EFFICIENT NN W/O MULTIPLIERS

PUBLIC

Sebastian Vogel
NXP - CTO Automotive System Innovations
MARCH 2022

x SECURE CONNECTIONS
FOR A SMARTER WORLD




EMBEDDED Al RESEARCH SCIENTIST, SEBASTIAN VOGEL

- Sebastian Vogel
- PhD in “Efficient Processing of DNNs” from RWTH Aachen, Germany

- 2016-2021 with Bosch Corporate Research, Renningen, Germany Bosch Research in Féenningen

(Research Campus) *

= Quantization, Hardware-Accelerator Architectures for DNNs, NAS

- At NXP since Feb. 2021 as research scientist for Embedded Al
= Hardware-aware Neural Architecture Search, Quantization
- Presentation mostly shows work published while at Bosch Research

- NXP department: CTO Automotive System Innovations (‘R&D’) NXP headquarters in Eindhoven
- Scouting & analysing Al research (in-house, via university collaborations) (High Tech Campus) *
- Translate recent SOTA to NXP requirements & research projects

- Small impactful projects with opportunities for student assignments

* source Bosch Campus: https://www.bosch.com/research/about-research/research-locations/

** source NXP Headquarters: https://www.nxp.com/company/about-nxp/worldwide-locations/netherlands:NETHERLANDS



https://www.bosch.com/research/about-research/research-locations/
https://www.nxp.com/company/about-nxp/worldwide-locations/netherlands:NETHERLANDS

PORTFOLIO OF NXP

- Functionality: - Data: - Applications: For Al deployment:
- Compute - Radar - Automotive - Applications
- Connectivity - UWB - loT/edge - Chips
- HMI - Analytics - Industrial automation - Constraints
- Vision - Drones - different requirements

on neural network architectures

Cloud Services
NXP Embedded Inference Engines and Libraries

Over-the-Air 3 \ehicle elQ™ Deployment of Neural Network Models

(OTA) i  :iData
Services 1
Secure N - Body Control Domain
Connectivity HVAC Z z
Network .—— Connectivity Seat Module NXP2lQ xX¥ Z z
Management Comfort Modules Inference ZE n &
g ¢ - Engines and Z= E )
EVIHEV Libraries o= 5 =
e <
=3 g
=
2

¢ :
: E
o] O
& &

Engine
Q Transmission

Chassis

“+" TensorFlowL ite
1
eC
" TensorFlowl ite
“+" TensorFlowl ite

OGLOW

4 TensorFlow  micro

4 TensorFlow  micro

‘" TensorFlowL ite
4 TensorFlow - micro

uNPU

\ , NPU

Radar & . S -

Ultrasonic "¢ Compute . N ~ -

Autonomous A \ i ; e Arm® Cortex®-M Arm® Cortex®-A ML Accelerator
q Dyl

Vision

i.MX RT600 iMX RT600 i.MX 8M Plus i.MX 8M Plus i.MX 8M Plus Future MCUs
i.MX RT1170 i.MX 8 i.MX 8
i.MX RT1050 i.MX 8X i.MX 8X
i.MX RT1060 i.MX 8M i.MX 8M
i.MX 8M Nano i.MX 8M Nano
i.MX 8M Mini

2 INK

Slide courtesy: Gerardo Daalderop gerardo.daalderop@nxp.com



mailto:willem.sanberg@nxp.com

NXP CTO (‘R&D’)
Automotive System Innovations (ASI)

- Prototyping systems
with NXP solutions, e.g.:

- In-house & collaborations

T
" :
);. 4

~ Pedestrian pose detection (left)

Lane estimation (right)
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EFFICIENT NNS WITHOUT MULTIPLIERS
OVERVIEW

- Quantization of Neural Networks w/o Multipliers
- Self-supervised guantization of pre-trained DNNs
- Logarithmic quantization at arbitrary base

- Bit-shift-based quantization

Quantization of DNNs
(w/o Multipliers)
Self-supervised quantization
Logarithmic number representation
Bit-shift-based quantization
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Quantization of DNNSs
(w/o Multipliers)

Self-supervised quantization
Logarithmic number representation
Bit-shift-based guantization
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SELF-SUPERVISED QUANTIZATION OF PRE-TRAINED NEURAL NETWORKS
DOES NOT REQUIRE LABELLED TRAINING DATA

- Quantizing pre-trained neural networks, i.e., determining the quantization step size «
- Without the need for labeled training data through self-supervised quantization!’!
- Unlabeled calibration enough

quant(-): y » y, = a - clip (round (%) ,—2N-12N=1_1 )

yO = @ (ba) + z Wa)x(o) FUD — @ (b(m) + z W(z+1)y(§l>)

~ l
v = quant(y®,a) = y® + yV D = @ (b(m) + [ya) + yA()2>|
QE
=& (b(m) + Z wDyO | 4 3’;52
\_Y_}
propQE
Option 1: Minimize the squared QE Option 2: Minimize squared propagated quantization error
2 2
a = argmin (yA(l) ) a = argmin (yzglA) )

[7] Vogel et al., Self-Supervised Quantization of Pre-Trained Neural Networks for Multiplierless Acceleration, DATE 2019



https://ieeexplore.ieee.org/document/8714901

SELF-SUPERVISED QUANTIZATION OF PRE-TRAINED NEURAL NETWORKS

- 8bit quantization (per-tensor) of activations only Classification Semantic Segmentation

1 1
| || 1
Quantization VGG16 ResNet50 InceptionNet | Dilated Model FCN8s
top-1* top-5" | top-1 top-5 | top-1 top-5 | mloU® pix.acc.” | mloU pix.acc.
100 36 36

Calibration samples
Float32 baseline 69.58 89.04 7299 90.93 75.61 9248 55.63 9285 66.48 94.65
Yq Max abs (naive) 66.36 88.82 64.75 86.69 0.00 0.02 51.70 91.14 64.68 9341
Yq Min MSE (Opt. 1) 68.51 88.79 70.08 88.95 69.66 89.40 54.23 92.00 65.04 93.29
Yo Min propQE (Opt. 2) ~ 69.09 88.97 71.31 90.61 73.89 91.67 55.65 92.79 66.49 94.46
PropQE vs baseline -0.49 -0.07 -168 -0.32 -1.72 -0.81 +0.02 -0.06 +0.01 -0.19

Ioat 32bit Linear 8bit (params & act.)

* Top-1 accuracy: % of correctly classified labels

** Top-5 accuracy: % of correct label within first 5 predicted labels
§ mloU: mean intersection over union

# pix.acc.: mean overall pixel accuracy

7 Pt

[4] [4]

[4] Vogel, Design and implementation of number representations for efficient multiplierless acceleration of convolutional neural networks, PhD Thesis 2020
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Quantization of DNNSs
w/o Multipliers
Self-supervised quantization

Logarithmic number representation
Bit-shift-based guantization
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FEW-BIT QUANTIZATION WITH ARBITRARY LOG-BASE IS A PROMISING APPROACH

FOR PRESERVING PRE-TRAINED NETWORK ACCURACY

100

- As of 2018, few-bit-quantization lacked behind o s BB .
. . - . . 3 8 <+
SOTA floating point training and resulted in o W v
complex training routines and hard to master 5 y o
training “ingredients” S e 00
) . . O £2 Float32 trained DNNs
- Quantization of pre-trained DNNs favorable 0 e e ©
2012 2013 2014 2015 2016 2017
Year of Publication
[4]
- CNN accelerators incorporate a considerable
amount of multiply-accumulate (MAC) engines e s s
- Reducing the bit-widths optimizes for power and & |
memory reqUirementS i,__f____________________ ___________________.E.'_'___'_'_'_'_'___ S
- Adders and bit-shifts lead to considerably g |
. 1 E 1
reduced area requirements compared to MACs | 8 ;

[4] Vogel, Design and implementation of number representations for efficient multiplierless acceleration of convolutional neural networks, PhD Thesis 2020

108a (%) +loga(w)
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LOG-QUANT WITH ARBITRARY LOG-BASES INCORPORATES INTRINSIC PRUNING EFFECT !¢

4 Bit Logarithmic Quantization, Base 2/

—d., A
a € {22 |a (S No} = float32
o 10° —0- log>
X W= z -~ logaw
5 103
— 108a(®)+loga(w)
o
__ nlog,(a)-(logy(x)+logy(w 101 ; ¥
— 7logz(a)-(logq(x)+loga(w)) ..I... "‘I 5
— 2 (oggq(x)+loga(w))>a ~0.2 ~0.1 0.0 0.1 0.2

Value

— oFractional ((logq(x)+logga(w))>»a) . 2Integer((loga(x)+loga(w) )>a)

_ \2Fractional((loga(x)+loga(w))>>€l)l « Integer((loga(x) +log, (W) > a)

Y
LUT w/ 2 % entries

- Logarithmic quantization incorporates an intrinsic pruning effect
when choosing base a < 2 ©!

[8] Vogel et al., Efficient hardware acceleration of CNNs using logarithmic data representation with arbitrary log-base, ICCAD 2018

o
Lo |
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[4] Vogel, Design and implementation of number representations for efficient multiplierless acceleration of convolutional neural networks, PhD Thesis 2020
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THE SAME OPTIMAL LOG-BASE IS FOUND FOR ALL LAYERS,
MAKING A HW-IMPLEMENTATION LESS COMPLEX

- Optimal log-bases are determined by minimizing the propagated quantization error (propQE)
- Different optimal log-bases are found for weights and activations

- For ResNet50, the same optimal log-base is found in every layer
- No HW-flexibility required for changing the log-base

103 Activations — ResNet50 103 Weights — ResNet50
-------------------------------- 91 W— top] ~-oTTTTmTmmmmmmm-gmmmm---= 01
—@- top-5

[ m e opo e
g s o o e/ ——— % N 73 _ < , —--— Baseline 73 _
5 10 60 = o 10 60 X
~ ¥
o —¥— top-1 ? o §
= ®- top-5 40 3 = 40 5
g 101 —-—- Baseline § g 10! §
[ =

=]

Z 0 2 20
100 0 10° 0
71/16 91/8 21/4 912 9 21/16 01/8 7 1/4 2112 2

[4] Log-Base [4] Log-Base
11 i

[4] Vogel, Design and implementation of number representations for efficient multiplierless acceleration of convolutional neural networks, PhD Thesis 2020
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LOGARITHMIC QUANTIZATION OF CNNS WITH ARBITRARY LOG-BASE

- In ResNet50, the same optimal log-base is found in every layer

- In InceptionResNet, there are exceptions to this behavior,
yet choosing a single optimal log-base for all layers achieves still considerably good results

103 Activations — ResNet50 10° Weights — ResNet50
-------------------------------- 91 U — P ———— N ———
—%— top-1 91
oA e PSS R N 73 =) R S A~ 73
2102 < B 102 —-—-- Baseline —_
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é 10 ——= Baseline i g 101 ég
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Activations — InceptionResNet 10% Weights — InceptionResNet
103 o e n A — m— m—— o 107 e p— —— m———
93 —%— top-1 28
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Q o
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B 60 = g 60 2
a = A >
o] %) < O
Q © Q @©
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£ 10 2 g 10 <
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[4] Log-Base

Log-Base
12 X

[4] Vogel, Design and implementation of number representations for efficient multiplierless acceleration of convolutional neural networks, PhD Thesis 2020
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LOG-BASED QUANTIZATION ACHIEVES COMPETITIVE RESULTS COMPARED TO LINEAR QUANT.
ON SEVERAL DNN ARCHITECTURES

- Logarithmic quantization of weights* and activations at 5 bit

Classification Semantic Segmentation

| N | |
Quantization g VGG16 ResNet50 InceptionNet Dilated Model FCN8s
2| top-1" top-5™ top-1 top-5 top-1 top-5 mloUS pix.acc.” mloU pix.acc.
100 36 10

Calibration samples

lin-quant baseline 8 69.12  89.06 71.67 90.73 7371 9157 5562 92.78 66.47  94.44

w:log,1/2 y:10g,1/a 5 6846 8836 66.89 87.08 64.65 8555  54.83 92.65 66.05  94.39
log vs linear - -0.66 -0.70 478  -3.65 -9.06 -6.02 -0.79 -0.13 -0.42 -0.05
Linear 8bit Logarithmic 5bhit

* Top-1 accuracy: % of correctly classified labels
** Top-5 accuracy: % of correct label within first 5 predicted labels

[4] [4] § mloU: mean intersection over union
# pix.acc.: mean overall pixel accuracy
* per-tensor quantization and biases @8bit (linear) per-tensor 13 x{

[4] Vogel, Design and implementation of number representations for efficient multiplierless acceleration of convolutional neural networks, PhD Thesis 2020
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LOG-BASED MAC-ELEMENTS ARE COMPLEX BUT HAVE REDUCED INTERFACE BIT-WIDTHS

- Log-based number representations allow reducing the external bit-widths and
therefore, optimize external bus and memory requirements

- Nevertheless, an implementation of a log-based MAC -element consists of more stages
than its linear implementation

Xq Wy %, Wy
)8 s ts s
§ ‘ ) 4 ]
& 16 T
k=i 5
g F:a Pg
| #l—l
>
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f=1
g
oy P,
g 6
fe
H quantg(-)
2
:8; pool()
S £
g g
) g

Jolenunad Yy

“ueng) /100 /1Y

* MAC — multiply-accumulate

o
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[4] Vogel, Design and implementation of number representations for efficient multiplierless acceleration of convolutional neural networks, PhD Thesis 2020
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ARE THERE WAYS TO ADDRESS THE DISCUSSED DOWNSIDES
OF THIS LOG-BASED NUMBER REPRESENTATION?

- In the following, an alternate approach is presented
addressing the drawbacks of log-based guantization with arbitrary log-base
- Complex MAC-element implementation
- Reduced accuracy on complex DNN architectures

Quantization VGG16 ResNet50 InceptionNet Dilated Model FCN8s
top-1* top-5** top-1 top-5 top-1 top-5 mloUS pix.acc.# mloU pix.acc.
Calibration samples 100 36 10

69.12 89.06 71.67 90.73 73.71 91.57 55.62 92.78 66.47 94 .44
68.46 88.36 66.89 87.08 64.65 85.55 54.83 92.65 66.05 94.39

lin-quant baseline

w: ]0g21/2 y: ]Og21/4

| o oo |
JOE[NWNOAY | | sarjdnmy

log vs linear -0.66 -0.70 -4.78 -3.65 -9.06 -6.02 -0.79 -0.13 -0.42 -0.05

“uend) /1004 / 10V

(4]

[4] Vogel, Design and implementation of number representations for efficient multiplierless acceleration of convolutional neural networks, PhD Thesis 2020
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Quantization of DNNSs
w/o Multipliers
Self-supervised quantization
Logarithmic number representation
Bit-shift-based quantization
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LOG-BASED MIXED-PRECISION QUANTIZATION ADDRESSES SIMPLER IMPLEMENTATION
AND HIGHER ACCURACY ON COMPLEX DNN ARCHITECTURES

- CNN accelerators incorporate a considerable
amount of multiply-accumulate engines

- Fixed-point multipliers are considerably
larger (wrt. silicon area) than shift-operations

- Shift-based operation
- logarithmically quantized weights (4bit)

- Note:
This approach uses linearly quantized
activations and therefore, integrates
standard input signals more easily

Multiplier

________________________________________

Accumulator

X W x K log,(w)

17
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LOG-BASED MIXED-PRECISION QUANTIZATION ADDRESSES SIMPLER IMPLEMENTATION
AND HIGHER ACCURACY ON COMPLEX DNN ARCHITECTURES

Quantization of Layer conv4_4

108
W E Z 105 p
S 104
—
Y 103
3
0 102 :
X-W 5 L —e— Linear
10 —— Float32
100 1t te 1l t 1] .
—0.2 0.0 0.2 0.4 0.6 0.8 1.0 n
Value

» Quantization of weights (with bimodal distribution)
b Ilnear Ir________________________ L T

Multiplier

Accumulator

18

[4] Vogel, Design and implementation of number representations for efficient multiplierless acceleration of convolutional neural networks, PhD Thesis 2020
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LOG-BASED MIXED-PRECISION QUANTIZATION ADDRESSES SIMPLER IMPLEMENTATION
AND HIGHER ACCURACY ON COMPLEX DNN ARCHITECTURES

Quantization of Layer conv4_4

106
w € {2%]|z € Ny} 10°
S 10 /H\
g 103 /
X W é 10° ”‘V —— One-Hot WH
10° —— Float32
10° TIIIII‘I T ur o 1
—0.2 0.0 0.2 0.4 0.6 0.8 1.0 n
Value
x K log,(w)
i i
» Quantization of weights (with bimodal distribution) £ :
. E :

* linear i .
* “one-hot”

Accumulator
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[4] Vogel, Design and implementation of number representations for efficient multiplierless acceleration of convolutional neural networks, PhD Thesis 2020
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LOG-BASED MIXED-PRECISION QUANTIZATION ADDRESSES SIMPLER IMPLEMENTATION
AND HIGHER ACCURACY ON COMPLEX DNN ARCHITECTURES

Quantization of Layer conv4_4

10°
w2 € {2%|z € Ny} 105 x
g 104 il_,* 1, 3 :
% 122 ] u —— Two-Hot
X - (W1 + Wz) S Lot o | —— One-Hot J,{m
100 | Jn[ | | P J.T Float32 ' IL I
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 4]
Value
x < log,(w;) + x < log,(w,)
2 CC
i |
» Quantization of weights (with bimodal distribution) £ :
= |

* linear i .
* “one-hot”
* “two-hot”

Accumulator

20 )‘

[4] Vogel, Design and implementation of number representations for efficient multiplierless acceleration of convolutional neural networks, PhD Thesis 2020
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LOG-BASED QUANTIZATION ACHIEVES COMPETITIVE RESULTS COMPARED TO LINEAR QUANT.
EVEN ON COMPLEX DNN ARCHITECTURES

- Log-based quantization (per-tensor) of
weights, biases®, and activations” Classification Semantic Segmentation

A
[ | [ |
Quantization VGG16 ResNet50 InceptionNet Dilated Model FCN8s
top-1* top-5" top-1 top-5 top-1 top-5 mloU$ pix.acc.” mloU pix.acc.
100 36 10

Calibration samples

lin-quant baseline 69.12 89.06 71.67 90.73 73.71 91.57 55.62 92.78 66.47 94.44
w, one-hot, 4 bit 63.85 86.76 46.36 72.11 37.77 64.55 49.52 90.13 60.75 92.10
w, two-hot, 8 bit 68.91 89.54 70.84 90.35 12.47 91.11 55.34 92.74 66.24 94.41
two-hot vs linear -0.21 +0.48 -0.83 -0.38 -1.24 -0.46 -0.28 -0.04 -0.23 -0.03

Ty

Float32 Linear 8bit Two-hot 8bit Linear vs. two-hot 8bhit

T

i
4

L

[4] * Top-1 accuracy: % of correctly classified labels
** Top-5 accuracy: % of correct label within first 5 predicted labels

§ mloU: mean intersection over union

# pix.acc.: mean overall pixel accuracy

21 A

* activations, biases @8bit (linear)

[4] Vogel, Design and implementation of number representations for efficient multiplierless acceleration of convolutional neural networks, PhD Thesis 2020
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MIXED-PRECISION LOG-BASED QUANTIZATION ALLOWS TO TRADE ACCURACY
WITH THROUGHPUT AND NETWORK SIZE!'?!

ResNet50 InceptionNet

©
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 Layers close to the network input are sensitive to one-hot gquantization

22
[9] Vogel et al., Bit-Shift-Based Accelerator for CNNs with Selectable Accuracy and Throughput, DSD 2019
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MIXED-PRECISION LOG-BASED QUANTIZATION ALLOWS TO TRADE ACCURACY

WITH THROUGHPUT AND NETWORK SIZE!°]

ResNet50

Ty | 2.00
2 i Laet
Ef ‘-———\-:’4-; .
£ 80 oo e o e e e e v 1758

" ~
3 S o
< 70 T T T - - - - 1.50 A,
: : :
o O]
= Q
g 60 e snnn Speed_up 1.25 a
2 cos” ___ leftlayers one-hot «
g o0 =*° right layers two-hot 1.00
@]

524946434037 343128252219161310 7 4 1
Layer Index

<

<

InceptionNet

= speed-up
left layers one-hot
" right layers two-hot

Layer Index

 Layers close to the network input are sensitive to one-hot gquantization
 Layerwise selection allows to trade accuracy with throughput and resulting network size

» The configuration can be selected at run-time

[9] Vogel et al., Bit-Shift-Based Accelerator for CNNs with Selectable Accuracy and Throughput, DSD 2019
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BIT-SHIFT-BASED MAC-ELEMENTS WITH LINEAR QUANTIZATION FOR ACTIVATIONS
OFFER FLEXIBLE MIXED-PRECISION COMPUTATION

- Implementations of bit-shift-based MAC’-elements with “one-hot”/’two-hot” weights are
less complex than log-based MAC-elements with arbitrary log-base

- Mixed-precision capability built in without the need for upper/lower nibble™ handling

sidnny
>

JOlENUWINIIY

quanty ()

10V / [00d / “1ueng)

widnny

loie[numnady

Juend) /[ood / Y

* MAC — multiply-accumulate
** nibble — 4 bit

o
Lo |
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[4] Vogel, Design and implementation of number representations for efficient multiplierless acceleration of convolutional neural networks, PhD Thesis 2020
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QUALITATIVE EVALUATION ON SEMANTIC SEGMENTATION

- Qualitative output of the dilated model for semantic segmentation on cityscapes
- Linear 8bit quantization (left), two-hot 8bit quantization (right), mutual diff. (bottom)

[4]

25
[4] Vogel, Design and implementation of number representations for efficient multiplierless acceleration of convolutional neural networks, PhD Defense, Jan. 10, 2020
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METHODS FOR QUANTIZING PRE-TRAINED NEURAL NETWORKS HAVE BEEN PRESENTED
AND EVALUATED ON TWO APPROACHES FOR MULTIPLIERLESS EXECUTION OF DNNS

- We discussed a method for quantizing pre-trained neural networks

without the need for fine-tuning on labeled training data
- Minimizing the propagated quantization error

- Two approaches for few-bit quantization and
multiplierless processing were discussed

- Logarithmic number representation with arbitrary log-base
- Mixed-precision log-based quantization (“one-hot”/"two-hot”)

10°
10°
8 104
[ =

2 10°
3 102
S 10
10!
10° i

2
(1+1) ) _ : 0
y + Ypa a = argmin |y,
propQE
4 Bit Logarithmic Quantization, Base 21/8
= float32
o 10° 8- log,
§ —%— logw=
g 10°
8 1
10
buax Tnd
-0.2 -0.1 0.0 0.1 0.2
Value
Quantization of Layer conv4_4
e
f —— Two-Hot
| Power-of-2
T Iﬂ ‘ ! ] III — Float32 1 IL hl}m\ll
-0.2 0.0 0.2 0.4 0.6 0.8 1.0

Value

o
Lo |
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https://dl.acm.org/doi/10.1145/3240765.3240803
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AVAILABLE STUDENT PROJECT POSITIONS (INTERNSHIP & GRADUATION PROJECTS)

- Automatic neural network quantization and deployment optimization
- optimizing neural networks through quantization and pruning
- taking multiple optimization criteria into account
- investigating options to learn how to quantize/prune neural networks
- automatically determining optimal SW deployment parameterizations for embedded devices

- Hardware-aware NAS for next generation radar-based ADAS
- improving state of the art approaches on object classification with DNNs
- leveraging ML and NN-design know-how from other domains for Radar signal processing
- exploring NN designs that exploit Radar spectrum data, Radar target lists or a fusion of both
- optimizing simultaneously the deployment properties on target hardware and the task accuracy

o
Lo |
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AVAILABLE STUDENT PROJECT POSITIONS (INTERNSHIP & GRADUATION PROJECTS)

- Transferring existing NAS methodologies to challenging embedded system tasks
- audio processing (noise cancelation, keyword spotting, etc.)
- battery management and battery health estimation
- predictive maintenance (e.g., anomaly detection)
- with the goal to derive insights on the trade-off between system requirements and task accuracy

- Intelligent automated design & configuration of next generation DL-HW-accelerators
- automatically optimizing configurable HW accelerators and co-adapting neural architectures
- especially focusing on quantization and sparsity features of HW-accelerators

- Hardware-aware NAS for next generation hardware and software
- extending available hardware-aware NAS frameworks to new hardware targets;
- integrating said NAS frameworks with one of our existing training modalities;

o
Lo |

- conducting extensive experiments in our training modalities. 29
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