o~ -

) s
e e F L R A

Building a large- scale bram model W|th splkmg
neurons (a recent example)

5TH APRIL 2022
| 9 |2 LA a3 a | P &
& Q % P ' e g
stems Lab. i

P
Federico: Corradl, Assistant Professor, Neuromorphlc Edge Computfngsv

EINDHOVEN
UNIVERSITY OF

Electrical Engineering Department, Neuromorphic Edge Computing Systems Lab UNIVERSITY O

SPAUN: Semantic Pointer Architecture Unified Network
MULTI-BRAIN AREA SPIKING NEURAL NETWORK SIMULATION

2.5 Million of Leaky-
Integrate-and-Fire _—

Neurons with Dynamic
Synapses

How to Build a

BRRAIN

A Neural Architecture

Eliasmith C, Stewart
TC, Choo X, Bekolay
T, DeWolf T, Tang Y,

Jor Biological Cognition

Akd, Rasmussen D. A
el g large-scale model of
‘i:t“\\r /430 - . c
T the functioning brain.
e Science. 2012 Nov

Chris Eliasmith

30;338(6111):1202-5.

https://www.youtube.com/watch?v=P_WRCyNQ9KY

) TU/e

SPAUN: Semantic Pointer Architecture Unified Network

SPAUN ANATOMICAL DESCRIPTION

Neurons are assigned to specific
anatomical areas.

The neuronal behavior correlates to the

kind of behavior of those anatomical areas
they represent and to the performance of
the task. (e.g., bad recall, check the
representation in the network)

SPAUN: Semantic Pointer Architecture Unified Network

SPAUN FUNCTIONAL DESCRIPTION

Visual hierarchy (left) WorkingMemo

Motor output (right)

Working memory (top) ' F formaton : : ‘

Action selection (basal ganglia gating
information)

[[:l]=hierarchy
It can be used to ask functional and
biological questions, for example, we ©

can simulate changes in activity versus " Bigger model will get
behavior. more sophisticated!!

. TU/e

SPAUN: 12 Tasks

1.Copy Drawing (MNIST digits)

2.Digit recognition (MNIST)

3.List memory (reproduce list)

4.N-arm bandit task (reinforcement learning)
5.Counting (sum of two values)

6.Simple question answering (what element is
in position x of the list, what position is the
number in the list)

7.Rapid variable creation (e.g., 0074 ->74;00

24 > 24; etc)

8.Fluid Induction (Raven Progressive Matrices)
9.Adaptive arm control (adapt to varying forces
applied on the arm) 4 4 44 € N

10.Stimulus matching task (ImageNet retrieval s Bl sss D =
of images in the same category) =

11.Stimulus response task (given an image

classify it accordingly to its classifier)

12..

; TU/e

SPAUN: Task example list memory (reproduce list)

A ==~
c T T T T
Storage Recall stimulus A ’ L’ 2 4 ;)
Ao 3 =5 6 I
Delay :
|||||||> DLPFC DLPFC] HURRRERID=—| LERRENID | DO Q &
oompress map compress decompress| map decompresgrawm
S visual FP concept FP trace FP trace FP concept FP motor FP .
B

DLPFC

SMA

Time (s)

[C. Eliasmith at al., Science 2012]

: TU/e

SPAUN: Semantic Pointer Architecture Unified Network

Why? Compare to experimental data
LINK BEHAVIOR WITH THE MODEL

A Data B Model
1t = — = Thr—r_ N —
List of digits and you must repeat 09 09; " \LI/'i
them back. 5% 3
é 0.7 507
. . ‘fi’ 0.6 ‘%0.6
Similar features (people and SPAUN — —
H Hp— 0.5¢ — 5 items 0.5 —_05 :::2:
are good at remembering digits at the $ o toms o teme
. . . 0.1} 7 items 0.1 7 items
beginning and the end of the list) ol o

Iltem Position Iltem Position

Fig. 4. Population-level behavioral data for the WM task. Accuracy is shown as a function of position and list
length for the serial WM task. Error bars are 95% confidence intervals over 40 runs per list length. (A) Human
data taken from (18) (only means were reported). (B) Model data showing similar primacy and recency effects.

[C. Eliasmith at al., Science 2012]

, TU/e

SPAUN how does it work?

Uses the Neural Engineering Framework (NEF) for simulating spiking neural networks
(LIF models).

Semantics (encoding information efficiently)
Syntax (to build structures and representation to build over those)

Control (how to perform motor control, move the arm)
Learning & Memory (flexibility and supporting behaviors)

How do we use neurons to do all the tasks together?

How do you connect neurons?

How do you program networks of spiking neurons? (not only functions, but state
machines, dynamical systems, motor control, etc.)

: TU/e

SPAUN how does it work? It is based on Neural Engineering
Framework (NEF)

SPUAN is built using the Neural Engineering
Framework (NEF). NEF is a technique used to
construct and simulate spiking neural
networks. NEF is based on linear control theory,
and it uses a set of primitives.

Encoding / Decoding
Transformation
Dynamical Systems
Memory & Learning

: Eliasmith C, Anderson CH. Neural engineering:
www.nengo.ai (free software tool) Computation, representation, and dynamics in

neurobiological systems. MIT press; 2003.

) TU/e

http://www.nengo.ai/

RECAP: Leaky-Integrate-and-Fire Neuron Model

Membrane potential v

w
1

&
1

w
1

N
1

—

o

PR 4
-
-
-
-
e Pl
-
-
-
-
-
-
‘f

o

T

10

2 3 4
Time (s)

v(t) <« o(t — tn) ,
v(t) « 0,

- 2.0

15 * 6

10 5 J _'_Cm 8L

‘é Vg—_
- 0.5~ -
+ 1- EL i T Vieset
- 0.0 o
if v(t) <1,
'f t = tth ’

TU/e

Encoding: response curves & tuning curves

Example:
« sound intensity at different brain regions

« orientation selectivity (lines at different angles)
« speed (how fast an animal is running)

Firing rate (spikes s™')

11

12

How to model all these different tuning curves?

—
d31

T T T T Ty T T

1 10 30

Run speed (cm 571)

20 A
¢
15 4
10 4
S !
0 - rd113| T T 1
1 10 30

Run speed (cm 3_1)

6 ¢

4 4

2 4
—

ol &8
1 10 30

Run speed (cm 571)

TU/e

NEF: response curves & tuning curves

a=f(x)=GUi(x)) -

Introduce a gain «; and a bias JP®s: 200~
; % 150 A
Ji(x) = ajx + JP 5
i 3 100 -
21(x) = Glayx + JP19) :
O
50 -
«j controls the slope
JPias shifts curve left and right = : . : .
-10 -0 0 5 10

Normalised input current

A neuron represents values via nonlinear encoding.
2 TU/e

NEF: response curves & tuning curves

a; = G[a,—(x, ej) + J,bias] : Encoding
x = Da Decoding

Population Tuning Curves
200

150
\V

100 ~

w _— / o
% [argminE=— [|x—X
"1 A / D X| Jx

0
-1.0 -0.5 00 05 1.0
Represented value x

By using least-square minimization we can find the optimal linear decoders.,
: TU/e

Firing Rate (Hz)

1
dx:—/ x — Da(x)|| dx
7 | I Dal)

NEF: response curves & tuning curves

a; = G[a;(x, e,—) + J,bias] i Encoding
x = Da Decoding

Population Tuning Curves

T |l
-1.0 -0.5 00 05 1.0
Represented value x

argmmE— ZHX, Da(x;)|

Firing Rate (Hz)
-
o
o

If we can’t do that analytically we can use the samples that are available.

y TU/e

NEF: response curves & tuning curves

NB: It works well with mean-rates (at steady states)!

Population Tuning Curves Ideal and Decoded Value

200 1.0
- = |deal

< 150 054 Decoded

= x

3 D

& 100 - g 0.0

g g

i 50 - -0.5
0 - 1 -1.0 + T T 1
-1.0 -0.5 0.0 05 1.0 -1.0 -0.5 0.0 0.5 1.0

Represented value x Represented value x

A A'DT

15

o
I
X

—
O
—
—

wl

Error (RMSE = 0.02)

0.050 -
0.025 -
0.000 -+
—0.025 ~
—0.050 ~
| t |
-10 -05 0.0 05 1.0
Represented value x
ATDT —XT

TU/e

Temporal Encoding with a population of LIF neurons

On and Off neurons

. —
. Firing raje Hz SEike trains
" " C A 1
$21 |/ =
£ 4 b~
/7 ‘ - -
Tuning Curves § X / 0 c:z
= \ c
50 - = 1 4 AN e =
P
T T T T = | T -1
. 00 02 04 06 08 10
Time t
] Decoded output
P 30 A S 14 -
3 x ’ N
g 3 i
= g 04 £
© -
o —4— Decoded x(t)
10 - o
- I x(t
0 ; . ; 0.0 0.2 0.4 0.6 0.8 1.0
-10 -05 0.0 05 1.0 Time t
Represented x
Temporal varying signals are more complicated!
16 TU/e

ith a population of LIF neurons

Spike trains

BERASLAR I Ll [S RO —r
TR . :h LA ATRL P AN 1T ~
% i '-:-\.l-\' ‘.‘...\'.........l.h‘-...:..-.\"l.sft.lm iy
: gl :-!-‘ '-'\"::':.th{a:\-:u\k?: . RNOINVIL =
c 61 . 0 W 2 4 1 \ ¥) f ~
: z:fi,'r,".tmmm\ y Lo =
g 411 t"“""?&""‘""“‘.“.’(’i‘g R <
2 21 4 HANITRMIRNUZARY SN SRR AT =
= L | s b e |
o 00 02 04 06 08 10
& Time t
g N\ e W Decoded output
= NI s
\ AR OB R X — Decoded x(t
‘\ \'-"'"“'(\;‘\"\\,i \\. ’.\\\I o 1 - code X()
AR RCORERIR A\ 2 - = |deal x(t)
AR A OO \J ©
o1 HREVRRNNG | 5 o
\ \ N} [}
Vil "WA‘ WA £ -
0 1 il hln;l.\ iy LA 8
-1.0 -05 0.0 0.5 1.0 0'0 0'2 0'4 0'6 0'8 1'0

Represented x Time ¢

More neurons? It doesn't really help. Why?

. TU/e

Filtering with convolutlons

[
©
% where ¢ chosen s.t. [~ h(t)dt =1
z
g
= Convolution
' I 1 1 0
-0.10 -0.05 000 0.05 0.0 (Fxg)(t) = / f(t—7)g(r)dr
-0

Time t

TU/e

18

Filtering with convolutions

Spike trains Filtered outputs
P Fl 5 &
x \ > %
8 27 " N 4, \\ : g
£ \ R 2 B
c 4 \ -0 £ >
o N -
5 ~ s -t T 8
9 1A \ !l 3 8
</ [l
L] L] B S | T T o
0.0 0.2 0.4 0.6 0.8 1.0
Time t
Decoded output

T 14 -~ " S
X /N 2~ Decoded x(t) o
v / A JPTY v
3 ~ / \ Idea)] x¢t) 2
o o
> 0+ >
3 ALLL i rl H‘IIIIIH tEE![E;-'-i [3
B A 7 3
g -1+ 2 3

o L L] 1 1] L] o L] L L] L} L]

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time t Time t

Pros: precision of encoding

Cons: Gaussian kernels have no real biological foundation (non-causal!)

A bio-realistic synaptic filter

PRESYNAPTIC
NEURON

Synaptic vesicle

Neurotransmitter

Neurotransmitter
transporter,

Voltage-gated
ion channel

Receptor POSTSYNAPTIC

Neuaou\

Postsynaptic filtering can be used to model different neurotransmitters, and it is causal!

2 TU/e

A bio-realistic synaptic filter

Synaptic Filter (Time Domain) Synaptic Filter (Time Domain)
0.05 A
— T=5ms,n=0 — T=20ms,n=0
o 015 = T=10ms,n=0 o 0.04 - w—— T=20ms,n=1
8 — T=20ms,n=0 = — T=20ms,n=2
b= —— T=30ms,n=0 Z 0.03 - —— T=20ms,n=3
o 0.10 - o
@© T
£ € 0.02 4
£ 0.05 - b
e w“ 0.01 A
0.00 - 0.00 A
I 1 I 1 I 1 I 1
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
Time t Time t
—~14n -t/ 00
e t"ex ift>0, .
h(t) = 3 - where ¢ = t"exp /7 dt.
0 otherwise . 0

’ TU/e

Encoding Temporal Varying Stimuli with LIF neurons

Spike trains
'.'n AT :h.‘.‘\ \'n‘f k"' y

r: F1 . . .
% ARSI M(Lw.u ‘,é‘\l, With postsynaptic filter!
o |0 tau = 5ms, n=1

'8 ’f’l‘ HMHIM“‘\\ §> V;'S)

5 41 .,

4 n ?'ld’ P ohakr o lhd ‘n!,.ﬁ\‘ . _

>

2 21- f&”\nm»mww ,..-5.. b ““" AL}

it L

1 - ox L . -1
0.0 0.2 0.4 0.6 0.8 1.0 Filtered output sum
g 1
o
2
S o0+
b+
&
v
o
Decoded output

= —— Decoded x(t)

o 19

=2 - = |deal x(t)

g &

3

8 -1

Y

O ;) T T T T g

0.0 0.2 0.4 0.6 0.8 1.0
Time t

22 TU/e

Encoding Temporal Varying Stimuli with LIF neurons

Encoding of a stimulus x(t) by a pool of neurons Al

()™ (A)) 2L 4 ((r)

ai(x(1)) = Glaeix(t) +Jo%]

%(t) = Liaix(1)af, o = argmin{(x — %)2)

With postsynaptic filter!

2 TU/e

Transformation: function approximations with LIF neurons

x —PES
p = f(x)

Find Eij and Dij to produce the desired f(x)
Use any methods (back-prob, or randomly generate E and solve for D using linear

Any neuron model!

Dij (decoders)

regression — works for spiking)

Encoding with NEF

Tuning Curves

100 -,

=
< 60
& NS
= X -
£ N/
W\ 2% -‘"\:‘\' A
L AR Ay
20 2 .,.‘-"I 'f“{;;ﬁ\\:\e ‘0\ z"\
) \\ .‘.‘.’.‘A l.\\\ ‘I L\
—1.0 -—0.5 0.0 o.s 1.0

Represented x

LIF neurons (mean-rate models)
Each neuron has its unique tuning curve

Given enough neurons we can approximate any functions

. TU/e

What set of functions can we encode?

Tuning Curves

100 -,

Firing Rate (Hz)

EPOAOY
MULA

<
&

PR
RO
s
\‘\ "\ 1 .\..
"\
VA
—0.5 0.0 0.5
Represented x

)

> NN
AN

'
.\\ \ ‘.:n

Singular Value
Decomposition

X

-05 00 05 10

Example functions y=c (blue), y=-x (green), y=x"2 (red), y=x"3 (purple)

One layer of neurons is used to approximate smooth functions (low-degree polynomial)

TU/e

26

Neural Engineering Framework — NEF

What does it do? Function approximation

- TU/e

Neural Engineering Framework — NEF

What does it do? We can build larger systems made of function approximators

y=fx) z=g0)
z=g(f(x))

. TU/e

Neural Engineering Framework — NEF

What does it do? We can build larger systems made of function approximators

ab

Wab=EbDa

Neural Engineering Framework — NEF

Programming neural network with functions approximators

x=f(u)+g(v)
— U & o

m(x)

z=m(x)+tn(y)

We can also extent this simple principle in building up larger and more complex systems.

0 TU/e

Adding more bio realism: excitatory postsynaptic potential

(EPSP)
A

Convolving the spike train with h(t) (excitatory postsynaptic potential).
Synapses act to filter (smooth) the data value.

. TU/e

Adding more bio realism: excitatory postsynaptic potential
(EPSP)

x(1)

y()

— @O *h®

z(1)

Even if synapses act on the spiking activity (a), it is mathematically equivalent to think

as acting on the decoded value y, before passing it to the next group of neurons.
Synapses act to filter (smooth) the data over time.

32

TU/e

Adding more bio realism

—> U Jw) . x=f(u)+g(v)

m(x)

z=m(x)+n(y)

gw)

———| v o) y n(y)

Different neuron transmitters can have different properties, temporal, different filter operations.

- TU/e

Recurrent Networks... next slide.

X(1)

gu)

TU/e

Recurrent Networks

b 4

fe@)+ | — 1 0

s 80)

X(1)

TU/e

Recurrent Networks

Get rid of convolution with a Laplace
Transformation and turns convolution into a

multiplication. Note that st represents the time
constant of the postsynaptic filter!

= h(t)
4= e
x(t) ‘@’% o ‘g(y(,))

y(t) = h(t) * (f (x(t)) + g(y(t)))

y(t) = h(t) * (f(z(t) +
!)

~

Y=""T—[G(s)+F(s)]
Y= (T) FLS)
dy _gly)-y_ flx)
dt T T

This will tell us how y will change when we set up
our networks to approximate g(y) and f(x)

This means that we can approximate
differential equations!

If you want this

ay _
o a(y)+b(x)

Then find weights that do this

g(y)=raly)+y
f(x)=7b(x)

TU/e

Recurrent Networks

d
dt

37

ll
LU R D L L R R L T L A L
llllllllllllllllllll

| inmame et LT T LT
lll:lll llllllllllllllllllllllllllllll
..'...“' m:"'l UHEHEEED J
e e 2". o=
esnaEnn
input 9251 9.85 93§81 9851
J‘>
0.00 input———»—value > memory
1 H 1
I, PR— <X
9.251 988 §.251 9.851

TU/e

Recurrent Networks
Dynamical System: Lorenz Chaotic Attractor

Novel techniques for building up SNN!!

NEF is a constructive approach.

- S [ii] * - nengo_gui/examplesitutorial/15-lorenz.py = ® e, © Help
dm I # Tutorial 15 The Lorenz Chaotic Attractor
2
—_— J(y J— m) X 3 Differential equations can also give chaotic behaviour. The classic example
o is is the Lore erfly o The & ions for 1 e
dt 3 10 T 30 ;4 of this is the Lorenz “butterfly” attractor. The equations for it are
6 = sigma * (x1 - x8)
T = - x8 * x2 - xl
8 =B * x1 - beta * (x2 + rho) - rho

Llue around the origin.
.cafpublicat
d approach to bui
<s. Neural

30

w“
T IE T T U TE I T I I W I

X
=]

=
=
T B . | e) IR S—)
P ha e
BHER
4

Since there are three dimensions, we can show three different XY plots
combining the different values in different B

-
=
e

19 import nengo

e
&

21 model = nengo.Metwork(seed=5)
22 ~ with model:

I 24 x = nengo.Ensemble{n_neurons=686, dimensions=3, radius=3@)
-30 30
synapse = 8.1
def lorenz(x):
sigma = 18
304 29 beta = 8.8/3
-30 38 rho = 28
31
30 32 dx@ = -sigma * x[8] + sigma * x[1]
33 dxl = -x[8] * x[2] - =[1
34 dx2 = x[8] * x[1] - beta * (x[2] + rho) - rho
35
36 return [dxd * synapse - x[8],
a7 dx1 * synapse - x[1],
38 dx2 * synapse = x[2]]
r 1
-30 30 g ‘ .
40 nengo.Connection{x, x, synapse=synapse, function=lorenz)
41
-30 1
0.293 0.207
-30
- =
Speed 0.34x m II
. r
- Time 0.222 -3.5 -3.0 -2.5 -20 -1.9 -1.0 0.3 0.0

» TU/e

Neural Engineering Framework Novel techniques for building up SNN!!
NEF is a constructive approach.

x=f(u)+g(v)
o, W 2

m(x)

X

z=m(x)+n(y)

gw)

dy/dt=h()+p®)

—P v
h(v) Qy
We can now train each network separate
and build up based on those! TU/
e

Neural Engineering Framework

Thanks to Chris Eliasmith
and Terrence C Stewart!
Summary

* General approach to build NN i\\',q
Recurrent, feed forward e ':""""1"‘1"‘753
Express the model in terms of vectors, functions,
differential equations
Choose neuron model and the level of biomimicry
Generate the model on paper

\ \ HHIIIIIII

|
lIIH
(Il e
B | o

Evaluate performance (compare to biological data)
* Function should be smooth
« Otherwise, the model will end up implementing a
smoothed version of it
« Programming with differential equation is hard
 No “FOR” loops and difficult to do “IF” statements

40

Nengo.ai (Software)

 Pro:
« Can be used to build large scale models
 SPA enable abstractions and problem-solving skills
 Grounded on mathematics
Cons:
 Mainly based on mean-rate models
« Still limited performance compared to deep nets

Deep Learning derived models

Neuromorphic Hardware (Loihi, FPGA, etc)

Online learning

Cognitive modelling with Semantic Pointer Architecture
Startup (Applied Brain Research)

Summer School in Waterloo (two weeks)

Semantic pointers?

Semantic pointers are:

State-space representation for spiking neurons (encoding, e.g., the highest level of
the visual hierarchy)
Generated by compressor operators (vision, motor, vector symbolic architecture)

Efficient for manipulation (because compressed, simple representations)
Useful for large-scale, dynamics, or discrete continuous structured, anti semantic
representations

. TU/e

Brain Anatomy and Functions

Frontal Parietal

+ Personality « Sensations: pain, touch,

* Emotions and arousal temperature

* Intelligence « Understanding and interpreting

B RA I N A NATO MY & F U N CTI O N S « Ability to concentrate, sensory information, such as

make decisions, plan, put size, colour and shape
things in order, solve problems * Understanding space and

* Awareness of what is distance
around you « Math calculations

+ Voluntary movement
= Ability to speak and write
+ Behaviour control

Specific brain areas are
responsible for particular

Occipital

* Vision

* Interpreting
what you see

functions. Here is a very high-
level overview.

Temporal

* Ability to understand
language

» Hearing

* Memory, long-term

/ Cerebellum
storage of memories

st Brain stem + Balance
* Organization and
planning * Breathing * Motor (movement)
2 * Heart rate control coordination
» Behaviour and ¥
. « Consciousness, alertness, * Posture
emotions x
wakefulness * Fine motor skills

* Swallowing
» Blood pressure
« Sweating

. TU/e

