
The data-transfer and storage bottleneck in

modern processor architectures is a very impor-

tant and timely problem, as discussed in anoth-

er article in this issue (“Random-Access Data

Storage Components in Customized Architec-

tures,” by L. Nachtergaele, F. Catthoor, and C.

Kulkarni). This problem is especially relevant in

embedded applications, where cost issues such

as memory footprint and power consumption

are vital. In this article, we show how source-to-

source code transformations play a crucial role

in the solution of this problem for multimedia

and telecommunications applications. 

Many of these code transformations can be

platform-independent if they are defined care-

fully, in a well-chosen order.1,2 This very useful

property lets us apply them to a given applica-

tion’s code before we have any knowledge of

platform architecture parameters such as mem-

ory size, communication scheme, and even

processor type. Although the resulting optimized

code behaves better on any of the modern plat-

forms, passing it through a platform-dependent

stage produces further cost-performance

improvements. These optimizations are espe-

cially useful when the target is an at least partly

customizable memory organization based on

embedded DRAM and SRAM. Benini and De

Micheli3 provide a good overview of general relat-

ed work on system-level transformations, focus-

ing especially on reducing power consumption.

Code-rewriting techniques for
access locality and regularity

Code-rewriting techniques, consisting of

loop and dataflow transformations, are essen-

tial to modern optimizing and parallelizing

compilers. They function mainly to enhance

temporal and spatial locality for cache perfor-

mance, and to expose the algorithm’s inherent

parallelism to the outer loop nests (for asyn-
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chronous parallelism) or inner loop nests (for

synchronous parallelism).4-6 These techniques

also find uses in communication-free data allo-

cation techniques7 and in communications

optimizations in general.8

Thus, it is no surprise that these code-rewrit-

ing techniques are also very important in data

transfer and storage (DTS), especially for

embedded applications that eventually allow

more customized memory organizations. The

first optimization step of our code-rewriting

script, for example, acts as an enabling step for

more platform-dependent optimization steps,

significantly reducing the required amount of

storage and transfers and improving access

behavior. Basically, global loop transformations

increase the locality and regularity of the code’s

accesses. In an embedded context, this is clear-

ly good for memory size (area) and memory

accesses (power),9,10 but of course also for per-

formance.11

The main distinction between our work here

and the vast amount of earlier related work in

the compiler literature is that we focus particu-

larly on these transformations across all loop

nests in the entire program.9 When the scope is

limited to one procedure or even one loop nest,

code transformations can enhance locality

(and parallelization possibilities) within that

loop nest, but they do not improve the global

data flow and associated buffer space present

between the loop nests or procedures. So the

first step of our process is really a precompila-

tion phase that should occur before the more

detailed, but also quite locally applied, con-

ventional compiler loop transformations. This

preprocessing also enables later steps in our

global script that further reduce storage and

transfers—steps addressing data reuse, memo-

ry hierarchy assignment, memory organization,

and in-place mapping.

In addition, our script includes an initial

global dataflow transformation step, by which

we modify the algorithmic data flow to remove

redundant data transfers (reads and writes to

data that are only partially needed), which typ-

ically occur in the practical code. Dataflow

transformations of a second class, however,

also serve as enabling transformations for other

steps in our global methodology because they

break dataflow bottlenecks.12

Now let’s turn to a very simple example to

show how loop transformations can signifi-

cantly reduce an algorithm’s data storage and

transfer requirements. 

Example
This example consists of two loops: the first

produces array A[]; the second reads A[] to

produce array B[]. Only the B[] values must be

kept afterward.

for (i=1; i<=N; ++i) {
A[i] = …;

}

for (i=1; i<=N; ++i) {
B[i] = f(A[i]);

}

If this algorithm were implemented directly,

it would significantly increase storage and

bandwidth requirements (assuming N is large),

because all A[] signals must be written to an

off-chip background memory in the first loop

and then read back in the second loop.

Rewriting the code using a loop-merging trans-

formation gives

for (i=1; i<=N; ++i) {
A[i] = …;

B[i] = A[i];

}

In this transformed version, the A[] signals can

be stored in registers because they are imme-

diately consumed after they have been pro-

duced, and are no longer needed. In the overall

algorithm, this significantly reduces storage and

bandwidth requirements.

Cavity detection application
Next, we apply our more global, combined

dataflow and loop transformation approach to

a cavity detection application, which we use

throughout this article as our main test vehicle.

The cavity detection algorithm is a medical

image-processing application that extracts con-

tours from images to help physicians detect

brain tumors. The initial algorithm consists of

several functions, each with one image frame
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as input and one as output, as shown in Figure

1. “The cavity detection test vehicle” sidebar

includes more information about how the

application works.

Now let’s demonstrate our global loop and

dataflow transformation technique on the cav-

ity detection code. In addition to the initial

transformations, we’ll apply data reuse and in-

place mapping transformations later in this arti-

cle; then we’ll demonstrate the eventual effect

of the loop transformations, which are in fact

only enabling transformations. 

For the initial cavity detection algorithm, as

given in Figure 1, the data-transfer and storage

requirements are considerable. The main rea-

son is that each function reads an image from

off-chip memory and writes the result back to

this memory. Applying our global DTS explo-

ration methodology heavily reduces these off-

chip memories and transfers, resulting in far

less off-chip data storage and transfers. We per-

form all steps of the process in an application-

independent, systematic way.

Preprocessing and pruning. First, we rewrite

the code in a three-level hierarchy. The top

level, level 1, contains system-level functions

between which no optimizations are possible.

In level 2, we combine all relevant data-domi-

nated computations into a single procedure,

which is more easily analyzable than a set of

procedures or functions. Level 3 contains all

low-level (for example, mathematical) func-

tions, which are not relevant for the data flow.

Thus, we apply all further optimizations to the

level 2 function. This is a key feature of our

approach, because it exposes the available

freedom for the actual exploration steps. The

code shown later in this article is always

extracted from this level 2 description. 

Next, we analyze the data flow and replace

all pointers with indexed arrays and then trans-

form the code into single-assignment code that

makes the flow dependencies fully explicit.

This allows more aggressive dataflow and loop

transformations. Furthermore, it leads to more

freedom for our later data-reuse and in-place

mapping stages. These stages will further com-

pact the data in memory, more globally and

efficiently than in the initial algorithm code.

Global dataflow transformations. In its initial

version, the algorithm always performs initial-

izations for the entire image frame. However, this

is unnecessary; initializing only the borders saves

us from a lot of costly memory accesses. In prin-

ciple, designers are aware of this, but in practice

original code usually contains many redundant

accesses. By systematically analyzing the code

for such redundancies (which our preprocess-

ing phase makes practicable), we can identify

all access redundancy in a controlled way.12

This step of our script also achieves our bot-

tleneck removal objective. The initial algorithm

contains a Reverse( ) function, computing the

maximum value of the whole image; this com-

putation creates a real bottleneck for DTS. From

the perspective of computations, this bottle-

neck is almost negligible; but from the per-

spective of transfers, it is crucial, as the entire

image must be written to off-chip memory

before this computation and then read back

afterward. However, in this application, a glob-

al dataflow transformation lets us actually

remove this computation. 

Indeed, the Reverse( ) function is a direct

translation from an original system-level

description of the algorithm, which reuses spe-

cific functions. It can be avoided by adapting

the algorithm’s next step, DetectRoots( ),

through a dataflow transformation. Instead of

“image_out[x][y] = if (p > q)..” where p and q

are pixel elements produced by Reverse( ), we

can write “image_out = if (–p < –q)..” or
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Function
GaussBlur
(image_in : int[N][M]
 image_out : int[N][M])

Function
ComputeEdges
(image_in : int[N][M]
 image_out : int[N][M])

Function
DetectRoots
(image_in : int[N][M]
 image_out : int[N][M])

Figure 1. Initial cavity detection algorithm.



“image_out = if(c – p < c – q)..” where c = max-

val is a constant. So instead of performing the

Reverse( ) function and implementing the orig-

inal DetectRoots( ), we omit the Reverse( )

function and instead implement the code

shown in Figure 2 (next page).
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Figure A presents the code for the cavity detection
application we used to test our code transformation pro-
cedure. The complete cavity detection algorithm con-
tains additional functions, but for simplicity, we have left
them out of this figure.

The application’s first function is a horizontal and ver-
tical Gauss-blurring step, which replaces each pixel by a
weighted average of itself and its neighbors. 

The second function, ComputeEdges(), takes each

pixel and computes the difference between it and each
of its eight neighbors; it then replaces the pixel with the
maximum of these differences.

The last function, DetectRoots(), reverses the image.
To do this, it computes the maximum value of the image
and replaces each pixel with the difference between this
maximum value and itself. Then, for each pixel, we look
at whether any neighboring pixel is larger. If this is the
case, the output pixel is false; otherwise it is true.

The cavity detection test vehicle

void GaussBlur (unsigned char image_in[N][M], unsigned char gxy[N][M]) {

// Perform horizontal horizontal and vertical gauss blurring on each pixel

unsigned char gx[N][M];

for (y=0; y<M; ++y)
for (x=0; x<N; ++x)

gx[x][y] = … // Apply horizontal gauss blurring

for (y=0; y<M; ++y)
for (x=0; x<N; ++x)

gxy[x][y] = … // Apply vertical gauss blurring

void ComputeEdges (unsigned char gxy[N][M], unsigned char ce[N][M]) {

// Replace every pixel with the maximum difference with its neighbors

for (y=0; y<M; ++y)
for (x=0; x<N; ++x)

ce[x][y] = … // Replace pixel with the maximum

// difference with its neighbors

void Reverse (unsigned char ce[N][M], unsigned ce_rev[N][M]) {

// Search for the maximum value that occurs : maxval

for (y=0; y<M; ++y)
for (x=0; x<N; ++x)

maxval = … // Compute maximum value

// Subtract every pixel value from this maximum value

for (y=0; y<M; ++y)
for (x=0; x<N; ++x)

ce_rev[x][y] = maxval ce[x][y];

void DetectRoots (unsigned char ce[N][M], unsigned char image_out[N][M]) {

unsigned char ce_rev[N][M];

// Reverse image

Reverse (ce, ce_rev);

// image_out[x][y] is true if no neighbors are bigger than ce_rev[x][y]

for (y=0; y<M; ++y)
for (x=0; x<N; ++x)

image_out[x][y] = … // Is true if no neighbors are

// bigger than current pixel

void main(){

unsigned char image_in[N][M], gxy[N][M], ce[N][M], image_out[N][M];

// … (read image)

GaussBlur(image_in, gxy);

ComputeEdges(gxy, ce);

DetectRoots (ce, image_out);

Figure A. Pseudocode for cavity detection application.



Global loop transformations. The loop trans-

formations of our methodology are relatively

conventional, but we apply them far more glob-

ally than is conventional—over all relevant loop

nests. Our more far-reaching approach is crucial

to optimizing the global data transfers. Thus, the

steering guidelines for our procedure clearly dif-

fer from the traditional compiler approach. 

In our example, we first apply a global y-loop

folding and merging transformation. Figure 3

shows the resulting computational flow, a line-

based pipelining scheme. This is possible

because, after the dataflow transformations, all

the algorithm’s computations are neighbor-

hood computations. The code, from which

we’ve omitted conditions on y to reduce the

example’s complexity, is now as shown in

Figure 4.

We can apply a similar global loop-folding

and merging transformation to the x loops too.

Indeed, to perform the ComputeEdges( ) func-

tion on pixel (x, y), we don’t have to wait until

GaussBlur( ) has been performed on line y + 1

as a whole. In fact, ComputeEdges(x,y) can be

executed right after GaussBlur(x+1,y+1) has

been executed. This further increases the

code’s locality, and thus the possibilities for

compile-time data reuse (not determined by

the hardware cache controller). As a result, the

computations are now performed according to

a fine-grained (pixel-based) pipelining scheme

(see Figure 5). The code is as shown in Figure

6, again omitting conditions on x and y.

The result of these transformations is a great-

ly improved locality, which the data reuse and

in-place mapping steps exploit to reduce the

application’s storage and bandwidth require-

ments. We need only three line buffers per

function for the intermediate memory between

the algorithm’s different steps; the initial version

needed frame memories between the func-

tions. In-place mapping further reduces this

requirement to two line buffers per function.

Figure 7 (page 76) shows the final results for the

cavity detection application. The transfer

results are largely platform independent, but
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void cav_detect (unsigned char image_in[N][M], unsigned char image_out[N][M]) {

for (y=0; y<M; ++y)
for (x=0; x<N; ++x)

gx[x][y] = … // Apply horizontal gauss blurring

for (y=0; y<M; ++y)
for (x=0; x<N; ++x)

gxy[x][y] = // Apply vertical gauss blurring

for (y=0; y<M; ++y)
for (x=0; x<N; ++x)

ce[x][y] = … // Replace pixel with the maximum

// difference with its neighbors

for (y=0; y<M; ++y)
for (x=0; x<N; ++x)

image_out[x][y] = // Is true if no neighbors are

// smaller than current pixel

}

Figure 2. Code for cavity detection algorithm after preprocessing and global dataflow

transformations.

GaussBlur

y

y −2

y −1

y

ComputeEdges

y −1

y+1

y −3

y −2

y −1

DetectRoots

Figure 3. Computational flow for cavity detection algorithm after y-loop transformation.



the execution time is instantiated for a Pentium

II platform. However, we have obtained similar

relative improvement factors on many other

processors as well.2

Code-rewriting techniques to
improve data reuse

An efficiently used memory hierarchy is of

primary importance in optimizing data transfer

and storage. To exploit such a memory hierar-

chy, the code to be mapped should expose

maximal data reuse possibilities. To achieve

this, the loop and dataflow transformations of

our preprocessing step are essential, because

they significantly improve the code’s overall

regularity and access locality. This is beneficial

on its own, but achieving this regularity and

locality also enables our script’s next step, the

data reuse step, which even further reduces

transfers to the large background memories.

During this step, we add hierarchical data reuse

copies to the code, exposing the different lev-

els of reuse that are inherently present (but not

directly visible) in the transformed code. 

This step of our procedure is clearly distinct

from the conventional approach, where the

hardware cache control determines the size

and timing of these copies based on the avail-
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void cav_detect (unsigned char in_image[N][M], unsigned char out_image[N][M])

{

for (y=0; y<M+3; ++y)
for (x=0; x<N; ++x)

gx[x][y] = … // Apply horizontal gauss blurring

for (x=0; x<N; ++x)
gxy[x][y–1] = … // Apply vertical gauss blurring

for (x=0; x<N; ++x)
ce[x][y–2] = … // Replace pixel with the maximun

// difference with its neighbors

for (x=0; x<N; ++x)
image_out[x][y–3] = … // Is true if no neighbors are smaller

// than this pixel

}

Figure 4. Cavity detection algorithm following y-loop transformation.

y

DetectRoots

y−1 y−1
y

y−2
Neighboring pixels

Incoming pixel

y+1

. . .
Computation

ComputeEdges

Figure 5. Flow for cavity detection algorithm after x-loop transformation.

void cav_detect (unsigned char in_image[N][M], unsigned char out_image[N][M]) {

for (y=0; y<M+3; ++y)
for (x=0; x<N+2; ++x) {

gx[x][y] = … // Apply horizontal gauss blurring

gxy[x][y–1] = … // Apply vertical gauss blurring

ce[x–1][y–2] = … // Replace pixel with the maximum

// difference with its neighbors

image_out[x–2][y–3] = // Is true if no neighbors

// are smaller than this pixel

}

}

Figure 6. Cavity detection algorithm after x-loop transformation.



able locality of access. In our approach, a

global exploration of the data reuse copies is

performed to globally optimize the size and

timing of the copies in the code. A custom

memory hierarchy can then be designed on

which these copies can be mapped very effi-

ciently.13 However, even for a predefined

memory hierarchy, as typically present in pro-

grammable processors, the newly derived

code from this step implicitly steers the data

reuse decisions and still greatly benefits sys-

tem bus load, system power budget, and

cache miss behavior.14

Adding hierarchical data reuse copies
Let’s take a simple example first, one that is

already the result of loop transformations:

for (i=0; i<N; ++i)
for (j=0; j<=N–L; ++j) {

b[i][j] = 0;

for (k=0; k<L; ++k)
b[i][j] += a[i][j+k];

}

When executed on a processor with a small

cache, this code would perform far better than

the initial code. To map the code on a custom

memory hierarchy, however, we must know the

optimal size of the hierarchy’s different levels.

To this end, we add signal copies (buffers) to

the code to make the data reuse explicit. This

results in the following code, omitting the ini-

tialization for simplicity:

int a_buf[L];

int b_buf;

for (i=0; i<N; ++i)
{initialize a_buf}

for (j=0; j<=N–L; ++j) {
b_buf = 0;

a_buf[(j+L–1)%L] = 

a[i][j+L–1];

for (k=0; k<L; ++k)
b_buf += a_buf[(j+k)%L];

b[i][j] = b_buf;

}

This code contains two data reuse buffers:

■ a_buf [] (L words), for the a [] [] signals and

■ b_buf (1 word), for the b [] [] signals

In general, more than one level of data reuse

buffers is possible for each signal. We have

developed a formal methodology13 that

arranges all possible buffers in a tree. For each

signal, such a tree is generated, and an optimal

alternative is selected.

Cavity detection illustration
Let’s return to the cavity detector, taking the

code from the stage when the dataflow and

loop transformations we described earlier have

introduced more locality and possibilities for

data reuse. 

From Figures 3 and 5, which illustrate the

effect of global loop transformations, we can

identify two levels of data reuse: line buffers

and pixel buffers. As explained earlier, we now

insert explicit buffers into the code to optimal-

ly exploit the potential data reuse.

Line buffers. For each function, we can imple-

ment a buffer of three lines, such that the line

being processed is stored with the previous line

and the next line:
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Figure 7. Results for cavity detection application.



■ The horizontal gauss blurring is done on an

incoming pixel, and the result is stored in

buffer gauss_x_lines[][].

■ Next, the vertical gauss blurring is performed

on one pixel in this buffer, and the result is

stored in gauss_xy_lines[][].

■ Then ComputeEdges( ) can be executed in

gauss_xy_lines[][], the result of which is

stored in comp_edge_lines[][].

■ Finally, DetectRoots( ) is executed in

comp_edge_lines[][], and the resulting

pixel is stored in the output image.

The resulting code is quite complex after the

insertion of all necessary preambles and post-

ambles or conditions; therefore, Figure 8 gives

only the code for the heart of the loop nest.

Pixel buffers. In Figure 5, we can also identify

a second level of data reuse—the pixels in the

neighborhood of the pixel being processed:

■ For horizontal gauss blurring, the algorithm

can implement a buffer of three pixels

called in_pixels[], storing the last used val-

ues of the incoming image.

■ For vertical gauss blurring, no such buffer is

possible. However, the output of this step is

stored into three-by-three pixel buffer

gauss_xy_pixels[][].

■ This buffer is used in ComputeEdges( ), and

the result of that step is again stored in a

three-by-three buffer, comp_edge_pixels[][].

■ Finally, DetectRoots( ) is performed on this

buffer, and the result is stored in the output

image.

Omitting initializations, preambles, and

postambles, the final code is as shown in

Figure 9 (next page).

Results. We processed the different versions

of the cavity detection code presented so far,

with our Atomium access counting tool; Table

1 presents our results. The final version is far

better suited for mapping onto a custom mem-

ory hierarchy. Vandecappelle and colleagues15

discuss tools that can help produce such a cus-

tomized memory organization based on given

specifications.

Parallelism: choosing between 
task and data levels

Parallelization is a standard way to improve

the performance of a system when a single

processor cannot do the job. However, the best

way to parallelize a system is not obvious,

because many possibilities exist, and they can

differ greatly in performance. The same is true

for the impact of parallelization on data storage

and transfers. Most of the research effort in this

area addresses the problem of parallelization

and processor partitioning.4,16 However, these

approaches do not take into account the back-

ground storage-related cost when applied to

data-dominated applications; they optimize
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void cav_detect unsigned char image_in[M][N],

unsigned char image_out[M][N])

{

unsigned char gauss_x_lines[3][N];

unsigned char gauss_xy_lines[3][N];

unsigned char comp_edge_lines[3][N];

for (y=0; y<M+3; ++y) {
for (x=0; x<N+2; ++x) {

gauss_x_lines[y % 3][x] = … // Apply horizontal gauss blurring

gauss_xy_lines[(y–1) % 3][x] = … // Apply vertical gauss blurring

comp_edge_lines[(y–2) % 3][x–1] = … // Replace with the maximum

// difference with neighbors

image_out[y–3][x–2] = … // Is true if no neighbors

// are smaller than

// comp_edge_lines[(y–3) % 3][x–2];

}

}

}

Figure 8. Cavity detection algorithm after implementation of line buffers. 



only speed, not power or memory size. More

recent methods17 usually consider data com-

munication between processors, but they use

an abstract model—a virtual processor grid,

which has no relation with the final number of

processors and memories. Our group described

a first approach to more global memory opti-

mization in the context of parallel processors;18,19

we showed that extensive loop reorganization

must be applied before parallelization.

Here, we focus on the parallelization itself;

in another article, we discuss the effect of code

transformations on processor partitioning in a

hardware-software codesign context.20 The two

major types of parallelism are task and data. In

task parallelism, we assign an application’s dif-

ferent subsystems to different processors. In

data parallelism, each processor executes the

entire algorithm, but only on a part of the data.

In addition, hybrid task-data parallel alterna-

tives are possible. When data transfer and stor-

age optimization is an issue, even more

attention must be paid to the way the algorithm

is parallelized. We present two examples to

illustrate this point:

■ The cavity detection algorithm, the medical

image-processing application we discussed

earlier in this article; and

■ Quadtree Structured Difference Pulse Code

Modulation (QSDPCM), an algorithm for

video compression.

Cavity detection
Now let’s look at some ways to parallelize

the cavity detection algorithm, assuming we

need a speedup of about 3. In practice, most

image-processing algorithms do not require

large speedups, so this is more realistic than

massive speedup. We parallelize two versions

of the algorithm (initial and globally optimized)

in two ways: first using task parallelization, and

then using data parallelization.

Initial algorithm. Applying algorithmic paral-
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void cav_detect (unsigned char image_in[M][N],

unsigned char image_out[M][N])

{

unsigned char gauss_x_lines[3][N];

unsigned char gauss_xy_lines[3][N];

unsigned char comp_edge_lines[3][N];

unsigned char in_pixels[3];

unsigned char gauss_xy_pixels[3][3];

unsigned char comp_edge_pixels[3][3];

for (y=0; y<M+3; ++y) {
for (x=0; x<N+3; ++x) {

in_pixels[x % 3] = image_in[y][x];

gauss_x_lines[y % 3][x–1] = … // Apply horizontal gauss blurring

gauss_xy_pixels[(y–1) % 3][(x–1) % 3]

= gauss_xy_lines[(y–1) % 3][x–1] = …
// Apply vertical gauss blurring

comp_edge_pixels[(y–2) % 3][(x–2) % 3]

= comp_edge_lines[(y–2) % 3][x–2] = …
// Replace with the maximum difference with 

neighbors

image_out[y–3][x–3] = …// Is true if no neighbors are smaller than

// comp_edge_pixels[(y–3) % 3][(x–3) % 3];

}

}

}

Figure 9. Cavity detection algorithm after implementation of  pixel buffers.

Table 1. Results of loop and data-reuse transformations for cavity detection

application. Trafo 1 is loop transformations + line buffer reuse; Trafo 2 is loop

transformations + line pixel buffer reuse.

Access to

Code version images Line buffers Pixel buffers

Initial 84,954,834 0 0

Trafo 1 5,229,068 29,346,281 0

Trafo 2 2,618,880 11,787,272 37,208,041



lelization to the initial algorithm leads to a

coarse-grained pipelining solution (at the level

of the image frames). This works well for load

balancing on a three-processor system, but it is

clearly unacceptable if we have efficient mem-

ory management in mind. Data parallelism is a

better choice. Neglecting some border effects,

the cavity detection algorithm lends itself very

well to this kind of parallelism, as there are only

neighbor-to-neighbor dependencies. Thus,

each processor can work more or less inde-

pendently from the others except at the bound-

aries, where some idle synchronization and

transfer cycles occur. Each processor still needs

two frame buffers, but now these buffers are

only one-third of a frame. So the data-parallel

solution requires the same amount of buffers as

the monoprocessor solution.

Globally optimized algorithm. In this case,

applying algorithmic parallelization involves

assigning each step of the algorithm to a different

processor, but now we arrive at a fine-grained

pipelining solution. Processor 1 has a buffer of

two lines: y – 1 and y. Line y + 1 enters the proces-

sor as a scalar stream; the GaussBlur-step can be

performed synchronously on line y, the result of

which can be sent to the second processor as a

scalar stream. Processor 2 can concurrently (and

synchronously) apply the ComputeEdges step to

line y – 1, and so on. Hence, we need only a

buffer of two lines per processor, or six in total.

This is the same number of buffers that we need-

ed for the monoprocessor case. Thus, we have

improved performance without sacrificing stor-

age and transfer overhead (which translates to

area and power overhead).

When we use data parallelism with the glob-

ally optimized version, we need six FIFO line

buffers per processor, or 18 total. Buffer length

depends on the way we partition the image. If

we use row-wise partitioning (the first proces-

sor processes the upper third of the image and

so on), the 18 buffers are the same size as in the

monoprocessor case. Column-wise partitioning

yields better results: We still need 18 buffers, but

their length is only a third of a line. Because the

access is not FIFO compatible, the buffers must

be organized as SRAMs, which are far more

expensive than FIFO buffers. 

Table 2 summarizes the results. The algo-

rithmically parallelized version was the optimal

solution here. Its load balancing is less ideal

than that of the data-parallel version, but it is

important to trade off performance and DTS

exploration. For example, avoiding a 32-Kbit

buffer by using an extra processor would be

advantageous even if this processor were idle

90% of the time (a very bad load balance),

because the cost of this extra processor in terms

of area and power is less than the cost of a 32-

Kbit on-chip memory.

ELSEWHERE, WE INCLUDE a more elaborate

demonstration of parallelization, using QSD-

PCM for interframe video compression.18,19

Table 3 shows an overview of the results we

achieved. We obtained the estimated area and

power figures using a Motorola model.

(Because this model is proprietary, we give

only relative values in this article.) The rankings

for the different alternatives (initial and reor-

ganized) are clearly distinct. For the reorga-

nized description, the task-level-oriented

hybrids are better because this kind of parti-
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Table 2. Parallelization results, cavity detection application.

Algorithm Parallelism Frame Frame Line

version type memories transfers buffers

Initial Data 2 30 0

Initial Task 6 30 0

Transformed Data 0 0 6 SRAM

Transformed Task 0 0 6 FIFO

Table 3. Parallelization results, QSDPCM.

Algorithm version Partitioning Area Power

Initial Pure data 1 1

Pure task 0.92 1.33

Modified task 0.53 0.64

Hybrid 1 0.45 0.51

Hybrid 2 0.52 0.63

Reorganized Pure task 0.0041 0.0080

Modified task 0.0022 0.0040

Hybrid 1 0.0030 0.0050

Hybrid 2 0.0024 0.0045



tioning maintains the balance between double

buffers (in task-level partitioning) and repli-

cates of array signals with the same functional-

ity in different processors (in data-level parti-

tioning). However, optimal partitioning highly

depends on the number of the different sub-
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To automate the proposed loop transformations, we use
a polytope model.1,2 In this model, an n-dimensional poly-
tope geometrically represents each n-level loop nest.
Figure B gives an example, in which the loop nest at the
top is two-dimensional and has a triangular polytope rep-
resentation, because the inner loop bound is dependent
on the value of the outer loop index. The arrows in the fig-
ure represent data dependencies, and they indicate the
direction of the data flow. The order in which the iterations
are executed can be represented by an ordering vector,
which traverses the polytope.

To perform global loop transformations, we have
developed a two-phase approach. In the first phase, all
polytopes are placed in one common iteration space.
During this phase, the polytopes are merely considered
geometrical objects without execution semantics. In the
second phase, a global ordering vector is defined in this

global iteration space. Figure B gives an example of this
methodology. At the top, we see the initial specification
of a simple algorithm; at the bottom left, the polytopes of
this algorithm are placed in the common iteration space
in an optimal way; at the bottom right, an optimal order-
ing vector is defined and the corresponding code is
derived. We give more details in another work.3

Most existing loop transformation strategies work
directly on the code. Moreover, they typically work on
single loop nests, thereby omitting the global transfor-
mations that are crucial for storage and transfers. Many
of these techniques also consider the body of each loop
nest as one union;4 we have a polytope for each state-
ment, allowing more aggressive transformations. Affine-
by-statement techniques constitute an exception to this
distinction; these techniques transform each statement
separately. However, our two-phase approach allows a

still more global view vis-à-vis data transfer
and storage issues.
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A methodology for automating loop transformations
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j

A: (i: 1..N)::
     (j: 1 .. N-i+1)::
       a[i][j] = in[i][j] + a[i-1][j];

B: (p: 1..N)::
        b[p][1] = f( a[N-p+1][p], a[N-p][p] );

C: (k: 1..N)::
     (l: 1..k)::
       b[k][l+1] = g( b[k][l] );

k

l

p

i

j

p

k

l

for (j=1; j<=N; ++j) {
  for (i=1; i<=N-j+1; ++i)
    a[i][j] = in[i][j] + a[i-1][j];
  b[j][1] = f( a[N-j+1][j],
                  a[N-j][j] );
  for (l=1; l<=j; ++l)
    b[j][l+1] = g( b[j][l] );
}

i

j

l

Figure B. Example of loop transformation methodology that can

be automated.



modules of the application and on the number

of processors.

Regarding storage of the intermediate array

signals, the results of partitioning based on the

initial description reduce this memory size

when partitioning becomes more data orient-

ed. This is especially visible for the QSDPCM

algorithm. This size is smaller for the first hybrid

partitioning (245 Kbits), which is more data ori-

ented than the second hybrid partitioning (282

Kbits) and the task-level partitioning (287

Kbits). In terms of the number of memory

accesses to the intermediate signals, the situa-

tion is simpler. The number of accesses to these

signals always decreases as the partitioning

becomes more data oriented. ■
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