
System-level designers and electronic design

automation (EDA) researchers have paid con-

siderable attention to data memory issues

because of the memory subsystem’s significance

in determining such important design parame-

ters as area, power, and performance. Designers

have studied different approaches for the mem-

ory subsystem, ranging from the standard proces-

sor-memory hierarchy to fully customized

memory architectures targeted at a given appli-

cation. In the context of application-specific

design, interesting new memory-organization

optimization possibilities arise, no matter what

the selected architecture. In addition, the choice

of a suitable memory architecture itself forms an

important exploration phase that can also be par-

tially automated.

We discuss the associated optimization and

exploration techniques based on the memory

modules and architectures for application-spe-

cific systems surveyed in “Random Access Data

Storage Components in Customized Architec-

tures,” by L. Nachtergaele, F. Catthoor, and C.

Kulkarni (in this issue). These optimizations

depend on the memory architecture parameters

and are thus memory-platform dependent. Most

of these steps heavily benefit from the up-front

application of the source-to-source code trans-

formations discussed in “Code Transformations

for Data Transfer and Storage Exploration Pre-

processing in Multimedia Processors,” by F.

Catthoor and his colleaguess (also in this issue).

Memory data layout
The more familiar memory hierarchy con-

figuration features a processor core and one or

more data cache levels.1 In this model, most

optimizations performed by traditional com-

pilers are applicable. However, the advance

knowledge of the actual application to be exe-

cuted on the system lets us perform more
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In application-specific designs, customized

memory organization expands the search space

for cost-optimized solutions. Several optimization

strategies can be applied to embedded systems

with several different memory architectures: data

cache, scratch-pad memory, custom memory

architectures, and dynamic random-access

memory (DRAM).
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aggressive optimizations.2,3 An example is data

layout optimization, so named because the

entire application is statically known, and this

knowledge lets us more intelligently place data

structures in memory to improve the memory

performance. Compilers typically don’t per-

form such optimizations, because, for instance,

they cannot assume that the translation unit

under compilation represents the entire pro-

gram. Decisions on the best placement of data

cannot be made, because routines in a sepa-

rate translation unit (a different source file not

yet compiled) might access the same data in a

completely different pattern, invalidating the

previous analysis. However, in application-spe-

cific design, we can reasonably assume that the

entire application is available to us, so by ana-

lyzing the data access patterns, we can make

intelligent data-placement decisions.

Consider a direct-mapped cache of size C

words, where C = 2M, with an M-word cache line

size (that is, M consecutive words are fetched

from memory on a cache-read miss), and a

write-through cache with a fetch-on-miss poli-

cy.1 In this article, we address the layout of array

data because it typically occupies most of the

data space, and array accesses constitute most

of the data memory accesses. Scalar data lay-

out is addressed elsewhere.2

Suppose the code fragment in Figure 1a exe-

cutes on a processor with the above cache con-

figuration, where N is an exact power of 2, and

N > C. Assuming that a single array element

occupies one memory word, let array a begin at

memory location 0, b at N, and c at 2N. In a

direct-mapped cache, the cache line that would

contain a word located at memory address A is

given by (A mod C)/M. In the above example,

array element a[i] would be located at memo-

ry address i. Similarly, we have b[i] at N + i and

c[i] at 2N + i. Because N is a multiple of C, all of

a[i], b[i], and c[i] will map into the same cache

line, as Figure 1b shows. Consequently, every

data access results in a cache miss. 

Such memory access patterns result in

extremely inefficient cache utilization, especially

because many applications deal with arrays

whose dimensions are an exact power of two.

The cache misses lead to inferior designs, in

terms of both performance and energy con-

sumption. In such situations, increasing the

cache size is not an efficient solution, because

lack of capacity does not cause the cache miss-

es. There is only one active cache line during

one loop iteration. The conflict misses can be

avoided if the cache size C is made greater than

N, but increased cache size incurs an associated

penalty in area and access time. Reorganizing

the data in memory is a more elegant solution

that also keeps the cache size relatively small.

One way to prevent the thrashing caused by

excessive cache conflicts in the above example

is to introduce M dummy memory words

between two consecutive arrays that are

accessed in an identical pattern in the loops. In
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int   a[N], b[N], c[N]
…
for i in 0 to N 1
      c[i] = a[i] + b[i]
end for

(a) (b)
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Data cacheMemory
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a
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...a[n1] …b[n1] …c[n1]

Sum of tile sizes
= cache size

N NN
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Figure 1. A sample code fragment (a); cache conflicts: a[i]; b[i],

and c[i] map into the same cache line (b); data layout avoids

cache conflicts—insertion of dummy words between arrays (c);

and alternate data layout—tiles interleaved in memory (d).



other words, array a begins at 0, array b begins

at location N + M (instead of N), and array c

begins at 2N + 2M (instead of 2N), as Figure 1c

shows. This will ensure that a[i], b[i], and c[i]

are always mapped into different cache lines,

and that their accesses do not interfere with each

other in the data cache. The cache size can still

be small while maintaining efficient access.2

A different data layout approach to avoiding

the cache conflict problem is to split the initial

arrays into subarrays (or tiles) of equal size, as

Figure 1d shows. The tile size is chosen such

that the sum of the tile sizes of all arrays

involved in a loop does not exceed the data

cache size. The tiles are then merged in an

interleaved fashion to form one large array.

Because tiles of different arrays accessed in the

same loop iteration are adjacent in the data lay-

out, tile data never conflicts in the cache.4

In a more complex application with several

loop nests, both approaches outlined above

would need to be generalized to handle differ-

ent access patterns in different loops. The gen-

eralizations are discussed elsewhere.2,4 The

subarrays need not be of equal size, and this

extension leads to even better results.4

Scratch pad memory
Designers are not necessarily restricted to

the single memory architecture just discussed.

Because the design must execute only a single

application, we can try some unconventional

architectural variations that suit the specific

application under consideration, such as

scratch-pad memory.5

Problem formulation and illustration
Scratch-pad memory refers to data memory

residing on chip—that is, mapped into an

address space disjoint from the off-chip memory

but connected to the same address and data

buses. Both the cache and scratch-pad memory

(usually SRAM) allow fast access to their residing

data, whereas access to the off-chip memory

(usually DRAM) requires relatively longer access

times. The main difference between the scratch-

pad SRAM and data cache is that the SRAM guar-

antees a single-cycle access time, whereas access

to the cache is subject to cache misses. 

Scratch-pad memory is an important archi-

tectural consideration in modern embedded

systems, where advances in embedded DRAM

technology have made it possible to combine

DRAM and ordinary logic on the same chip.

Data stored in embedded DRAM can be

accessed far faster than in off-chip DRAM. A

related optimization problem arising in this

context is how to identify critical data in an

application, for storage in on-chip memory.

Figure 2 shows the data address space map-

ping for a sample addressable memory of size

N data words. Memory addresses 0 + (P – 1)

map into the on-chip scratch-pad memory and

have a single processor cycle access time.

Memory addresses P + (N – 1) map into the off-

chip DRAM, and the CPU accesses them

through the data cache. A cache hit for an

address in the range P + N – 1 results in a single-

cycle delay, whereas a cache miss, which leads

to a block transfer between off-chip and cache

memory, might result in a delay of, say, 10 to 20

processor cycles.

The example in Figure 3 shows the merit of

such an architectural variation. Procedure

CONV is the code kernel of the convolution

routine commonly used in imaging applica-

tions.

A small 4 × 4 matrix of coefficients (mask)

slides over the input image (source), covering

a different 4 × 4 region in each iteration of y, as

Figure 3 shows. In each iteration, the mask coef-

ficients combine with the region of the image

currently covered, to obtain a weighted aver-

age. The result (acc) is assigned to the pixel of

the output array (dest) in the center of the cov-

ered region.

We can avoid cache conflicts from accesses

to the dest array by using a write-through cache

with write-around (that is, no write allocate) pol-

icy, where memory writes do not interfere with

the cache in case of misses. However, if the two

source and mask arrays were to be accessed

through the data cache, cache conflicts would

affect the performance. Furthermore, an asso-

ciative cache, by itself, will not generally elimi-

nate the problem, because most practical

caches have a limited associativity. Typically,

the situation might require an associativity as

large as the number of conflicting arrays.

We can solve the conflict problem by stor-

Large Embedded Memories

58 IEEE Design & Test of Computers



ing the small mask array in the scratch-pad

memory. This assignment eliminates all con-

flicts in the data cache; the data cache is now

used for regular memory accesses to source.

Because the mask array is stored on chip, we

have ensured that the frequently accessed data

is never ejected off chip, thereby significantly

improving the memory access performance

and energy dissipation.5,6

Scratch-pad architecture exploration
Several different memory architectures

could be devised to efficiently exploit different

application-specific memory access patterns.

Even if we restrict the architecture’s scope to

those involving only on-chip memory, the

exploration space of possible configurations is

too large, making it infeasible to exhaustively

simulate the application’s performance and

energy characteristics for each configuration.

Thus, we need exploration tools for rapidly

evaluating the effect of several candidate archi-

tectures. Such tools can greatly assist a system

designer by giving fast initial feedback on a

wide range of memory architectures.

We illustrate a memory exploration strategy

by restricting the design space as follows: Given

a certain amount of on-chip memory space, par-

tition it appropriately into data cache and

scratch-pad memory to minimize the total access

time and energy dissipation, thus minimizing the

number of accesses to off-chip memory.

In our formulation, an on-chip memory

architecture is defined as a combination of

■ the total size of on-chip memory used for

data storage, and

■ the partitioning of this on-chip memory into

scratch-pad SRAM, characterized by its size;

and data cache, characterized by the cache

size and the cache line size.
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Figure 2. Division of data address space between scratch-pad

memory and off-chip memory.

# define N 128
# define M 4
# define NORM 16
int source[N][N], dest [N][N];
int mask [M][M];
int acc, i, j, x, y;
M
for (x = 0; x < N – M; x++)

for (y = 0; y < N – M; y++) {
acc = 0;
for (i = 0; i < M; i++)

for (j = 0; j < M; j++)
acc = acc + source[x+i][y+j] ∗ mask[i][j];

dest[x+M/2][y+M/2] = acc/NORM;
}
(a)

Figure 3. Procedure CONV (a); memory access pattern in CONV (b). Procedure CONV is the code kernel of the

convolution routine commonly used in imaging applications.

Mask Source Mask Source 

Iteration: x = 0, y = 0 Iteration: x = 0, y = 1

(b)



Figure 4 summarizes the basic algorithm for

memory architecture exploration.6

For each candidate on-chip memory size T

(loop L1), we consider different divisions of T

(loop L2) into cache (size C) and scratch-pad

SRAM (size S = T – C), selecting only powers of

2 for C. Procedure DataPartition is based on a
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Algorithm MemExplore
L1: for on-chip memory size T (in powers of 2)

L2: for cache size C (in powers of 2, < T )
SRAM Size S = T – C
DataPartition(S)
L3: for line size L (in powers of 2, < C; < MaxLine)

Estimate Memory Performance
Select (C; L) that maximizes performance

Figure 4. Memory architecture exploration.
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Figure A. Histogram example: variation of memory performance

with different mixes of cache and scratch-pad memory, for total

on-chip memory of 2 Kbytes (1); variation of memory

performance with total on-chip memory space (2).

Scratch pad exploration
Figure A1 illustrates a slice of the memo-

ry exploration technique on the Histogram
example, comparing the estimated memory
performance for different divisions of a fixed
total on-chip memory space of 2 Kbytes into
data cache and scratch-pad memory
against the simulated performance. The
Histogram1 routine reads every pixel in an
image and constructs a histogram of the pix-
els’ brightness levels. The memory cycles
plotted correspond to one iteration of the
outer L2 loop of MemExplore, where the best
cache line size (from loop L3 ) is selected for
each candidate cache size. For each select-
ed cache size, the corresponding scratch-
pad SRAM size is given by a 2-Kbyte cache
size. The points on the left and right
extremes represent the divisions’ incurring
severe cache conflicts (when the cache size
is 2,048 bytes, the SRAM size is 0, causing
unavoidable conflicts in the cache). The esti-
mation process gives the best division of the
2-Kbyte space as a 1-Kbyte cache plus a 1-
Kbyte scratch-pad memory. This selection is
validated with the actual simulation results,
as Figure A1 shows.

Figure A2 shows the variation of the
memory performance with the total on-chip
memory space for the histogram example.
The y-axis shows the best performance
obtained by any architecture (divided into
scratch-pad memory and cache, as well as
selected cache line size) for a given total
on-chip memory space (one iteration of the
outer loop L1 in MemExplore.) For a given
application, the variation of the memory per-
formance with the total on-chip memory is



technique for partitioning program variables

into scratch-pad memory and cache.5 Scalar

and array data, identified as most critical, are

assigned to the SRAM, on the basis of data size,

memory access frequency, and the possibility

of cache conflicts. For the data assigned for

storage in off-chip memory (and accessed

through the cache), we estimate the memory

access performance by combining an analysis

of both the array access patterns in the appli-

cation and an approximate model of the cache

behavior. See the “Scratch pad exploration”

sidebar for an illustration. 

The estimation gives us the expected number

of processor cycles required for all the memory

accesses in the application. For each T, we select

the (C, L) pair estimated to maximize perfor-

mance. Finally, we assign the variables’ memo-

ry address using the cache and SRAM

parameters selected via the algorithms.5 Shieu et

al. discuss an extension of the architectural

exploration to include energy consumption.7

Custom memory architecture
exploration

In many cases, a fully customized memory

architecture can yield performance and power

characteristics superior to a cache-based archi-

tecture—for example, when significant data

parallelism is available.

A custom memory organization can poten-

tially and significantly reduce the system cost.

However, achieving these cost reductions, espe-

cially manually, is not trivial. Designing a custom

memory architecture means deciding how many

memories to use and of which type (single-port,

dual-port, and so on). Additionally, the memory

accesses must be ordered in time to meet the

real-time constraints (the cycle budget). Finally,

each array must be assigned to a memory, so that

arrays can be accessed in parallel as required to

meet the real-time constraints.8

Memory access ordering and conflict
graphs

The memory bandwidth requirement can be

modeled as a conflict graph derived from mem-

ory access ordering, as Figure 5 shows. Its nodes

represent the application’s arrays, and its edges

connect arrays accessed in parallel. The graph

models the constraints on the memory archi-
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generated as feedback to the designer. The
designer can then select an appropriate
total on-chip memory size, based on the
value beyond which no significant improve-
ment is predicted. In Figure A2, the total
size of 2 Kbytes is a good selection, as we
observe very little improvement in cycle time
beyond this cache size.

The most important advantage of the
exploration strategy is that candidate archi-
tectures can be very rapidly evaluated for
their memory performance. The estimation-
based exploration requires only a few sec-
onds, which was about three orders of
magnitude times faster than the simulation
of the memory performance for the same set
of architectures explored. This estimation
capability is vital in the initial stages of sys-
tem design, in which the number of possible
architectures is too many and a simulation
of each architecture prohibitively expensive.

Reference
1. P.R. Panda, N.D. Dutt, and A. Nicolau, “On-Chip

vs. Off-Chip Memory: The Data Partitioning

Problem in Embedded Processor-Based

Systems,” ACM Trans. Design Automation of

Electronic Systems, vol. 5, no. 3, July 2000, pp.

682-704.
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Figure 5. A conflict graph corresponding to ordered memory

accesses and a possible memory organization obeying the
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tecture. In the example in Figure 5, array A can-

not be stored in the same single-port memory as

any other array; it conflicts with them. However,

there is no edge between B and D, so these two

arrays can be stored in the same memory. To

support multiport memories, this model must be

extended with hyperedges.8,9

From the conflict graph, we can estimate the

cost of the memory bandwidth required by the

specified ordering of the memory accesses.

Three main components contribute to cost:

■ Two accesses to the same array occurring in

parallel indicates a self-conflict, a loop in the

conflict graph. Such a self-conflict forces a

two-ported memory in the memory archi-

tecture. Two- and multiported memories are

far more costly; therefore, self-conflicts carry

a heavy weight in the cost function.

■ In the absence of self-conflicts, the conflict

graph’s chromatic number indicates the min-

imal number of single-port memories

required to provide the necessary bandwidth.

For example, in Figure 5, the graph’s chro-

matic number is three: for example, A, B, and

C need three different colors to color the

graph. That also means a minimum of three

single-port memories is required, even though

three accesses never occur in parallel. More

memories make the design potentially more

costly; therefore, the conflict graph’s chro-

matic number is the second cost component.

■ Finally, the more conflicts in the conflict

graph, the more costly the graph is. Indeed,

every conflict subtracts some freedom for

assigning arrays to memories. In addition,

not every conflict carries the same weight.

For instance, a conflict between a very

small, heavily accessed array and a very

large, lightly accessed array is not so costly,

because it is energy efficient to divide these

two over different memories. A conflict

between two arrays of similar size, however,

is fairly costly because the two cannot be

stored in the same memory, and potentially

must be combined with other arrays, which

do not match very well.

This abstract cost model lets us evaluate and

explore the ordering of memory accesses with-

out yet detailing a memory architecture. Indeed,

the latter is in itself a complex task, so combin-

ing the two is not feasible. The conflict graph is

heavily influenced by the access ordering, and

tool support is crucial to perform this tedious,

error-prone task. Wuytack et al. have described

efficient techniques based on this approach.9

Another approach focuses on periodic streams.10

Memory allocation and assignment
In custom memory architecture, the design-

er can choose memory parameters such as the

number, size, and number of ports. This deci-

sion, which considers the constraints derived

above, is the focus of the memory allocation

and assignment step. We can subdivide the

problem into two subproblems. First, memories

must be allocated. Several memories are cho-

sen from the available memory types and the

different port configurations; possibly, different

types are intermixed, and some memories

might be multiported. The dimensions of the

memories are, however, determined only in the

second stage. When arrays are assigned to

memories, their sizes can be added up and the

maximal bit width taken to determine the mem-

ory’s required size and bit width. With this deci-

sion, the memory organization is fully

determined. Our assumption for this discussion

is an optimal assignment.

Allocating more or fewer memories affects

the chip area and the memory architecture’s

energy consumption. Large memories con-

sume more energy per access than small mem-

ories, because of the longer word and bit lines.

Therefore, the energy consumed by a single

large memory containing all the data is far larg-

er than when the data is distributed over sever-

al smaller memories. Also, the area of the

one-memory solution is often higher when dif-

ferent arrays have different bit widths. For

example, when a 6-bit and an 8-bit array are

stored in the same memory, two bits are

unused for every 6-bit word. Storing the arrays

in different memories, one 6 bits wide and the

other 8 bits wide, can avoid this overhead.

At the other end of the spectrum is storing all

the arrays in different memories. This also leads

to relatively high energy consumption, because

the external global interconnection lines con-
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necting all these (small) memories with each

other and with the data paths become a signif-

icant energy drain. Likewise, the area occupied

by the memory system expands because of the

interconnections, fixed address decoding, and

other overhead per memory.

The interesting memory allocations lie some-

where between these two extremes. The area

and the energy function reach a minimum

somewhere, but at different points. The useful

exploration region to trade off area with ener-

gy consumption lies between the two minima,

as Figure 6 shows. The chromatic number of

the ECG and the number of signals bound the

useful range. The area curve contains a mini-

mum between these extremes, due to bit waste

(relating to the memory space “lost” by a mis-

match between the required variable size and

the allocated memory width) and the periph-

eral overhead. The energy also exhibits a simi-

lar minimum but at larger memory counts

because of the overhead either of too-large

memories (storing several data and hence

requiring longer internal lines) or of the inter-

memory interconnect.

The cost of memory organization depends

on memory allocation and the assignment of

arrays to the memories. When several memo-

ries are available, we have many ways to assign

arrays to them. In addition to the conflict cost

mentioned earlier, the optimal assignment of

arrays to memories depends on the memories

used. For example, the energy consumption of

some memories is very sensitive to their size; for

others, it is not. In the former case, it might be

advantageous to accept some wasted bits to

keep the heavily accessed memories very

small; in the latter, the reverse might be true. To

find a near-optimal signal-to-memory assign-

ment, we must consider many possibilities, and

an indispensable tool for this step is one based

on a good memory library. Although early work

in this area focused on stream-based applica-

tions,11 general-purpose CAD techniques have

more recently been proposed to implement this

assignment based on the ECG.8

Both the memory allocation and the signal-

to-memory assignment must consider the con-

straints generated to meet the real-time

requirements. Memory allocation requires a

certain minimum number of memories. This

minimum is derived from the conflict graph’s

chromatic number. For the signal-to-memory

assignment, conflicting arrays cannot be

assigned to the same memory. When there is a

conflict between two arrays, which in the opti-

mal assignment are stored in the same memo-

ry, we must make a less-efficient assignment.

Thus, more conflicts make the memory organi-

zation potentially more expensive.

Reducing memory size
requirements

One important memory-related optimization

in system design is the reduction in the data-

memory size requirements for an application.

We can sometimes affect this optimization by

reducing the actual allocated space for tempo-

rary arrays. We accomplish this reduction by

mapping, in place, different sections of the log-

ical array into the same physical memory space

when the lifetimes of these sections are

nonoverlapping.8

To illustrate in-place mapping, an example

routine performs autocorrelation in a linear pre-

diction coding vocoder. Figure 7 (next page)

shows the initial algorithm. Two signals are

responsible for most of the memory accesses

and are dominant in size, namely ac_inter[]

and Hamwind[], consisting of 26,400 and 2,400

integer elements. The loop nest has nonrec-

tangular access patterns dominated by access-

es to the temporary variable ac_inter[]. So,

reducing power requires reducing the number
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of memory accesses to ac_inter[]. This is pos-

sible only by first reducing the size of ac_inter[]

and placing this signal in a local memory.

Because ac_inter[] depends only on two of

its earlier values, only three (earlier) integer val-

ues need be stored for computing each auto-

correlated value. Thus, performing intrasignal

in-place data mapping, as shown in Figure 8

can dramatically reduce the signal’s size from

26,400 to 33 integer elements. 

AutoCorr[] is a temporary signal. Reusing the

memory space of ac_inter[] for storing

AutoCorr[] can further reduce the total required

memory space. We achieve this by intersignal in-

place mapping of array AutoCorr[] on ac_inter[].

Thus, initially, because of the signal’s large size,

ac_inter[] could not be accommodated in the

on-chip local memory, but we’ve eliminated this

problem, achieving reductions in both memory

size and associated power consumption. 

To explore the many in-place mapping oppor-

tunities here required CAD techniques (see the

summary of early IMEC work8 and also more

recent work12). The development of high-level in-

place estimates for steering the (platform-inde-

pendent) system-level code transformations has

also been addressed.13

Synthesis with DRAMs
Applications involving large amounts of data

traditionally needed to store the data in off-chip

DRAM because DRAMs required a different fab-

rication process. However, embedded DRAM

technology lets you integrate DRAM blocks on

the same chip as the rest of the application, free-

ing you from the constraints of a fixed DRAM

architecture and protocol. If the DRAM is embed-

ded on chip, then the pin count constraints that

limit the number of address and data buses on

the DRAM disappear. Thus, parallel access to the

core storage is now possible, thereby significant-

ly improving memory access performance.

Parallel access also significantly reduces power

consumption because memory accesses now

involve on-chip data, instead of off-chip bus,

transfers. The DRAM’s internal architecture is

now visible to the application, which can use the

knowledge in ways not previously possible.

The DRAM memory address is internally

split into a row address consisting of the most

significant bits and a column address consist-

ing of the least significant bits. The row address

selects a page from the core storage; the col-

umn address selects an offset within the page

to arrive at the desired word. When an address

is presented to the memory during a read oper-

ation, the entire page addressed by the row

address is read into the page buffer, in antici-

pation of spatial locality. If future accesses are

made to the same page, there’s no need to

access the main storage area, because it can

just be read off the page buffer, which acts like

a cache. Thus, subsequent accesses to the

same page are very fast. Incorporating this

knowledge into an automatic synthesis tool

requires modifying traditional synthesis mod-

els.2,14 (See the “Modeling of DRAM access for

synthesis” sidebar for a discussion of related

modeling issues.) 

The presence of embedded DRAMs adds

several dimensions to traditional architecture

Large Embedded Memories

64 IEEE Design & Test of Computers

for(i6=0;i6<11;i6++) {
ac_inter[i6][i6%3] = Hamwind[O] ∗ Hamwind[i6];
ac_inter[i6][(i6+1)%3] = Hamwind[1] ∗ Hamwind[i6];
for(i7=(i6+2);i7∗< 2400;i7++)

ac_inter[i6][i7%3] = ac_inter[i6][(i7–1)%3] +
ac_inter[i6][(i7–2)%31 + (Hamwind[i7–i6] ∗ Hamwind[i7]);

}

for(i8=0;i8<10;i8++) {
v[O][i8] = ac_inter[i8+][2]; /∗ 2399 % 3 = 2 ∗ /
u[O][i8] = ac_inter[i8][2];

}

Figure 8. Intrasignal and intersignal in-place data mapping to

reduce required storage size.

for(i6=0;i6<11;i6++) {
ac_inter[i6][i6] = Hamwind[O] ∗ Hamwind[i6];
ac_inter[i6][i6+1] = Hamwind[l] ∗ Hamwind[i6+1];
for(i7=(i6+2);i7<2400;i7++)

ac_inter[i6][i7] = ac_inter[i6][i7–1] +
ac_inter[i6][i7–2] + (Hamwind[i7–i6] ∗ Hamwind[i7]);

AutoCorr[i6] = ac_inter[i6][23991];
}

for(i8=0;i8<10;i8++) {
v[0][i8] = AutoCorr[i8+1];
u[O][i8] = AutoCorr[i8];

}

Figure 7. Initial algorithm for autocorrelation in a linear prediction

coding vocoder.
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Figure B1 shows a simplified timing diagram of the
read cycle of the 1M 64-bit IBM11T1645LP extended
data-out (EDO) DRAM. The memory read cycle is initiat-
ed by the falling edge of the row address strobe (RAS)
signal, at which time the row address is latched from the
address bus. The column address is latched at the

falling edge of the column address strobe (CAS) signal,
which should occur at least Tras = 45 ns later. Following
this, the data is available on the data bus after Tcas = 15
ns. Finally, the RAS signal is held high for at least Tp = 45
ns to allow for bit-line precharge, which is necessary
before the next memory cycle can be initiated.

To use the above informa-
tion in an automated schedul-
ing tool, we need to abstract a
set of control dataflow graph
(CDFG) nodes from the timing
diagram.1 The CDFG node
cluster for the memory read
operation consists of three
stages (Figure B2): row
decode; column decode; and
precharge. The row and col-
umn addresses are available
at the first and second stages,
respectively, and the output
data is available at the begin-
ning of the third stage.

Assuming a clock cycle of
15 ns, and a 1-cycle delay for
the addition and shift opera-
tions, we can derive the sched-
ule shown in Figure B4 for the
code in Figure B3, using the
memory read model in Figure
B2. Because the four access-
es to array b are treated as
four independent memory
reads, each of these incurs the
entire read cycle delay of Trc =
105 ns (7 cycles), requiring a
total of 7 4 = 28 cycles.

However, DRAM features
such as page mode read can
be efficiently exploited to gen-
erate a far tighter schedule for
behaviors such as the
FindAverage example, which
successively access data in
the same page. Figure B5
shows the timing diagram for
the page mode read cycle,

Modeling of DRAM access for synthesis

continued on p. 66
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Figure B. Timing diagram for memory read cycle (1); model for memory read

operation (2); code for the FindAverage routine (3); treating the memory

accesses as independent reads (4); timing diagram of page mode read cycle

(5); and treating the memory accesses as one page mode read cycle (6).



exploration. One interesting aspect of DRAM

architecture that can be customized for an

application is the banking structure. Figure 9a

shows a common problem with the single-bank

DRAM architecture. If we have a loop that suc-

cessively accesses data from three large arrays

A, B, and C, each of which is much larger than

a page, then each memory access leads to a

fresh page being read from storage, effectively

canceling the page buffer’s benefits.

The page buffer interference problem

described here cannot be escaped with a fixed-

architecture DRAM. However, an elegant solu-

tion to the problem results if we customize the

DRAM’s banking configuration for our applica-

tion. Thus, in our example, the arrays can be

assigned to separate banks, as Figure 9b shows.

Because each bank has its own private page

buffer, there is no interference between the

arrays, and the memory accesses do not pre-

sent a bottleneck.

Customizing the banking structure for an

application requires solving the memory bank

assignment problem: determining an optimal

banking structure (number of banks) and

determining the assignment of each array vari-

able into the banks to maximize perfor-

mance.14,15 The bank assignment has a clear

link with the memory assignment problem we

described earlier.

We solve the memory bank customization

problem by modeling the assignment as a parti-

tioning problem: We partition a given set of

nodes into a given number of groups such that a

given criterion is optimized (in this case, page-

miss count is minimized). The partitioning pro-

ceeds by associating a cost of assigning two

arrays into the same bank. The cost is determined

by the number of accesses to the arrays and the

loop count. If the arrays are accessed in the same

loop, then the cost is high, thereby discouraging

the partitioning algorithm from assigning them to

the same bank. On the other hand, if two arrays

are never accessed in the same loop, then they
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and Figure B6 shows the schedule for the FindAverage
routine using the page mode read feature. The page
mode doesn’t incur the long row decode and precharge
times between successive accesses, thereby eliminat-
ing significant delay from the schedule. In this case, the
column decode time is followed by a minimum pulse
width duration for the CAS signal, which is also 15 ns in
our example. Thus, the effective cycle time between suc-
cessive memory accesses has been greatly reduced,
resulting in an overall reduction of 50% in the total
schedule length.

The key feature in this dramatically reduced sched-
ule length is the recognition that the input behavior is
characterized by memory access patterns amenable to

the page mode feature, and by incorporation of this
observation in the scheduling phase.1 The same idea
has been applied in the context of memory-aware com-
pilation, where the protocols of specific memory library
parts are exploited to hide memory latency during
scheduling.2
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are candidates for assignment into the same

bank. This pairing is associated with a low cost,

guiding the partitioner to cluster them together.

Experiments with several examples show that the

bank exploration algorithm does indeed gener-

ate good assignments, although the problem is

generally NP-complete.14

THE POSSIBILITY of customizing the target

memory architecture and its associated data

organization reveals interesting theoretical and

practical problems during embedded-system

design. An automatic synthesis tool must use

existing compiler technology and extend it to

determine an efficient mapping of the applica-

tion data. But, at the same time, it should intelli-

gently adapt the memory organization

parameters that optimize the implementation. In

this article, we’ve described several relevant

point techniques for this purpose. Memory allo-

cation, assignment, access ordering, size reduc-

tion, and other steps have been combined in a

consistent script.8 Such techniques will evolve

with the introduction of more sophisticated

memory technology and architecture. Important

areas of future investigation include the role of

memory in networked and multiprocessor-based

embedded systems. Also crucial are new ways

to handle very dynamic concurrent applications

where complex data types and processes are

created and deleted at runtime. ■
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