mixed Precision Quantization in NAS (2018)

Source on indicative numbers in graph above : Chen et al., FasterSeg (2020)
- HA-NAS from Benmeziane et al., 2021, A Comprehensive Survey on Hardware-Aware Neural Architecture Search ’

- NAS from http://www.ml4aad.org/automl/literature-on-neural-architecture-search/ (which is constantly being updated) 10

http://www.ml4aad.org/automl/literature-on-neural-architecture-search/

%8 = ‘Hiad

Wadapou

NASH: NAS BY HILL CLIMBING (CONCEPT)

- NAS with Evolutionary search

) 1 1 1
sydioiaNAlddy
N
‘\,M“d
1’3
wol

W

- Search guided via selection of parents — e —

: : . mngbit 3 1IN — 3| |=—=7%

- Select most successful child after quick training = g5 = &85 |— 85
Algorithm 1 Network architecture search by hill climbing \ § """ \ age \ §

1: function NASH(mOde’an Ngs Ny MNM s €neighs € final)\aa)\S) = — =3

2: modelpest <+ modely = | = 1§ 1

for i < 1,....,n,do Bis i =& | T &

for j«1,...,n, do

model; <— SGDRtrain(model;, €neigh, As, Aa)
modelpest < argmax{per formance,qii(model;)}

3

4:

5: model; <— ApplyNet Morphs(modelpest, nnr) \ e TT—
6.

7

pad | —

j=1,....nn : §

8: modelyest < SGDRtrain(modelpest, € finai, As, Aa) = §§“
0: return modelpest .
/|l
S

Elsken et al., 2017, Simple and Efficient Architecture Search for CNNs

NASH: NAS BY HILL CLIMBING (CONCEPT)

- Three morphisms (sampled uniformly): —r
1. Make deeper (add [Conv, BN, Relu] block) i :
= Sample uniformly:
position, kernel size {3,5}; #channels | _ : —]
= #channels from predecessor 7""{""7 — WIdE;r E

2. Make wider (increase #channels) S— , deeper
= Sample uniformly: '

- Target conv layer

- Widening factor {2,4} - - layer_i -

3. Add bypass/skip connection L .
- Sample uniformly: E} resolution Hx\

- Target layers to connect (a) baseline (b) width scaling (c) depth scaling

- Concatenation or addition
EfficientNet, Tan & Le, 2018

o
Lo |

12
Elsken et al., 2017, Simple and Efficient Architecture Search for CNNs

NASH: NAS BY HILL CLIMBING (RESULTS)

- Three morphisms (sampled uniformly): - Results:
1. Make deeper (add [Conv, BN, Relu] block) 1. Similar performance as other NAS methods
« Sample uniformly: 2.with way faster convergence
position, kernel size {3,55; 3. ... but still outperformed by some
= #channels from predecessor handcrafted methods
2. Make wider (increase #channels)
= Sample uniformly:
+ Target conv layer Real et al. 250 GPUs, 10 days 5.4
- Widening factor {2,4} (2017)
3. Add bypass/skip connection NASH 1 GPU, 12 hrs 5.7
« Sample uniformly: (2017) 1 GPU, 48 hrs 4.7
. Target layers to connect handcrafted 2 GPUs, 2 days 2.9

- Concatenation or addition (GaStaldi 201 7)

o
Lo |

13
Elsken et al., 2017, Simple and Efficient Architecture Search for CNNs

NASH: NAS BY HILL CLIMBING (IMPROVEMENTS)

- Three morphisms (sampled uniformly):

= Sample uniformly:
position, kernel size {3,5};
= #channels from predecessor
2. Make wider (increase #channels)

= Sample uniformly:

- Target conv layer
- Widening factor {2,4}
3. Add bypass/skip connection L |
= Sample uniformly: -
- Target layers to connect]
o Concatenation or addition - -
=
(a) baseline

Auto-Keras: An Efficient Neural Architecture Search System, Jin et al., 2019
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, Tan & Le, 20120

2.

- Where to improve?
1. Make deeper (add [Conv, BN, Relu] block) 1.

Better search guidance:

Bayesian Optimization instead of uniform
sampling (e.g. Auto-Keras)

Consider morphisms jointly

E.g. compound scaling in EfficientNet
depth: d = «
width: w = 3¢

resolution: 7 = ~¢

st.a-B7 40~ 2

..l..hrgher_
.1 resolution

(b} width scaling (c) depth scaling {d} resolution scaling (e} compound scaling

NAS RECAP

- NAS aims at
- automatically finding ‘better’ solutions in a scalable way
- to deal with design variety and constraints that are intractable for manual design

= building blocks, topology; accuracy, speed, energy, memory...

E b dd d d | t . NXP Embedded Inference Engines and Libraries
¢ m e e ep Oymen glveS elQ™ Deployment of Neural Network Models
- additional complexity, since ol 8 o 2
NXP elQ ; E = € % o g % é % ; E z
. Inference (] - = o O
- each platform different strengths & weaknesses e [2] = [2] = fEJZ- (2| QNE| E|E| €| =58
2l s I 5 1ol <l 2P 2ol 2] 38
sl ENOP &I * || & = e =) g| £
| ¢ i e - o ¢
- Hardware-aware NAS aims at i
- JOIntIy OptImIZIng aCCU raCy and effICIenCy i.MX RT600 i.MX RT600 i.MX 8M Plus i.MX 8M Plus i.MX 8M Plus Future MCUs
i.MX RT1170 i.MX 8 i.MX 8
i.MX RT1050 i.MX 8X i.MX 8X
i.MX RT1060 i.MX 8M i.MX 8M
i.MX 8M Nano i.MX 8M Nano
i.MX 8M Mini
15 pRd

Hardware-aware
Neural Architecture
Search: motivation

m SECURE CONNECTIONS
FOR A SMARTER WORLD

NETWORKS ON DIFFERENT EMBEDDED DEVICES

- FBNet example: NN for iPhoneX & NN for Samsung S8
- Similar #params & accuracy
- Different latency when swapping platforms

Latency on Latency on
Model #Parameters #FLOPs Phone X Samsung S8 Top-1 acc (%)
FBNet-iPhoneX 4.47TM 322M 19.84 ms (target) 23.33 ms 73.20
FBNet-S8 . 443M 203M 27.53 ms 22.12 ms (target) 73.27
Table 5. FBNets searched for different devices.
K=5 Comparison of Operator Runtime (us)

K=3
K=3 K=3 K=3 K=5 K=5 K=5
I - |- -E=_‘LI - oW D o E=1] |skip
o . E=1 G=2 E=6 e el G=2 hw14_c384_k3_s1

rvecss B (0 [JER] unn jann 1l 143364351 [
—

FBNet-iPhoneX DI L 3§ I I I II I I II I I I I I Il I : R
| { hwld_c336_k5_s1 F
MobileNetv2 .IIDDIIIDIIIIIIIDIIID I
! | hwl4_c192 k5_s1 FOpsadcptedinFBNet-SB
MnasNet .lllu lllUIIIUIIUUIIII I° hw28_c192_ks_s2 || —
i d

WiPhone X MSamsung S8

Ops adopted by FBNet-iPhoneX

Wu et al., 2019, FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search

17

HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

- Incorporate platform-specific deployment cost (latency) in architecture design
- Exploit unique strengths of embedded platform

- Example of FBNet:
- Measure latency of building blocks on target platform
- Do multi-objective NAS: optimize both task-accuracy & platform latency

rSearch space

device
- - T -ooe0 o "

Training TSampIing
super net 4 N\

,@\ ,@ @\ =l | Distribution
/
@@ dataset .
< o0 o .00 robabilit
. . w=p-le e —'- P_‘.;.._.t_._ H .s.._x_. %—‘— P:.s..x_._— %—D o 0 ¢ | — y
\ \
- \aje® _, \‘Q\:‘,\.O - / Najoo ,I
: _ bl i e) perators

Wu et al., 2019, FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search

N\ Target Neural Architectures

® 0 @
RParre

18

| ™}

Lo |

HARDWARE-AWARE NAS IS A METHOD FOR EFFICIENT DEEP LEARNING

Efficient Deep Learning Methods

L |
Model Compression

| Goal Maximize

[Compression Ratio
: Accuracy

: Hardware Usability

—| Model Compression —» Compressed
Model = -ompre DNN Model

Hardware Agnostic

¥ r R -] i
£
Compact Tensor |, N e
Model Decomposit- || | Quantization Sparsification
ion "
b -
r-r-—-——™=—T"T—"7T™"""™""""7"""""—"—7"—7—— A

L]
Code Transformations

Y Y Y

- Loop Operator
Loop Tiling Linralling Fusion
r-r-—-——"™"—TTFT—"7T™"""™""""™—"""""—7"—7"—7—"— A
| aal T At
| Soal .ﬂf.pph.f code optimizations to
| Maximize

Hardware Usability

DNN o o
Block .:,rf N Code Optimized
Operators Transformations Block

Non Hardware Agnostic

Benmeziane et al., 2021, A Comprehensive Survey on Hardware-Aware Neural Architecture Search

19

HARDWARE-AWARE NAS IS A METHOD FOR EFFICIENT DEEP LEARNING

Efficient Deep Learning Methods

L |
Model Compression

| J
HW-MNAS
searches for

L]
Code Transformations

Hardware Agnostic

Hardware-dependent & Hardware-agnostic

L L J - -7 o _" ___________ L F_ e Nﬁ.\../ L d L J L] L] L
Tensor N k! NN Block or
E;";E:::t Decomposit- | | Quantization | | Sparsification | | Entire Hype&:zf;a m Loop Tiling Ul_llﬁtﬁ?n ngeszz?r
ion " K Architecture g
r-r-—-——™=—T"T—"7T™"""™""""7"""""—"—7"—7—— A r-r-—-———"T"F—F"—"™=""=""=""="="=—"=—+— A r-r-—-——"™"—TTFT—"7T™"""™""""™—"""""—7"—7"—7—"— A
| Goal; Maximize : | Goal Search for an architecture | | Goal: Apply code optimizationsto |
[Compression Ratio [| that maximizes | | maximize |
: Accuracy : : Accuracy : : Hardware Usability :
I Hardware Usability : I Hardware Usability : I :
e ___ a e __ J e ___ J
DNN or -
DNN . Search Block of — Code | Optimized
Model *| Model Compression * E;ﬂﬂzﬁ:jd Spi_l;grfﬁ set | HW-NAS Best DNN Operators Transformations Block
o 5]

Non Hardware Agnostic

Benmeziane et al., 2021, A Comprehensive Survey on Hardware-Aware Neural Architecture Search

20

Hardware-aware
Neural Architecture
Search: example

m SECURE CONNECTIONS
FOR A SMARTER WORLD

EXAMPLE: STRATEGY FROM SQUEEZENAS (CONCEPT)

1. Concept

Image

Low Level Features

>

> P P>

Searched Encoder

Final Feature

!

Decoder

Segmentation
Predictions

2. Search space
Super Blocks J’
Super Block 1 Super Block 2 3to N Super Block N /
Choice 1...1 e
L '.) are different y W X0
-Choice2 v Choice2 |\ » -ChoiGBQ t : Kxk DWConv (Dilated),
I I_). ‘;‘% %) - ‘ %%)). } B O t t+ VerSIonS Of a Rilu(HfS)X(WfS)X(C -e)
—Inpu b > = - - ;. utpu . in
" "e 8 RS - " parametrized | [wou con.] .
: ;"k : ' : ' module. (HIS) X (WI5) X Cou)
Choice 13 | Choice 13 | Choice 13 |
Super Blocks v
Super Block 1 Super Block 2 3to N Super Block N
. . . Choice 1 Choice 1
3. Sample optimal realization
hitect for inf Choice 2 Choice 2
arcnitecture 10r interence ~Input—> Y L 5 Output>

Shaw et al., 2019, SqueezeNAS: Fast neural architecture search for faster semantic segmente

+

I
"“

Choice 13

Choice 3

Choice 13

Choice 3

Choice 13

"]I

aoTT

EXAMPLE: STRATEGY FROM SQUEEZENAS (METHOD)

- More formally:
- Cast NAS as a path-selection problem within a stochastic supernetwork

- Optimize the IOSS L(H. U_'} — LP('Q‘ U_') + a ok LE(QJ Super Block 1 o Super Block N

. [Choice 2 lcon g{ e }g g}
Architecture C(?nV. Probl (We|ghted) =Input " Choice 3 ﬁg %}’ #g g >rouut>
arameters Weights TTOXEM" — Resource- i
P Sp@lelC loss Specific loss Choice 13 |

N 13
« Where | () = p(i, j|0;)C(i,7)
E ; ;P b hJ I][II HW stats

oo -
= And C(i,j) contains the cost-of-interest to use candidate —=w WV stats

eLO
module i’ as block ‘j in the network 0 :E; AW stats

» Cost-of-interest?

- MACs, latency (estimated or measured from specialized profiling effort), memory, etc.
- Can be independent, weighted, correlated, etc.

- In SqueezeNAS: assumed that blocks are executed independently & consecutively

o
Lo |

23
Shaw et al., 2019, SqueezeNAS: Fast neural architecture search for faster semantic segmentation

EXAMPLE: STRATEGY FROM SQUEEZENAS (KEY FINDINGS)

- Similar or better accuracy

= Orders of magnitude faster convergence
(7-15 GPU days versus 1000s for MobileNetv3)

- HW-aware Latency-optimized networks are faster architectures,

even while they have more MACs than MAC-optimized networks

= Reducing MAC:s is just a proxy for efficiency

= HA-NAS can develop richer models that better utilize target HW

Architecture

C3[41]

EDANet[42]
MobileNetV2[40]
MobileNetV3-Small[36]
MobileNetV3-Large[36]
SqueezeNAS MAC Small
SqueezeNAS MAC Large
SqueezeNAS MAC Xlarge
SqueezeNAS LAT Small
SqueezeNAS LAT Large
SqueezeNAS LAT Xlarge

Shaw et al., 2019, SqueezeNAS: Fast neural architecture search for faster semantic segmentation

ClassmIOU Latency (ms) MACs(G) MACs/sec(G) Params(M) GPU days
61.96 6.29 0.19
65.11 8.97 0.68
70.71 21.27 5.75
68.38 44.01 2.90 65.89 0.47

[T?:G] 92.78 9.74 104.97 1.51
6.76 46.01 3.01 65.37 0.30

2.40 10.90 9.39 9321 0.73

A.54 1i.41 21.84 13163 1.80

68.02 34.57 4.47 129.17 0.48
73.62 98.28 19.57 199.17 1.90
75.19 152.98 32.73 213.94 - 3.00

Hardware-aware
Neural Architecture

Search:
there Is way more...

m SECURE CONNECTIONS
FOR A SMARTER WORLD

—— e | o S
HOW DOES NAS WORK? NAS IS COARSELY DEFINED BY THREE ASPECTS:
1) SEARCH SPACE, 2) SEARCH STRATEGY, 3) PERFORMANCE ESTIMATION

- Methods differ based on three main aspects of NAS A -
1) Search space = Which architectures & HPs® can be found? _-
2) Search strategy = How lo explore possible solutions? : Y
HARDWARE-AWARENESS ADDS MORE COMPLEXITY TO NAS et o e i,

Design decisions w.r.t these 3 aspects impact on NAS resource req ents and evaluation tim

1) Search Space 2) Search strategy 1) Performance Estimation
<! - Multi-branch networks incl. HPs’ “l - Random search 15| - Full raining
. - Chain structured DNNs™ = - Reinforcement learming | Leaming curve extrapolation
. - Coltbased - - Evolutionary/Genetic Alg '_ Adaitionally, for 2ndary objectives:
7 - Macro-architecture/One-shot model " - Bayesian optimization esp. for HPs® Profiling, MIL®, HIL**

K . ~E {1 Ditterentiable architecture search l'e Surrogate-model-based evaluation

- Key impact of hardware-awareness o)
y imp rawar waren K- = : ==
==}

on the three elements of NAS e Ei/;
5

- Search space

= Which graph structures and which building blocks are feasible | — |
and supported on HW? |
- Search Strategy l | ‘

‘ Single-Objective Optimization ‘ ‘ Multi-Objective Optimization

= How to guide search by the additional deployment cost, which | |

e (%]
g
St crecit: Sedastian Vigel (NXP)

. . . ¢ y .
is a conflicting ‘landscape’ with task-accuracy? |] | |
. . Two-Stage Method Constrained Optimization Scalarization Methods NSGA-II
- Pe rfo rm a n Ce E Stl m atl O n Search for the best in Consider the hardware-cost One objective function with Evolutionary Algorithm
terms of accuracy then as a constraint to the multiple objective terms: considering multiple
compress it optimization problem accuracy, memory, energy... objectives

= How to assess deployment cost in a scalable manner?

- HilL: accurate, but slow
- LUT: fast and accurate, but constrains search to a fixed set of options

max (o,) m: 1\ floed) max bl filod) o fulond)) max fi{oed), .. fy (o d)
A A acA A

:~:|lll|tcl Lo gila) < Iiwic f

« Model: fast and ‘unconstrained’, but additional problem to solve. : e T Speetys TR :
- And... is this enough?
- How about optimizing also optimizing
Inference engine & memory scheduling (e.g. MCUNet)
= Operation definitions (e.g. XD-operations)

RMSE

n

Search Time Speedups

Real-ime measurements LuT MLFP XGBoost Analytical Estimation
Measurements Methods

Benmeziane et al., 2021, A Comprehensive Survey on Hardware-Aware Neural Architecture Search “r
Lin et al., 2020, MCUnet: Tiny Deep Learning on loT Devices 26 4\
Roberts et al., 2021, ‘Rethinking Neural Operations for Diverse Tasks’

https://mcunet.mit.edu/
https://arxiv.org/abs/2103.15798

HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH - TAKE HOME MESSAGES

- Automatically design NN architectures that jointly optimize
- Accuracy on application task (e.g. image classification, object detection)
- and hardware utilization of the target inference platform
- by taking HW and SW constraints of the latter into account in the training process.

- Three key strengths of HA-NAS as a tool for efficient deep learning:
1. Extend design space coverage for neural networks beyond bias from human expert
2. Provide optimal performance on a case-by-case basis (task, data, HW)
3. Mitigate desired deployment bottlenecks directly (speed, energy, memory, compatibility, etc.)

- ... however, it requires
- Compute resources

- Research into search space design, cost functions, modeling strategies, training re-use,...
- ... a lot to do for new researchers!

o
Lo |

27

AVAILABLE STUDENT PROJECT POSITIONS (INTERNSHIP & GRADUATION PROJECTS)

- Automatic neural network quantization and deployment optimization
- Optimizing quantization and pruning of neural networks and deployment SW parameterization via NAS

- Hardware-aware NAS for next generation radar-based ADAS
- Improving object classification and tailoring NAS (search space, strategy, operations, evaluation) for Radar data

- Transferring existing NAS methodologies to challenging embedded system tasks
- E.g. targeting audio processing, battery management, predictive maintenance, etc.

- Intelligent automated design & configuration of next generation DL-HW-accelerators
- Co-optimizing HW accelerators and neural architectures (i.e. for quantizartion and sparsity).

- Hardware-aware NAS for next generation hardware and software
- Enabling hardware targets, NAS fraemworks, benchmarking training modalities

- Feel free to reach out! (note: limited spots available...)
/

28

Lo |

mailto:willem.sanberg@nxp.com
mailto:Sebastian.vogel@nxp.com

AVAILABLE STUDENT PROJECT POSITIONS (INTERNSHIP & GRADUATION PROJECTS)

- Automatic neural network quantization and deployment optimization
- optimizing neural networks through quantization and pruning
- taking multiple optimization criteria into account
- investigating options to learn how to quantize/prune neural networks
- automatically determining optimal SW deployment parameterizations for embedded devices

- Hardware-aware NAS for next generation radar-based ADAS
- improving state of the art approaches on object classification with DNNs
- leveraging ML and NN-design know-how from other domains for Radar signal processing
- exploring NN designs that exploit Radar spectrum data, Radar target lists or a fusion of both
- optimizing simultaneously the deployment properties on target hardware and the task accuracy

o
Lo |

29

AVAILABLE STUDENT PROJECT POSITIONS (INTERNSHIP & GRADUATION PROJECTS)

- Transferring existing NAS methodologies to challenging embedded system tasks
- audio processing (noise cancelation, keyword spotting, etc.)
- battery management and battery health estimation
- predictive maintenance (e.g., anomaly detection)
- with the goal to derive insights on the trade-off between system requirements and task accuracy

- Intelligent automated design & configuration of next generation DL-HW-accelerators
- automatically optimizing configurable HW accelerators and co-adapting neural architectures
- especially focusing on quantization and sparsity features of HW-accelerators

- Hardware-aware NAS for next generation hardware and software
- extending available hardware-aware NAS frameworks to new hardware targets;
- integrating said NAS frameworks with one of our existing training modalities;

o
Lo |

- conducting extensive experiments in our training modalities. 30

S~

o
References

- Benmeziane et al., A Comprehensive Survey on Hardware-Aware Neural Architecture Search, ACM J. Comp. Surv. 2021

- Chen et al., FasterSeq: Searching for Faster Real-time Semantic Segmentation, ICLR 2020

- Cozma, et al., DeepHybrid: Deep Learning on Automotive Radar Spectra and Reflections for Object Classification, ITSC 2021
- Elsken et al., Simple and Efficient Architecture Search for CNNs, ICLRws 2018

- He et al., Deep Residual Learning for Image Recognition, CVPR 2016

- Jin et al., Auto-Keras: An Efficient Neural Architecture Search System, ACM SIGKDD 2019

- Lin et al., MCUnet: Tiny Deep Learning on IoT Devices, NIPS 2020

- Ouaknine et al., Multi-View Radar Semantic Segmentation, ICCV 2021

- Real et al., Large-scale evolution of Image Classifiers, ICML 2017

- Roberts et al., Rethinking Neural Operations for Diverse Tasks, NIPS 2021

- Shaw et al., SqueezeNAS: Fast neural architecture search for faster semantic segmentation, CVPRws 2019

- Simonyan et al., Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2014

- Tan & Le, EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, ICML 2020

- Wu et al., FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search, CVPR 2019
- Wu et al., Mixed Precision Quantization in Differentiable NAS, arXiv 2018

- Wang, et al. HAQ: Hardware-Aware Automated Quantization with Mixed Precision, CVPR 2019

- Xie et al., Exploring Randomly Wired Neural Networks for Image Recognition, ICCV 2019

- Zoph et al., Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018

- http://www.ml4aad.org/automl/literature-on-neural-architecture-search/

https://arxiv.org/abs/1912.10917
https://ieeexplore.ieee.org/document/9564526
https://mcunet.mit.edu/
https://arxiv.org/pdf/2103.16214.pdf
https://arxiv.org/abs/1703.01041
https://arxiv.org/abs/2103.15798
https://arxiv.org/abs/1812.00090
https://openaccess.thecvf.com/content_CVPR_2019/papers/Wang_HAQ_Hardware-Aware_Automated_Quantization_With_Mixed_Precision_CVPR_2019_paper.pdf
http://www.ml4aad.org/automl/literature-on-neural-architecture-search/

SECURE CONNECTIONS
FOR A SMARTER WORLD

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2020 NXP B.V.

