Platform Design
5KK70 Aug 2008 - Jan 2009
Lectures: Bart Mesman and Henk Corporaal
Assistance: Akash Kumar

URL: http://www.ics.ele.tue.nl/~heco/courses/PlatformDesign
1e semester, Friday , 3 blocks of 5 weeks each, 2-4 contact hours / week + lab
Credits: 5 ECTS = 140 hours

Time Division: 45 contact + 60 lab + 20 lit study (incl presentation) + 15 exam preparation

Description

When looking at future embedded systems and their design, especially (but not exclusively) in the multi-media domain, we observe several problems:

· high performace (10 GOPS and far beyond) has to be combined with low power (many systems are mobile);

· time-to-market (to get your design done) constantly reduces;

· most embedded processing systems have to be extremely low cost;

· the applications show more dynamic behavior (resulting in greatly varying quality and performance requirements);

· more and more the designer requires flexible and programmable solutions;

· huge latencie gap between processors and memories; and

· design productivity does not cope with the increasing design complexity.

In order to solve these problems we foresee the use of programmable multi-processor platforms, having an advanced memory hierarchy, this together with an advanced design trajectory. These platforms may contain different processors, ranging from general purpose processors, to processors which are highly tuned for a specific application or application domain. This course treats several processor architectures, shows how to program and generate (compile) code for them, and compares their efficiency in terms of cost, power and performance. Furthermore the tuning of processor architectures is treated

Several advanced Multi-Processor Platforms, combining discussed processors, are treated. A set of lab exercises complements the course.
Purpose:
This course aims at getting an understanding of the processor architectures which will be used in future multi-processor platforms, including their memory hierarchy, especially for the embedded domain. Treated processors range from general purpose to highly optimized ones. Tradeoffs will be made between performance, flexibility, programmability, energy consumption and cost. It will be shown how to tune processors in various ways.

Furthermore this course looks into the required design trajectory, concentrating on code generation, scheduling, and on efficient data management (exploiting the advanced memory hierarchy) for high performance and low power. The student will learn how to apply a methodology for a step-wise (source code) transformation and mapping trajectory, going from an initial specification to an efficient and highly tuned implementation on a particular platform. The final implementation can be an order of magnitude more efficient in terms of cost, power, and performance.

Contents per lecture (Preliminary):

1. Course overview + RISC architectures
a. MIPS ISA, RISC programming

b. MIPS single and multi-cycle implementation

c. MIPS pipelining, pipeline hazards, hazard avoidance methods, instruction control implementation, cost of implementation

d. Complex instruction-sets
e. Complex adressering-modes

f. Use of multiple memory banks
g. DSP example(s)
2. VLIW architectures (part a)
a. Classification of parallel architectures:

i. based on the I, O, D, S 4-dim model

b. Trace analysis:
i. determining how much ILP / Parallellism does your application contain?
c. VLIW examples, like: C6, TriMedia, Intel IA64 (EPIC / Itanium)
d. Note: superscalars are not treated (see course 5MD00 / 5Z033 for this)

3. VLIW architectures (part b) + ILP compilation (part a)
a. TTA: transport triggered architecture
b. Frontend compiler steps
c. Register allocation

d. Basic block list scheduling

4. ILP compilation (part b)
a. Other scheduling methods
b. Extended basic block (with different compiler scopes)
c. Software pipelining (different varyities)
d. Speculation
e. Guarding, IF-conversion
f. Example compilers (TTA, SUIF, Intel, GCC)
5. SIMD

a. Basis SIMD concept

b. SIMD examples: IMAP, Xetal-2, Imagine

c. SIMD extensies: RC-SIMD en D-SIMD

d. Optional: 3 D classificatie model van Embedded processoren:
i. ILP * ISA * Instruction Control

< 1 week break >

6. ASIP

a. ASIP concept

b. ASIP examples: ART, SiHive, Chess/Target (Gert Goossens), Tensilica
c. Configurability

d. Cost/area, energy, performance trade-offs

e. Register file partitioning

f. Clustering

7. NoC + MPSoC (part a)

a. NoC overview + classification
- Bus versus NoC

b. MPSoC examples:
i. Cell
ii. Demo of Aethereal+ SiHive on FPGA
8. MPSoC (part b) + Cost Models
a. More MPSoC examples:
i. GPU (NVidea 8800), and possibly:

ii. OMAP, Nexperia, WICA2

b. Models for A (Area), T (Timing) and E (Energy) for hybrid SIMD-VLIW processors (Imagine inspired)
9. RTOS, Task Scheduling, RM

a. Tiny OS thread library
b. Task scheduling
c. Runtime resource management
10. WSN (Wireless Sensor Networks)
a. System design aspects and tradeoffs
b. Architecture
c. Examples: Chipcon, SAND, (Philip ...), Wika?

d. Scavenging

< 1 week break >

11. DMM (Data Memory Management) part a

a. Overview
b. Recap of memory hierarchy and operation of caches
c. Overview design flow and DMM
12. DMM part b : Platform independent steps

a. Polytope model,

b. Data flow transformations,

c. Loop trafos,

d. Data reuse and memory layer assignment
13. DMM part c : Platform dependent steps
a. Cycle budget distribution,
b. Memory allocation and assignment,
c. Inplace techniques (optional Inplace for cache based systems)
d. Prepare DMM assignment
14. Student presentations 1

15. Student presentations 2

Schedule of lecturers:

1. Bart Mesman: lectures 1, 2,5, 6, 7b, 8a, 9
2. Henk Corporaal: lectures 3, 4, 7a, 8b, 11, 12, 13
Lab excercises:

1. DSE based on Imagine architecture
2. Platform programming on one of the following platforms:

 SiHive/Aethereal, Akash' MP-FPGA, ChipCon, Wika, Cell, or GPU (Nvidea 8800)
3. DMM assignement
