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Bayesian Learning



DNNs are wonderful 

2
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Scalable DSP Algorithm Design for Embedded Systems3






DNNs are wonderful. However …
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DNNs are wonderful. However …

6 Source: “Explaining and Harnessing Adversarial Examples” by Eric J. Szegedy et al. (2014)



Bayesian Inference

Reasoning in the presence of uncertainty

7 The history of the future of the Bayesian brain – Karl Friston



Machine Learning
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Data vs Prior Knowledge Trade-off
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10 Image source: Eric J. Ma - An Attempt At Demystifying Bayesian Deep Learning

Going Bayesian
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Quantifying Uncertainty
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Conditional Probability
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The Law of Total Probability
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Sum rule:

Product rule:

Bayes’ rule:

Probability Theory Recap

Joint probability:

Marginal probability:

Conditional probability:
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Bayes’ Theorem
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Problem 1: Estimate the Bias of a Coin
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Estimate the Bias of a Coin: Model Specification
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Bayesian Machine Learning
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Model specification
• Likelihood:
• Prior:

DEMOIncorporate observed data
• Virtual coin

Infer bias
• Apply Bayes’ rule



Interpretation of Probability
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Frequentist: long-run frequency of event in repeatable experiment 

Bayesian: degree of belief

60% 40%



What is Bayesian Inference?
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Bayesian inference simply means using the 
rules of probability theory to update the 
probability for a hypothesis as more 
evidence or information becomes available.



Recap: Bayesian Machine Learning

Steps of model-based ML
1. Specify the model (likelihood and prior)
2. Incorporate observed data
3. Do inference (i.e., learn, adapt)
• Iterate 2 and 3 in real-time applications
• Extend the model as required
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How does a machine learn?
• Updates the parameters of the 

probabilistic model using Bayes’ rule
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Bayesian Time Series



Problem 2: Noisy Measurements

What number should we use?
Right. The mean: 74.6 V. 
How do you calculate it?

This is inefficient. Why?
There is another more efficient way of doing this.
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76 V, 73 V, 75 V, 72 V, 77 V

Icon made by Freepik from www.flaticon.com



Running Average
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Analysis of the Update Equation
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prediction weight (learning rate)

prediction error

new observation

In many cases, Bayesian inference reduces to updates of this type.



Same Problem Under a Gaussian Model
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76 V, 73 V, 75 V, 72 V, 77 V



The Gaussian Distribution

29



Gaussian Model Specification
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Prior: Likelihood:

Posterior:

76 V, 73 V, 75 V, 72 V, 77 V



Product of 2 Univariate Gaussian PDFs
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Product of 2 Univariate Gaussian PDFs

32



Product of 2 Univariate Gaussian PDFs
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is another Gaussian!



prediction weight (learning rate)

Same Problem Under a Gaussian Model
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Prior: Likelihood:

where prediction error

Posterior:

76 V, 73 V, 75 V, 72 V, 77 V

is another Gaussian!



prediction weight (learning rate)

Same Problem Under a Gaussian Model
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Prior: Likelihood:

where prediction error

Posterior:

76 V, 73 V, 75 V, 72 V, 77 V



prediction weight (learning rate)

Same Problem Under a Gaussian Model
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Prior: Likelihood:

where prediction error

Posterior:

This pattern generalizes for all exponential families with conjugate priors.

76 V, 73 V, 75 V, 72 V, 77 V



Same Problem Under a Gaussian Model
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76 V, 73 V, 75 V, 72 V, 77 V



Exponential Family

The exponential family is defined to be a set of probability distributions of the following form

This allows Bayesian inference to be treated in a generic way for all members of the 
exponential family.

Most of the commonly used distributions are members of the exponential family:
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• Gaussian

• exponential

• gamma

• chi-squared

• beta

• Dirichlet

• Bernoulli

• categorical

• Poisson

• Wishart

• inverse Wishart

• geometric



Conjugate Priors

A conjugate prior is a probability distribution that, when multiplied by the likelihood and 
divided by the normalizing constant, yields a posterior probability distribution that is in the 
same family of distributions as the prior.
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All members of the exponential family 
have conjugate priors
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In sum …
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We have a set of probability distributions 
to represent beliefs about states.

All Bayesian updates of such beliefs take 
the form of precision-weighted 
prediction errors.

These prediction errors and their 
precision weights are easy to compute.



However …
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There are important probability distributions that are not members of the exponential family

These, on the other hand, can be represented using appropriate hierarchies of distributions 
in the exponential family.



What have we neglected so far?
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True
hidden states

Inferred 
hidden states

Agent World 

Action

Sensory input

Dynamics!



Static State
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Static State
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Dynamic State
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Dynamic State
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Accounting for Dynamics
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The learning rate decreases with the number of observations.

How can we avoid the learning rate from becoming too small?
In other words, how can we take into account that old information becomes obsolete? 

Why isn’t our model able to cope with dynamic states? 

learning rate



Rescorla-Wagner Learning
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This implies taking only the last 1
𝛼𝛼

data points into account.

However, if the learning rate is supposed to reflect uncertainty in Bayesian inference, 
then  

• what should the value for 𝛼𝛼 be?

• how to account for changes in uncertainty if 𝛼𝛼 is constant?

One idea is to make it constant 

learning rate



Adaptive learning rates that reflect uncertainty

50

Several alternatives have been proposed in the literature:

• Kalman (1960)

• Sutton (1992)

• Nassar et al. (2010)

• Payzan-LeNestour & Bossaerts (2011)

• Mathys et al. (2011)

• Wilson et al. (2013)



Kalman Filter
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An efficient filter that estimates the internal state of 
a linear dynamical system from noisy measurements.

It is optimal for linear dynamical systems, but 
realistic data usually require non-linear models.



Kalman Filter
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Kalman Filter
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Kalman Filter
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2-Dimensional Kalman Filter

State space model:
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Conditional independence assumptions:

Joint probability:



Joint probability:

2-Dimensional Kalman Filter
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Prediction step:

Update step:



2-Dimensional Kalman Filter
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Closing Remarks



• Neural networks compute point estimates
• Overly confident decisions in classification, 

prediction and actuation tasks
• Prone to overfitting
• Contain many hyperparameters that may 

require specific tuning
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Drawbacks of Deep Learning



• Very data hungry
• Very compute-intensive to train and deploy
• Poor at representing uncertainty
• Easily fooled by adversarial examples
• Difficult to optimize, e.g. choice of architecture, 

learning procedure, initialization, etc.
• Uninterpretable black-boxes, difficult to trust
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Drawbacks of Deep Learning



Bayesian Inference

Aim: Use probability theory to express 
all forms of uncertainty
• Provides a way to reason about uncertainty
• AI Safety: medicine, engineering, finance, etc.
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Bayesian Neural Network

A DNN with a prior distribution on the weights.
• Accounts for uncertainty in weights
• Propagates this into uncertainty about predictions
• More robust against overfitting

• Randomly sampling over network weights as a cheap 
form of model averaging

62
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Questions?



Takeaway

We’ve seen:

- A view-point of ML that provides a compass through the complex pile of existing ML 
algorithms

- A change of paradigm in the way software is programmed

- A practical tool to use when building real-world applications

- A vision of how ML can be democratized
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