
© Kees Goossens

1

platform-based design (5KK70)
Kees Goossens

1

Networks on Chip

Kees Goossens

Electronic Systems Group

Faculty of Electrical Engineering

Technical University Eindhoven

platform-based design (5KK70)
Kees Goossens

2

on-chip interconnect: physical

© Kees Goossens

2

3

platform-based design (5KK70)
Kees Goossens

on-chip interconnect

essentially

– a plane of transistors

– with planes of wires on top, known as metal layers

transistor plane

wiring plane 1

4

platform-based design (5KK70)
Kees Goossens

on-chip interconnect

essentially

– a plane of transistors

– with planes of wires on top, known as metal layers

transistor plane

wiring plane 1

© Kees Goossens

3

5

platform-based design (5KK70)
Kees Goossens

on-chip interconnect

essentially

– a plane of transistors

– with planes of wires on top, known as metal layers

transistor plane

wiring plane 1

wiring plane 2

6

platform-based design (5KK70)
Kees Goossens

on-chip interconnect: PowerPC

© Kees Goossens

4

7

platform-based design (5KK70)
Kees Goossens

physical aspects

essentially

– a plane of transistors

– with multiple planes of wires on top, known as metal layers

usually, in a single plane, wires travel either in the X or in the Y direction

transistors and the wires in different planes are connected with vertical

wires, known as vias

there are several kilometers of wire on a 1x1 cm chip!

8

platform-based design (5KK70)
Kees Goossens

physical view

via

fat

wire

thin

wire

© Kees Goossens

5

9

platform-based design (5KK70)
Kees Goossens

cross section

via

fat long wire
(length-ways)

thin short wire
(length-ways)

fat long wire
(cross section)

10

platform-based design (5KK70)
Kees Goossens

[source: Intel]M1

M2

M3

M4

M5

M6

M7

M8

cross section

© Kees Goossens

6

11

platform-based design (5KK70)
Kees Goossens

[source: IBM]IBM ‘air gap’ technology

12

platform-based design (5KK70)
Kees Goossens

physical aspects

ratio length:diameter determines the speed of the wire

(assuming a signal must arrive at the destination in a single clock cycle)

for local/close communication use thin short wires

for remote/global communication use fat long wires

in long wires the signal needs to be amplified to compensate for

resistance losses, using buffers (e.g. inverters)

(we ignore effects between multiple wires such as cross talk)

© Kees Goossens

7

13

platform-based design (5KK70)
Kees Goossens

physical aspects (within one process generation)

wires are more limited than gates

– intuitively, number of transistors increases quadratically (area)

– but the number of wires into the area increases only linearly (border)

as a result, connecting transistors (routing) increases chip area

because gates must be spaced further apart

moreover, long wires additionally require

– buffers, which use space in the transistor plane, and

– vias, which use space in the wiring planes

some blocks have many (global) inputs and outputs

– e.g. memory controller

– gives rise to wire congestion (many wires converging on one place)

– increasing chip area

14

platform-based design (5KK70)
Kees Goossens

physical aspects (over process generations)

from one process generation to the next (Moore’s law)

– transistors get smaller and faster [4]

– wires get thinner, and slower
• this is not an issue for local wires [3] that are short

– but long global wires [1,2] become relatively slower than transistors

1

2

3

4

N
B

 e
x
p

o
n

e
n
ti
a

l
s
c
a
le

© Kees Goossens

8

15

platform-based design (5KK70)
Kees Goossens

physical aspects (over process generations)

distance that can be covered in a single clock cycle reduces with

newer process generations

– computation is cheap

– communication is not!

below 100nm
isochronous
zones are

smaller than
2x2 mm2

[DeMan]

16

platform-based design (5KK70)
Kees Goossens

physical aspects (over process generations)

problems

– long global wires become relatively slower than transistors

– distance that can be covered in a single clock cycle reduces with

newer process generations

solution

– do not reduce the size of global wires

(they remain as fast as in previous process generations)

drawback

– get more transistors but keep same number of global wires

– i.e. (global) communication becomes relatively more expensive

© Kees Goossens

9

platform-based design (5KK70)
Kees Goossens

17

on-chip interconnect: logical

18

platform-based design (5KK70)
Kees Goossens

logical concepts

connect up IP blocks directly

– initiator, target

– fixed timing vs. flexible timing: hand shake

connect up IP blocks, with an interconnect

– master, slave

communication types

– streaming data

– memory-mapped communication

© Kees Goossens

10

19

platform-based design (5KK70)
Kees Goossens

connecting two blocks directly

hand shake

1. initiator puts valid data on the data wires

2. and indicates to the target when data is valid

3. the target uses the data

4. and indicates to the initiator that he has used (accepted) the data

required if the blocks are not in the same clock domain,

or if the transmission schedule is not static

IP IP

i t

data

valid

accept

20

platform-based design (5KK70)
Kees Goossens

connecting blocks using an interconnect

master = first initiator

slave = final target

likely to have multiple masters and multiple slaves

that can address each other

IP

in
te

rc
o
n

n
e
c
t

i0 t0 i1 t1
IP

IP
i0 t0 i1 t1

IP

masters:
e.g. CPUs
streaming blocks

slaves:
e.g. memories,
memory controllers
streaming blocks

© Kees Goossens

11

21

platform-based design (5KK70)
Kees Goossens

communication types

1. direct (IP-IP) streaming

– discussed before: master to slave;

– only requires writing

M1

in
te

rc
o
n

n
e
c
t

S1

M2

i0 t0 i1 t1

m
e
m

o
ry

i0 t0 i1 t1

direction of data

22

platform-based design (5KK70)
Kees Goossens

communication types

1. direct (IP-IP) streaming

– discussed before: master to slave;

– only requires writing

2. communication via shared memory (vast majority)

– more complex: master 1 to slave & master 2 to slave

– requires reading & writing

M1

in
te

rc
o
n

n
e
c
t

i0 t0 i1 t1
S1

M2

i0 t0 i1 t1

m
e
m

o
ry

direction of data

© Kees Goossens

12

23

platform-based design (5KK70)
Kees Goossens

real-life example

MIPS
PR4450

TM32

MS RW

TM32

M-Gate

C-Bridge

T-DCSM-DCS

RW

Memory
Controller

RWMSMS

DCS-CTR

CLOCKS

GLOBAL

RESET

TM1-DBG

M-IPC

M-GIC

S

S

S

S

S

S

S

S

DCS-SEC

S

UART1 S

TM2-DBG

UART2 S

UART3 S

PMA-ARBS

PMA-SECS

PMA-MONS

S

M
S

S

S

S

S

S

S

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

EJTAG

BOOT

M
S

M
S

S

S

S

S

S

S

S

S

S

S

S

S

S

TM1-IPCS

TM2-IPC

S TM1-GIC

S

TM2-GICS

DENCS

DCS-SECS DCS-CTRS

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

PMA

S

S

S

S

S

S

S

M
S

R
W

R
W

R
W

R
W

W

W

R
W

R
W

W

R
W

R

R

R
W

DE

IIC1

SMC2

USB

IIC3

SMC1

IIC2

PCI/XIO

MBS1

QVCP1

QVCP2

VMPG

VLD

MBS2

DVDD

QTNR

VIP1

VIP2

EDMA

VPK

TSDMA MSP2

MSP1

SPDIO

AIO1

AIO2

AIO3

GPIO

TUNNEL

a single external

shared memory

streaming
communication

shared memory
communication

24

platform-based design (5KK70)
Kees Goossens

shared-memory communication

master 1 writes data in a memory

master 2 reads data from a memory
– ignore synchronisation (buffer under/overflow)

require more complex transactions

signal groups

– command group
• read, write , ...

• address, flags, …

– write data group
• data, mask / strobe, ...

– read data group
• data, errors, acknowledgements, ...

independent valid/accept handshake

per signal group

IP

i t

wdata

valid
accept

cmd

valid
accept

rdata

valid
accept

IP

© Kees Goossens

13

25

platform-based design (5KK70)
Kees Goossens

distributed-shared-memory communication

logical address space is distributed over one or more memories

often different memory types

M

m
e
m

o
ry

M

m
e
m

o
ry

on-chip
0x0000-
0x1FFF

on-chip
0x2000-

0x3FFF

m
e
m

o
ry

off-chip
0x4000-
0xFFFF

in
te

rc
o
n

n
e
c
t

DDR

flash
etc.

SRAM (usually)

DRAM (sometimes)

S

platform-based design (5KK70)
Kees Goossens

26

current on-chip interconnects

© Kees Goossens

14

27

platform-based design (5KK70)
Kees Goossens

(abstract) interconnect implementations

ARM AXI, NXP DTL

multiple masters

split, pipelined

concurrent, request access to the slave

M S

M S

decoderdecoder

M S

arbiter

AD

D

AD

decoder arbiter

28

platform-based design (5KK70)
Kees Goossens

(abstract) interconnect implementations

ARM AXI, NXP DTL

multiple masters

split, pipelined

concurrent, request access to the slave

broadcast response to all masters

attached to one slave

response arbiter for responses

decoder for responses at master

M S

M S

decoderdecoder

M S

arbiter

D

D

D

A

A

A

arbiterdecoder

© Kees Goossens

15

29

platform-based design (5KK70)
Kees Goossens

(abstract) interconnect implementations

ARM AXI, NXP DTL

multiple masters

split, pipelined

concurrent, request access to the slave

masters can concurrently

access different slaves

maximum performance

– split, pipelined, concurrent

M S

M S

decoderdecoder

M S

arbiter

D

D

D

A

A

A

AD

D

AD

decoder arbiter

30

platform-based design (5KK70)
Kees Goossens

logical interconnect problems

many wires

– ~200 per port

IP

i t

wdata

valid
accept

cmd

valid
accept

rdata

valid
accept

IP

© Kees Goossens

16

31

platform-based design (5KK70)
Kees Goossens

logical interconnect problems

many wires

– ~200 per port

long wires

– running from master to slave and vice versa

– Amba uses word (sub-transaction)

pipelining to mitigate this

under-utilised wires

– e.g. address and write data wires

restrictions in timing

– older protocols used fixed timing,

instead of valid/accept handshake

not scalable

– essentially, with N masters

communicating to M slaves,

requires NxM switch with wide links

M S

M S

decoder + arbiterdecoder + arbiter

32

platform-based design (5KK70)
Kees Goossens

super computers

have the same problems...

IBM Bluegene

Cray

© Kees Goossens

17

platform-based design (5KK70)
Kees Goossens

33

on-chip networks:
concepts and introduction

34

platform-based design (5KK70)
Kees Goossens

interconnect problems

physical

– to avoid long global wires becoming relatively slower than

transistors we don’t reduce their size

– they become more expensive instead

logical

– wires are not used efficiently
• broadcast

• unused signal groups

• restrictive timing / protocol features

transistors (computation) are cheap

wires (communication) are not!

© Kees Goossens

18

35

platform-based design (5KK70)
Kees Goossens

network on chip

a NOC should offer

– minimisation & efficient use of global wires

– flexibility (programmable)

– modularity & re-use

– scalability

fundamental network concepts

– share wires

– protocol layering

36

platform-based design (5KK70)
Kees Goossens

wire sharing

NOC interconnects IP and can be seen

1. either as a large partial switch

2. or as a collection of small switches

full switch is (almost always) overkill

share wires between different communications

X
X X

X
X

X

as system grows

as system grows

X
X X

X X

X

=

© Kees Goossens

19

37

platform-based design (5KK70)
Kees Goossens

wire sharing

wires can be shared because wires are active only ~10% of the time

share wires to increase utilisation

i.e. (statistical) multiplexing

– on a single communication

– on multiple communications

– in different program phases

– between different modes / use cases

– etc.

increase wire efficiency

fewer wires result in

– lower global wiring congestion

– easier timing closure

38

platform-based design (5KK70)
Kees Goossens

wire sharing: on one communication

a single port between two IP blocks contains many wires,

most of which are not active simultaneously

e.g. serialise the command & write data groups on a request group

IP

i t

wdata

valid
accept

cmd

valid
accept

rdata

valid
accept

IP IP

i t

request

valid
accept

response

valid
accept

IP

first send

command
then wdata

© Kees Goossens

20

39

platform-based design (5KK70)
Kees Goossens

wire sharing: on multiple communications

similarly, not all IP blocks communicate at the same time

in
te

rc
o
n
n
e
c
t

i t

wdata

valid

accept

cmd

valid

accept

rdata

valid

accept

IP1

i t

wdata

valid

accept

cmd

valid

accept

rdata

valid

accept

IP2

i t

wdata

valid

accept

cmd

valid

accept

rdata

valid

accept

i t

wdata

valid

accept

cmd

valid

accept

rdata

valid

accept

in
te

rc
o
n
n
e
c
t

i t

wdata

valid

accept

cmd

valid

accept

rdata

valid

accept

IP1

i t

wdata

valid

accept

cmd

valid

accept

rdata

valid

accept

IP2 i t

wdata

valid

accept

cmd

valid

accept

rdata

valid

accept

first send
command
& wdata

of IP1 then

of IP2

40

platform-based design (5KK70)
Kees Goossens

wire sharing: on multiple communications

multiplexing with other streams

– average out variation of different streams

re
s
o

u
rc

e
s sum of worst cases

worst case of sums

time

re
s
o

u
rc

e
s

© Kees Goossens

21

41

platform-based design (5KK70)
Kees Goossens

wire sharing

is not free

– multiplex & demultiplex

– overhead of addressing, routing, etc.

area & delay of

– logic

– buffering

– wires

energy

42

platform-based design (5KK70)
Kees Goossens

wire efficiency

make wires more efficient

– increase performance (& cost) of wire

– only worthwhile for heavily used wires (otherwise only pay cost)

however, to use the offered performance,

the wires need to be heavily used, i.e. share the wires

useful techniques:

– fat wires

– single driver

– shielding (against cross-talk)

– data encoding (for compression, against cross-talk delays)

– low swing, possibly with error correction

encoder decoder
wire

© Kees Goossens

22

43

platform-based design (5KK70)
Kees Goossens

networks on chip concepts

two types of components:

routers

– transport data in packets

network interfaces

– convert IP view (transactions) to network view (packets)

example:

mesh NOC
NI

R

NI

R

NI

R

IP

IP

IP

NI

R

NI

R

NI

R

IP

IP

IP

NI

R

NI

R

NI

R

IP

IP

IP

44

platform-based design (5KK70)
Kees Goossens

networks on chip: basics

1. IP does a read transaction

NI

NI

NI NI NI

R

R

R

R

R R

memory

IP

READ

© Kees Goossens

23

45

platform-based design (5KK70)
Kees Goossens

networks on chip: basics

1. IP does a read transaction

2. network interface (NI) packetises the transaction

– chops into smaller packets

– consisting of a header and payload

– header contains the address of the slave

or the path to the slave

(and the ID of the sender, etc.)

NI

NI

NI NI NI

R

R

R

R

R R

memory

IP

READ

e.g. 32 bits wide
max 12 words

46

platform-based design (5KK70)
Kees Goossens

networks on chip: basics

1. IP does a read transaction

2. network interface (NI) packetises the transaction

3. the NI sends the packet to the router

NI

NI

NI NI NI

R

R

R

R

R R

memory

IP

packet

© Kees Goossens

24

47

platform-based design (5KK70)
Kees Goossens

networks on chip: basics

1. IP does a read transaction

2. network interface (NI) packetises the transaction

3. the NI sends the packet to the router

4. who forwards it, and so on NI

NI

NI NI NI

R

R

R

R

R R

memory

IP

packet

packet packet

packet

48

platform-based design (5KK70)
Kees Goossens

networks on chip: basics

1. IP does a read transaction

2. network interface (NI) packetises the transaction

3. the NI sends the packet to the router

4. who forwards it, and so on

5. the receiving NI unpacks the packet,

6. and presents the read transaction to the slave

NI

NI

NI NI NI

R

R

R

R

R R

memory

IP

READ

© Kees Goossens

25

49

platform-based design (5KK70)
Kees Goossens

networks on chip: basics

1. IP does a read transaction

2. network interface (NI) packetises the transaction

3. the NI sends the packet to the router

4. who forwards it, and so on

5. the receiving NI unpacks the packet,

6. and presents the read transaction to the slave

7. the slave produces the data

NI

NI

NI NI NI

R

R

R

R

R R

memory

IP

DATA

50

platform-based design (5KK70)
Kees Goossens

networks on chip: basics

1. IP does a read transaction

2. network interface (NI) packetises the transaction

3. the NI sends the packet to the router

4. who forwards it, and so on

5. the receiving NI unpacks the packet,

6. and presents the read transaction to the slave

7. the slave produces the data

8. the NI packetises & routers send

NI

NI

NI NI NI

R

R

R

R

R R

memory

IP

packet

packet packet

packet

packet

© Kees Goossens

26

51

platform-based design (5KK70)
Kees Goossens

networks on chip: basics

1. IP does a read transaction

2. network interface (NI) packetises the transaction

3. the NI sends the packet to the router

4. who forwards it, and so on

5. the receiving NI unpacks the packet,

6. and presents the read transaction to the slave

7. the slave produces the data

8. the NI packetises & routers send

9. IP gets the data

NI

NI

NI NI NI

R

R

R

R

R R

memory

IP

DATA

52

platform-based design (5KK70)
Kees Goossens

networks on chip: basics

high degree of parallelism

– split request & response

– pipelined transactions

– concurrent transactions

distributed arbitration

NI

NI

NI NI NI

R

R

R

R

R R

memory

IP IP IP

memory

memory

packet

packet

packet

packet

packet

packet

packet

DATA

READ

READ

DATA

WRITE

© Kees Goossens

27

53

platform-based design (5KK70)
Kees Goossens

networks (on chip): concepts

a fundamental network concept is protocol layering

1. decomposition: break problem in smaller pieces

2. abstraction: hide details

3. sharing: implement common services only once

main examples:

– International Organisation for Standards (OSI)

Open Systems Interconnect (OSI) reference model

– Internet’s TCP/IP reference model

networks on chip architectures & implementations mostly follow OSI

54

platform-based design (5KK70)
Kees Goossens

protocol layering: decomposition

each layer offers services to higher layers,

using the services of lower layers

– e.g. send a bit over a link

– send a packet from NI to NI

– set up a connection between a master and a slave

network layer

link layer

transport layer

send a packet from
NI to NI

send a data word from
router to router

© Kees Goossens

28

55

platform-based design (5KK70)
Kees Goossens

protocol
between two NIs

protocol
between two

routers

protocol
between

master & slave

protocol layering: abstraction

network layer

link layer

transport layer

network layer

link layer

transport layer

send a packet from
NI to NI

send a data word from
router to router

send a packet from
NI to NI

send a data word from
router to router

each layer uses a protocol

hide details of implementation

56

platform-based design (5KK70)
Kees Goossens

protocol layering: abstraction

network layer

link layer

transport layer

network layer

link layer

transport layer

send a packet from
NI to NI

send a data word from
router to router

send a packet from
NI to NI

send a data word from
router to router

protocol
between two NIs

protocol
between two

routers

protocol

between
master & slave

each layer uses a protocol

hide details of implementation

© Kees Goossens

29

57

platform-based design (5KK70)
Kees Goossens

protocol layering: OSI & TCP/IP

ISO OSI reference model

has 7 layers

– application

– presentation

– session

– transport

– network

– data link

– physical

the TCP/IP model has 4 layers

– application

– transport

– internet

– host-to-network

58

platform-based design (5KK70)
Kees Goossens

protocol layering: OSI on chip

as a result

1. each layer can be implemented, optimised, upgraded, etc. independently

– e.g. for different process generations

2. multiple different implementations of a layer can exist

– e.g. different link widths & types

3. in the same system

R R R R R

chip boundary

voltage domain boundary

different link widths

© Kees Goossens

30

59

platform-based design (5KK70)
Kees Goossens

protocol layering: OSI on chip

application

– message passing,

distributed shared memory

transport

– DTL, AXI, AHB, …

network

– different protocol optimisations

– buffering, switching, routing

link

– width, synchronous,

source-synchronous, asynchronous

physical

– serial / parallel, on / off chip,

voltage / power domain

off-chip PHY

sync

transport layerpath-based source routing

shared mem

AHB

link

network

physical

transport

application

on-chip PHY

async async serial

msg passing

DTL AXI

transport layerinternet protocol (IP)

UDP

SMTP DNS

link + phys

network

transport

application

LAN

TCP

telnet FTP

WAN

on chip

compare with internet

platform-based design (5KK70)
Kees Goossens

60

network (on chip) architecture concepts

© Kees Goossens

31

61

platform-based design (5KK70)
Kees Goossens

network (on chip) concepts

topology

– how to interconnect routers, network interfaces, and IP blocks

routing

– the path packets take through the network

flow control

– how packets are moved through the network

buffer management / back pressure

– how to deal with full buffers

quality of service

– how to offer minimum throughput, maximum latency, ...

design flows

– how to design, instantiate, configure, program networks

62

platform-based design (5KK70)
Kees Goossens

topology

network interface

router

link

path = series of links = route

path length = hop count

minimal path

diameter of network = largest minimal hop

count over all pairs of terminal nodes

path diversity = the number of minimal paths

regular networks

– butterfly (k-ary n-fly), fat tree

– torus (k-ary n-cubes), mesh, torus,

irregular networks
NINININI

R R R R

R R R R

NI

R

NI

R

NI

R

NI

R

NI

R

NI

R

NI

R

NI

R

NI

R

© Kees Goossens

32

63

platform-based design (5KK70)
Kees Goossens

topology: butterfly

+ minimum diameter (logarithmic)

- no path diversity

- requires long wires

– traverse at least half the diameter

– this does not fulfil our interconnect requirements

k-ary n-fly

– k^n source terminals

– k^n destination terminals

– n stages of k^(n-1) (k)x(k)

switch nodes

– links are unidirectional

64

platform-based design (5KK70)
Kees Goossens

topology: torus

R R R R

R R R R

R R R R

R R R R

R R R RR R R

R R R

R R R

4-ary 1-cube (ring)

4-ary 2-cube (torus)

4-ary 3-cube (hypercube)

3-ary 2-mesh

© Kees Goossens

33

65

platform-based design (5KK70)
Kees Goossens

topology: torus

+ at low dimensions have short wires

+ good path diversity

+ can make use of locality

– i.e. talking to neighbours is cheap, unlike in butterfly networks

- larger hop count than butterfly networks

to minimise both latency & wire length

take minimal n that makes network bisection limited

66

platform-based design (5KK70)
Kees Goossens

recall that chips consist of a transistor plane

with X-Y wiring planes on top

mesh, folded torus, and express cubes are

natural candidates for on-chip topologies

however, the lay-out of a chip

is hardly ever regular

compromises

– partial mesh, omit some nodes, mesh lay-out

– logically a mesh, morphed lay-out

topology: real life

R R R

R R R

R R R

R R

R R R

R

R

R R

R R R

R R R

© Kees Goossens

34

67

platform-based design (5KK70)
Kees Goossens

topology: real life

routers at all corners of IP blocks

can use channel routing

– use space between IP block for

long-distance (NOC) wires

the alternative is routing the NOC

wires over the IP blocks

– not always possible,

e.g. for MIPS & TriMedia

that require all metal layers

for local wiring

MPEG

MBS

+

VIP

MMI+AICP

1394

MSP

M-PI

MIPS

TriMedia VLIW

T-PI
Conditional

access

C
A
B

68

platform-based design (5KK70)
Kees Goossens

topology: real life

MPEG

MBS

+

VIP

MMI+AICP

1394

MSP

M-PI

MIPS

TriMedia VLIW

T-PI
Conditional

access

C
A
B

minimal topology with one router

per IP block / island

almost all traffic is bound for the

memory controller (MMI)

the MIPS and Trimedia need low

latency access and should have

minimum number of hops

in Viper 30% of long global wires

are due to MMIO bus

© Kees Goossens

35

platform-based design (5KK70)
Kees Goossens

69

flow control

70

platform-based design (5KK70)
Kees Goossens

general router architecture

move packets that arrive at inputs to outputs

for all-at-once (source-based) routing

the packet header contains the path

for incremental routing it contains the

destination address

require arbiter in case two packets

go to same output at the same time

– (weighed) round robin

– priority

– last recently used, etc.

switch

d
a
ta

 i
n
p

u
ts

d
a
ta

 o
u
tp

u
ts

arbiter

© Kees Goossens

36

71

platform-based design (5KK70)
Kees Goossens

contention

NOCs � multiplexing / sharing of wires between multiple data flows

sharing implies contention:

multiple packets / data

– at the same place

– at the same time

72

platform-based design (5KK70)
Kees Goossens

flow control

techniques to deal with contention:

when two packets arrive at the same link at the same time

– or any other shared resource

options

1. avoid contention altogether

2. deal with contention when it happens

with or without buffering packets

© Kees Goossens

37

73

platform-based design (5KK70)
Kees Goossens

flow control

when two (or more) packets arrive at the same link at the same time

buffer-less flow control

1. avoid contention (circuit switching), or

– deal with contention

• drop both packets

2. forward one packet & drop one packet

3. forward both packets, but one to wrong output (misrouting)

buffered flow control

– deal with contention

• delay both packets

4. forward one packet & delay one packet

– store & forward, virtual cut through, worm-hole, virtual channel

74

platform-based design (5KK70)
Kees Goossens

buffer-less flow control: circuit switching

circuit switching

first allocate a circuit from source to destination, reserving links

then send data on circuit, guaranteed without contention

deallocate circuit, freeing links

like old telephone system

used in the asynchronous transfer mode (ATM) networks

© Kees Goossens

38

75

platform-based design (5KK70)
Kees Goossens

buffer-less flow control: circuit switching

four phases

1. set up (S)

2. acknowledge (A)

3. send data

4. tear down (T)

S T

S T

S T

link 1

link 2

link 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S Tlink 4

0

A

A

A

A

message 1 message 2
source to

destination
destination
to source

21 22

R RR

76

platform-based design (5KK70)
Kees Goossens

buffer-less flow control: dropping

drop both packets

forward one packet & drop one packet

need

– acknowledgements,

– re-sequencing,

– (negative) acknowledgement (ack/nack) or timers,

– retransmission, (and buffering until acknowledgement)

– duplicate removal

cannot guarantee delivery

and hence cannot guarantee throughput and latency

minimal latency & buffering per router

X

space for exactly
one packet

© Kees Goossens

39

77

platform-based design (5KK70)
Kees Goossens

buffer-less flow control: dropping

drop both packets

forward one packet & drop one packet

inefficient in resource usage (links, buffers)

– non-minimal paths

– data is resent

congested

desirable

perfect

packets sent

p
a

c
k
e

ts
 d

e
liv

e
re

d

X

space for exactly
one packet

78

platform-based design (5KK70)
Kees Goossens

buffer-less flow control: misrouting

forward both packets, but one to wrong output

also known as deflection routing or hot-potato routing

no packets are dropped

still need re-sequencing

must ensure that packet will arrive at its destination

– live lock, time to live, ...

minimal latency & buffering per router

X

space for exactly
one packet

X mis-routed

correctly routed

correctly routed

X

contention

© Kees Goossens

40

79

platform-based design (5KK70)
Kees Goossens

buffered flow control: store and forward

no distinction between packets & flits

flits are shown for easier comparison later with VCT & WH

packet is forwarded to next router

– when the current router has received the whole packet

– and when there the next router has space for the whole packet

latency: transmission of entire packet

buffering: at least one packet

when a packet cannot proceed, it waits in one router

– uses one buffer, does not block links

80

platform-based design (5KK70)
Kees Goossens

buffered flow control: store and forward

packet is forwarded to next router

– when the current router has received the whole packet

– and when there the next router has space for the whole packet

H T

H T

H T

link 1

link 2

link 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

H Tlink 4

0

link 1 link 2 link 3

X XX

© Kees Goossens

41

platform-based design (5KK70)
Kees Goossens

81

buffering schemes (for QoS)

82

platform-based design (5KK70)
Kees Goossens

what is quality of service

in our context:

lossless data transport

uncorrupted data transport

minimum throughput

maximum latency

maximum jitter

low latency

– cache misses, interrupts

guaranteed bandwidth

– audio, video, ...

best effort

– cache prefetches, write backs, debug / monitoring information

– GUI, browsing, file transfers, ...

© Kees Goossens

42

83

platform-based design (5KK70)
Kees Goossens

what is the problem: contention

NOCs = multiplexing / sharing of wires between multiple data flows

sharing implies contention:

multiple packets

– at the same place

– at the same time

84

platform-based design (5KK70)
Kees Goossens

what is the problem: congestion

congestion

– packets wait for waiting packets wait for …

even though they may not want to use the original contended link

buffering strategies are not enough

© Kees Goossens

43

85

platform-based design (5KK70)
Kees Goossens

general router architecture

move packets that arrive at inputs to outputs

in case two packets go to

the same output at the same time

– arbiter decides which packets

proceed first

– move packets through switch

– buffer remaining packets

switch

d
a
ta

 i
n
p

u
ts

d
a
ta

 o
u
tp

u
ts

arbiter

86

platform-based design (5KK70)
Kees Goossens

overview

important components for QoS

1. flow control

2. buffering strategy

3. switch architecture

4. switch arbitration

only with the right combination can a NOC offer QoS

more generally

– what resources are shared

– how are they allocated / scheduled

– what can be pre-empted and what not

we show a few solutions to offer guaranteed bandwidth & latency

© Kees Goossens

44

87

platform-based design (5KK70)
Kees Goossens

buffering schemes

1. input buffering

2. output buffering

3. virtual-output buffering

4. virtual-circuit buffering

5. per-slave buffering

combinations are possible too

– e.g. input & output buffering

we compare them on

– # logical buffers

– # physical memories & type

– size of switch(es)

– performance & cost

88

platform-based design (5KK70)
Kees Goossens

buffering schemes: input buffering

N = degree = # inputs = # outputs

N logical buffers: one per input

N physical FIFOs

N*N switch

maximum ~58% utilisation

simplest & cheapest

worst performance

i0

i1

i2

X

© Kees Goossens

45

89

platform-based design (5KK70)
Kees Goossens

buffering schemes: virtual circuit buffering

with non-blocking switch

C logical buffers:

one per circuit

C physical FIFOs

C*N switch

gives potentially higher

throughput than with blocking

switch

X

c2

c0

c1

c5

c3

c4

c8

c6

c7

90

platform-based design (5KK70)
Kees Goossens

buffering schemes: problem

buffered flow control

1. input buffering exhibits head-of-line (HOL) blocking

2. virtual output buffering has similar problem

3. output buffering has similar problem

4. buffering per slave

– HOL blocking per slave

5. no buffer sharing at all

– virtual circuit buffering

in all but 5 flows interfere with each other

due to shared buffers

3x3

switch

blocked!

b
lo

c
k
e
d

fre
e

© Kees Goossens

46

91

platform-based design (5KK70)
Kees Goossens

buffering schemes: relation with switch

blocking versus non-blocking

– for virtual output, virtual circuit, per slave, virtual channel buffering

blocking switch introduces extra dependencies between flows

– reduces performance

– harder to analyse performance

– but has lower cost
• e.g. Æthereal 6x6 130nm: 0.13mm2 blocking vs. 0.17mm2 non-blocking

N
x
N

s
w

itc
h

(3
x
N

)x
N

 s
w

itc
h

92

platform-based design (5KK70)
Kees Goossens

to remember

problem: wires / communication

– physical: global wires become relatively expensive

– logical: wires are inefficiently used

solution: networks on chip

– share wires

– protocol stack

architecture choices on

– topology

– routing

– flow control

– buffering

– quality of service

– design flows

© Kees Goossens

47

platform-based design (5KK70)
Kees Goossens

93

the end

