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Data Fusion MechanismsData Fusion Mechanisms
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Wireless Sensor Networks Lab

• Introduction

OutlineOutline

• Application potentials
• Data fusion mechanisms
– Features and feature fusion
– Spatial / spatiotemporal fusion

Model based f sion

Human face angle 
estimation

Human pose

Distributed Vision Networks

– Model-based fusion
– Decision fusion

• Outlook
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Technology CrossTechnology Cross--RoadsRoads
Sensor Networks 
•Wireless communication
•Networking

Image Sensors
• Rich information
• Low power, low cost

Smart 
Camera 

Networks

Signal Processing Vision Processing

Distributed Vision Networks

Signal Processing
• Embedded processing
• Collaboration methods

Architecture?
Algorithms?

Applications?

Vision Processing
• Scene understanding
• Context awareness

Potential impact on design 
methodologies in each 
discipline 

3WSNL

Distributed Vision NetworksDistributed Vision Networks
Rich design space utilizing concepts of:
– Vision processing
– Signal processing and optimization

Wi l i ti– Wireless communications
– Networking
– Sensor networks

Value proposition:
– Picture better than 1000 words
– Multiple cameras
– Be careful about communication bandwidth

Distributed Vision Networks

Be careful about communication bandwidth
– Be aware of privacy issues

Novel smart environment applications:
– Interpretive
– Context aware
– User centric

4WSNL



3

Distributed Vision NetworksDistributed Vision Networks
Processing at source allows:
– Image transfer avoidance
– Descriptive reports

S l bl t k– Scalable networks

Design opportunities:
– Processing architectures for real-time in-node processing
– Algorithms based on opportunistic data fusion
– Novel smart environment applications

Distributed Vision Networks

Novel smart environment applications
– Balance of in-node and collaborative processing:

• Communication cost
• Latency
• Processing complexities
• Levels of data fusion

5WSNL

Distributed Vision NetworksDistributed Vision Networks
Vision sensing requires awareness of:
– Privacy issues

• Employ in-node processingp oy ode p ocess g
• Avoid image transfer
• Applications that provide services not based on monitoring / reporting

– Bandwidth issues
• Transmit processed information not raw data
• Transmit based on information value for fusion / query-based

– Processing demand

Distributed Vision Networks

Processing demand
• Employ separate early vision and interpretive processing 

mechanisms
• Layered processing architecture: Features, objects, relationships, 

models, decisions
– Employ data exchange and collaboration across different layers

6WSNL
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Distributed Vision NetworksDistributed Vision Networks

Robotics
Agents
Response systems
Smart environments

Feedback
( features, parameters, 

decisions etc )

Distributed
 Vision Networks

( DVN )

Enabling technologies:
o Vision processing
o Wireless sensor network
o Embedded computing
o Signal processing

Artificial 
Intelligence

Context
Event interpretation
Behavior modeling

Smart 
Environments

Assisted living
Occupancy sensing
Augmented reality

decisions, etc. )

Distributed Vision Networks 7

Multimedia Human Computer 
Interaction

Scene construction
Virtual reality
Gaming

Immersive virtual reality 
Non-restrictive interface
Robotics

7WSNL

Wireless Sensor NetworksWireless Sensor NetworksWireless Sensor NetworksWireless Sensor Networks

Distributed Vision Networks 8WSNL
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ApplicationsApplications
Agricultural Home/Office Earthquake 

Warning

Volcanic Monitoring 
System in Ecuador, 
Project at Harvard Environmental

Structural Analysis

Distributed Vision Networks

Structural Analysis

Medical
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Communication PerspectiveCommunication Perspective

►Designed to optimize QoS / 
provide high throughput

►Deployed for common task

►Generally low bandwidth data

Cellular / Mobile Ad-hoc Networks Wireless Sensor Networks

►High BW data major part of traffic

►Data flow generally bi-directional

►Energy consumption secondary

►Nodes compete for resources

►Data flow uni-directional (source to 
sink), often broadcasting

►Energy consumption primary issue 

►Nodes work together on resources

Distributed Vision Networks

Priorities and metrics different

Cannot tune traditional methods to special case

Need a design paradigm shift

Design Perspective

10WSNL
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WSN Design WSN Design ParadigmParadigm

• In wireless domain:

Oth Wi l N t k Wi l S N t kOther Wireless Networks
1. Network’s role: data transport

2. Network nodes compete for 
resources
3. High data rates 
(e g video streaming)

Wireless Sensor Networks
1. Network’s role: information 
collection and dissemination
2. Nodes collaborate on resource 
allocation
3. Low data rates 
(e g image attributes transmitted)

Distributed Vision Networks

(e.g. video streaming)

Metric: 
maximize network throughput

Metric: 
Maximize network lifetime

(e.g. image attributes transmitted)

11WSNL

WSN Design WSN Design ParadigmParadigm

• In processing domain:

Oth P i N t k Wi l S N t kOther Processing Networks
1. Few high-accuracy sensors

2. Raw data communicated

3. Centralized processing

4. Application relies on high 
accuracy of measurements

Wireless Sensor Networks
1. Many low-accuracy sensors

2. Data processed first

3. Distributed processing

4. Application relies of multiple 
sources of measurements

Distributed Vision Networks

y

Metric: 
Optimal solution

Metric: 
Energy & BW efficiency,

Sub-optimal solution

12WSNL
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WSN Design WSN Design ParadigmParadigm

Perfect processing:
►“Powerful central processor”

Perfect communication:
►“All data will be available in time”

Communication design perspective Data processing design perspective

p

Design problem:
►“Maximize rate and throughput 
to get data there fast”

Design problem:
►“Find globally optimal solution”

Long-distance transmission expensive

Wireless Sensor Networks

Distributed Vision Networks

Long distance transmission expensive
Limited bandwidth

Large correlation/redundancy in data

No central processing unit

Sub-optimal solution ok in many applications 

Local exchange of data
Distributed processing
Communicate information

13WSNL

WSN: NetworkWSN: Network--Centric NatureCentric Nature
• Monitoring the environment has been the main 

application driver
– Wildlife habitat monitoring

Forest fires– Forest fires
– Surveillance and security applications
– Tracking assets and people

The network is in charge
Measures, computes, makes decisions, reports
Everything else is considered data, data source, or data path

Distributed Vision Networks

y g , , p

New direction: Put the user in charge
Move from network-centric design to user-centric design
Learn behaviors not just measure effects
Bring context awareness into the application

14WSNL
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WSN: ReportWSN: Report--Centric NatureCentric Nature

• Sensor networks mainly a tool to monitor and report 
– Outside observer may decide on actions based on reported data

• New directions:
Interpretive network:

Actively look for useful data
Adjust data acquisition based on interpretation

Context awareness:

Distributed Vision Networks

Context awareness:
Provide services based on user’s context

Location, status, activity, events

Ambient intelligence:
Detect and track context of user and other events

15WSNL

Vision Sensor NetworksVision Sensor NetworksVision Sensor NetworksVision Sensor Networks

Distributed Vision Networks 16WSNL
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Sensor Networks PerspectiveSensor Networks Perspective

Opportunities for novel applications:

Make complex interpretation of environment and eventsp p

Learn phenomena and behavior, not just measure effect

Incorporate context awareness into the application

Allow network to interact with the environment

Distributed Vision Networks

• Change of paradigm:
High-bandwidth sensors (vision)

17WSNL

Vision Processing PerspectiveVision Processing Perspective
Novel approach to vision processing:

Use the additional available dimension: space
Data fusion across views, time, and feature levels

Design based on effective use of all available information 
(opportunistic fusion)

Utilize multiple views to:
Overcome ambiguities
Achieve robustness
Allow for low complexity algorithms

Distributed Vision Networks

Use communication to exchange descriptions - not raw data
In-node processing

• Change of paradigm:
Networked vision sensors

18WSNL
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Distributed Vision NetworksDistributed Vision Networks

New ParadigmNew Paradigm

High-bandwidth data

In-node processing

Low-bandwidth communication

Distributed Vision Networks

Collaborative interpretation

19WSNL

Distributed Vision SystemsDistributed Vision Systems
Traditional Approach

• Few high-resolution sensors

• Raw images communicated

Image Sensor Networks
• Many low/high-resolution sensors

• Images processed firstRaw images communicated

• High data rates                           
(visual data transmitted)

• Centralized processing

Images processed first

• Low data rates                  
(attributes transmitted)

• Distributed processing

Distributed Vision Networks

• Efficient resource (comm./comp.) use
• Adaptive acquisition/response possible

• Inefficient network use
• Not scalable

Base 
Station

Event 
Scope

Report

20WSNL
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• Introduction

OutlineOutline

• Application potentials
• Data fusion mechanisms
– Features and feature fusion
– Spatial / spatiotemporal fusion

Model based f sion

Human face angle 
estimation

Human pose

Distributed Vision Networks

– Model-based fusion
– Decision fusion

• Outlook

21WSNL

Human pose 
estimation

Human event 
detection

Application Potentials: View SelectionApplication Potentials: View Selection

Select best view of person of interest in 
real-time tracking

Data exchange between cameras 
determines which one to stream visual 

CAM 1

DOOR

data

CAM 2

CAM 5

Distributed Vision Networks

CAM 3CAM 4

22WSNL
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Application Potentials: Fall DetectionApplication Potentials: Fall Detection

Detect accidents at home

CAM 1

DOOR

CAM 2

CAM 5

Distributed Vision Networks

CAM 3CAM 4

23WSNL

Application Potentials: MultiApplication Potentials: Multi--Touch SurfaceTouch Surface

Manipulate virtual world with free hand gesture

Pan Rotate

Zoom out Zoom in

Distributed Vision Networks 24WSNL
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Application Potentials: Face ProfilingApplication Potentials: Face Profiling
Interpolate and reconstruct face model from a few 
snapshots

-100

X

Z

Y

Z

X

Z

Y

X

Camera 1
(Training set)

Camera 3
(Test set)

Distributed Vision Networks

-50
0 Y

0 10 20 5045 62 70 80 85 110 120 130-10-20-27-40-50-65-70-80-95-100-105-125-140 30

B C D E F G H I J KA M N O P Q R S T U VL X Y ZW
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t1

Application Potentials: 3D Model ReconstructionApplication Potentials: 3D Model Reconstruction

t1
t2

t2

Only 
observations at t2

Distributed Vision Networks

Observations at t1 Observations at t2

26WSNL
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Application Potentials: Virtual RealityApplication Potentials: Virtual Reality

Place people in virtual world CAM 1

CAM 2

DOOR

CAM 3CAM 4

CAM 5

Distributed Vision Networks 27WSNL

ApplicationsApplications

Gaming

3
1

Assisted living

Occupancy sensing

Distributed Vision Networks

2

4 5

31 2 4 5

28WSNL
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ImageImage SensorSensor NodeNodeImage Image Sensor Sensor NodeNode

Distributed Vision Networks 29WSNL

Image Sensor MoteImage Sensor Mote
• General architecture

– Sensor
– Processor IEEE 802.15.4,

Zi B li
IEEE 802.15.4,

Zi B liProcessor
– Radio
– Power
– Memory

Microcontroller

ARM7TDMI Core

ZigBee-compliant
Transceiver

KiloPixel Imager
low power,

high frame rate

KiloPixel Imager
low power,

high frame rate

SP
I

MMC/SD Card

SP
I

USB 2.0 Full Speed

Serial Interface

Power Management
Controller

devicesup to 8

Microcontroller

ARM7TDMI Core

ZigBee-compliant
Transceiver

KiloPixel Imager
low power,

high frame rate

KiloPixel Imager
low power,

high frame rate

SP
I

MMC/SD Card

SP
I

USB 2.0 Full Speed

Serial Interface

Power Management
Controller

devicesup to 8

Distributed Vision Networks

VGA Camera
Module with

integrated optics

TWI

I/O CCIR

Control

Data

MMC/SD Card
as frame buffer

RAM FLASH
Power Supply Unit

stationary or battery

VGA Camera
Module with

integrated optics

TWI

I/O CCIR

Control

Data

MMC/SD Card
as frame buffer

RAM FLASH
Power Supply Unit

stationary or battery

Reference: 

• S. Hengstler, H. Aghajan, “A Smart Camera Mote Architecture for Distributed Intelligent Surveillance”, Workshop on Distributed Smart Cameras,  Oct. 2006

Stanford MeshEye Mote Architecture

30WSNL
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Low (kPix)Low (kPix)--Resolution SensorResolution Sensor
• What can it be used for?

Limited information in single frame

Use kPix camera to:
Detect moving object
Trigger higher resolution cameras at event

Distributed Vision Networks

Trigger higher-resolution cameras at event

With two kPix cameras:
Provide ROI focus for high-resolution camera acquisition 

and processing
Provide depth perception for the object

Reference: 

• I. Downes, L. Baghaei-Rad, H. Aghajan,, “Development of a Mote for Wireless Image Sensor Networks”, Cognitive Systems with Interactive Sensors, March 2006

31WSNL

Mid (CIF)Mid (CIF)--Resolution SensorResolution Sensor
• What can it be used for?

Vision-based network localization
Beacon-assisted

(x,y) d
i

j

Beacon assisted

Observations of moving target ψ
ϕ

D

4

6

8

10

12

Square: Sensor

Observation points 
of the target

Image sensors localized 
relative to coordinate system

4

6

8

10

12

Square: Sensor

Observation points 
of the target

Image sensors localized 
relative to coordinate system

Outdoor Experiment

Beacon’s Path Target θ 
Φ

λ0
λ1

λT S

Distributed Vision Networks

-6 -4 -2 0 2 4 6 8
0

2 Square: Sensor
Circle: Target
Blue: True
Red: Estimated

Nodes defining relative coordinate system

-6 -4 -2 0 2 4 6 8
0

2 Square: Sensor
Circle: Target
Blue: True
Red: Estimated

Nodes defining relative coordinate system
References: 

• H. Lee, H. Aghajan, “Collaborative Self-Localization Techniques for Wireless Image Sensor Networks”, Asilomar Conference on Signals, Systems and Computers, Oct. 2005

• H. Lee, L. Savidge, H. Aghajan, “Subspace Techniques for Vision-Based Node Localization in Wireless Sensor Networks”, ICASSP, May 2006

• H. Lee, H. Aghajan, “Collaborative Node Localization in Surveillance Networks using Opportunistic Target Observations”, ACM MM Workshop On Video Surveillance and Sensor Networks, Oct. 2006

Reference 
Nodes

θ1θ0

S0 S1

Φ0 Φ1

32WSNL
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“High” (VGA)“High” (VGA)--Resolution SensorResolution Sensor
• What can it be used for?

Event interpretation

Human gesture analysisHuman gesture analysis

1
2

3

4 6z

1
2

3

4 6z

1
2

3

4 6z

1
2

3

4 6z

1
2

3

4 6z

1
2

3

4 6z

1
2

3

4 6z

1
2

3

4 6z

1
2

3

4 6z

Distributed Vision Networks

4
5

6y 4
5

6y 4
5

6y4
5

6y 4
5

6y 4
5

6y 4
5

6y 4
5

6y 4
5

6y

Vertical motion, asymmetric, picking up object Face feature analysis 

33WSNL

Micro-
controller 

Board

Camera 
Module

Radio

MMC Flash 
Card

HybridHybrid--Resolution Vision SystemResolution Vision System

Kilopixel
Imager

Object

Lens

Distributed Vision Networks

High-Resolution CameraSTEP 1:
Object Detection

STEP 2:
Stereo Vision

STEP 3: Region of Interest Capture

Position & Size Position

Left Kilopixel Imager Right Kilopixel Imager

34WSNL



18

HybridHybrid--Resolution Vision SystemResolution Vision System

Object

Lens

Modern image sensors allow for 
ROI extraction at read-out

Savings in data access time

Vision processing on ROI

Distributed Vision Networks

STEP 1:
Object Detection

STEP 2:
Stereo Vision

STEP 3: Region of Interest Capture

Left Kilopixel Imager Right Kilopixel Imager

High-Resolution Camera

PositionPosition & Size

35WSNL

ROI MappingROI Mapping

D

Working 
Range

D

Working 
Range

Features in a 
Depth Range

Fundamental 
Matrix

Epipolar 
Lines

ROI &  
Approx. Range

ROI Map         in 
High-Res Camera

Low-Res / High-Res Cameras

2 Low-Res Cameras

Offline at Calibration Runtime

f

1Hx
Lx

D
α

2β

2Hx

1β
m

f

1Hx
Lx

D
α

2β

2Hx

1β
m

Distributed Vision Networks

Working Range 
2.5m - 4m

Working Range 
20m – 1km

36WSNL
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ROI MappingROI Mapping

Distributed Vision Networks 37WSNL

ProcessingProcessing

Low-Level High-Level

Features from 
other Cameras

Low Level
Processing

• Pixel processing:
• Feature detection
• Segmentation
• Motion detection

High Level
Processing

• Object processing:
• Object recognition
• Feature fusion
• Interpretation

Parallel Processor DSP / Micro-controller

Distributed Vision Networks

Reference: 

• R. Kleihorst, B. Schueler, A. Danilin, M. Heijligers, “Smart Camera Mote with High 
Performance Vision System”, Workshop on Distributed Smart Cameras,  Oct. 2006

38WSNL



20

Strategy Strategy –– Distributed Computation Distributed Computation 

Distributed Vision Networks

System objectives:
• Wireless transmission
• Real-time computation

Can be a PC

39WSNL

• Introduction

OutlineOutline

• Application potentials
• Data fusion mechanisms
– Features and feature fusion
– Spatial / spatiotemporal fusion

Model based f sion

Human face angle 
estimation

Human pose

Distributed Vision Networks

– Model-based fusion
– Decision fusion

• Outlook

40WSNL

Human pose 
estimation

Human event 
detection
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Data Fusion MechanismsData Fusion MechanismsData Fusion MechanismsData Fusion Mechanisms

Distributed Vision Networks 41WSNL

Information In … Delay … and Never Out

Fusion DimensionsFusion Dimensions
Time

Space

Time

SpaceSpace 
(Views)

Feature 
Levels

Space 
(Views)

Feature 
Levels

Space (views)
• Overcome ambiguities, occlusions
• Enhance estimate robustness

Distributed Vision Networks

Time
• Increase confidence level of estimates
• Detection of key frames

Feature levels
• Exchange of features with other nodes across algorithmic layers

42WSNL
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Vision Algorithm
• Face orientation: region of interest

Body pose : command to the system

ObjectivesObjectives

• Body pose : command to the system
• Multiple cameras
• Distributed computation
• Moderate complexity
• Bandwidth / latency issues

System Requirements

Spatial distribution

Function modules

Distributed Vision Networks

y q
• Real-time
• Wireless links

43WSNL

• Locally in a single camera:
– Reduce images to descriptors

Basic Approach for a Camera NetworkBasic Approach for a Camera Network

g
• Collaboratively between cameras:

– Correlation: Mitigate errors (image noise, feature noise)
– Orthogonality: Multi-view (occlusion, ambiguity, difficult 

views->easier views)

Distributed Vision Networks

◦ Synergies
Image features 
Temporal correction / prediction
Spatially distributed observation from cameras

44WSNL
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Example: Face Angle EstimationExample: Face Angle Estimation

• Approach:
Local estimationLocal estimation 
Joint refinement / validation

• Fusion of information from 3 dimensions
– In-node image features (feature fusion)

– Temporal dynamics (temporal fusion)

Distributed Vision Networks

– Spatial consistency (spatial – spatiotemporal fusion)

• Objective: 
Improve robustness & reduce algorithm complexity!

45WSNL

Fusion MechanismsFusion Mechanisms
• Types of data fusion:

– Feature fusion 
– Spatial fusion

T l f i– Temporal fusion
– Model-based fusion
– Decision fusion

Distributed Vision Networks 46WSNL
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Fusion MechanismsFusion Mechanisms
Feature fusion:

Use of multiple, complementary 
features within a camera node

Spatial fusion:
Localization, epipolar geometry, ROI 
and feature matching
Validation of estimates by checking 

i li lconsistency, outlier removal
3D reconstructionTemporal fusion:

Local interpolation / smoothing 
of estimates
Exchange of updates via 
spatial fusion
Spatiotemporal estimate 
smoothing and prediction

Model-based fusion:
3D human body reconstruction, 
human gesture analysis
Feedback to in-node feature 
extraction

Distributed Vision Networks

Decision fusion:
Estimates based on soft decisions
Adequate features in own 
observations
Cost, latency of communication

Key features and key 
frames:

Information assisting other 
nodes

47WSNL

Collaboration ConceptsCollaboration Concepts
Joint estimation

• Combine measurements obtained by different cameras

Probabilistic models
• Associate confidence levels with interpretationsp

Collaborative validation
• Verify results obtained by one camera through further observations by 

other cameras

Key frames and key features
• Observations that help other cameras do better interpretation

Distributed Vision Networks 48WSNL
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Layered Spatial CollaborationLayered Spatial Collaboration

Description Layer 4 : 
Gestures G

Description Layers Decision Layers
Final decision

Case Study: Human Gesture Analysis

Accident 
Detection

Description Layer 2 :
Features

Description Layer 3 : 
Gesture Elements

D i i L 1

Decision Layer 2 : 
collaboration between 

cameras

Decision Layer 3 : 
collaboration between 

cameras

F1 F2 F3
f12f11 f21

f22
f31

f32

E1 E2 E3

Feature-based fusion

Soft decision fusion

In-node feature 

Gaming

• Mutual reasoning:
- Joint estimation

• Assisted reasoning:
- Estimate validation
- Key feature exchange

• Self reasoning:

Distributed Vision Networks

Description Layer 1 :
Images

Decision Layer 1 : 
within a single camera

R1 R2 R3

Opportunistic 
data fusion

Fusion of features within a single camera

Fusion based on collaboration among multiple cameras

extraction
Smart 

Presentation

Self reasoning:
- In-node feature extraction

Security
49WSNL

Data FlowData Flow

The collaboration routine

2D attribute 
descriptions

2D attribute 
descriptions

2D attribute 
descriptions

in out

3D model parameters

Distributed Vision Networks

local processing routines 

interface

in out

Cam 1

local processing routines 

interface

in out

Cam 2

local processing routines 

interface

in out

Cam 3

50WSNL
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Use of FeedbackUse of Feedback

CAM 1

CAM 2

CAM N

Merge information
Project / decompose to 
each image plane again

�CAM 1

�CAM 2

�CAM N

3D 
description

Gesture 
extraction

1e

2e

3e

CAM 1

CAM 2

CAM N

Distributed Vision Networks

Gestures

Feedback
• Initialize in-node feature extraction
• Active vision (focus on what is important)

51WSNL

Fusion MechanismsFusion Mechanisms

Feedback

Distributed Vision Networks

• Spatial fusion
• Spatiotemporal fusion

• Model-based
• Active vision
• Feedback

• Feature fusion
• Temporal fusion

• Initialize in-node feature extraction
• Active vision (focus on what is important)

52WSNL
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The Big PictureThe Big Picture

Distributed Vision Networks 53WSNL

• Introduction

OutlineOutline

• Application potentials
• Data fusion mechanisms
– Features and feature fusion
– Spatial / spatiotemporal fusion

Model based f sion

Human face angle 
estimation

Human pose

Distributed Vision Networks

– Model-based fusion
– Decision fusion

• Outlook

54WSNL

Human pose 
estimation

Human event 
detection
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Feature FusionFeature FusionFeature FusionFeature Fusion

Distributed Vision Networks 55WSNL

Feature FusionFeature Fusion

• Extract multiple helpful features in each camera

• Opportunistic approach
– Various features may be available at different times

• Objective:
– To achieve robustness in node’s description of event / object

• Allows for low complexity implementation

Distributed Vision Networks

• Allows for low-complexity implementation

56WSNL
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Feature FusionFeature Fusion

• Generic features:
– Color

Edges and contours– Edges and contours
– Shape geometry
– Motion
– Regions

• Other features:
Optical flo

Generally useful in many vision 
applications
Application-specific features may also 
be defined:

• Ratios between length measures

Distributed Vision Networks

– Optical flow
– Invariant features
– Active contours

• Positioning of elements with 
respect to each other

57WSNL

Summary of feature fusion

ColorColor
• Various color spaces:

– RGB
– HSV (hue, saturation, value)
– CIE Lab 

• L*:luminance; a*:red/blue; b*:yellow/blueL :luminance; a :red/blue; b :yellow/blue
– YCbCr

Distributed Vision Networks

RGB (Red, Green, Blue) HSV (Hue, Saturation, Value)
58WSNL
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ColorColor
• Use of histograms: 

– Color or intensity distribution
– Detect dominant color and use as label

Object tracking based on hue histogram
Peak of histogram used as dominant color attribute

Distributed Vision Networks
Ref: E. Oto, F. Lau, H. Aghajan, “Color-Based Multiple Agent Tracking for Wireless Image Sensor Networks”, ACIVS, Sept. 2006

59WSNL

ColorColor

Object tracking based on hue histogram
Histogram used as object’s signature

Distributed Vision Networks 60WSNL
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ColorColor

al e

Overhead Cam 1 Overhead Cam 2 Overhead Cam 3 Oblique Cam

al e

Overhead Cam 1 Overhead Cam 2 Overhead Cam 3 Oblique Cam

Tracking between camera views needs:
Distinct signatures
Color-calibrated cameras
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ColorColor

Hue and intensity histograms

Illumination 1 Illumination 2 Illumination 3Illumination 1 Illumination 2 Illumination 3Illumination 1 Illumination 2 Illumination 3Illumination 1 Illumination 2 Illumination 3
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ColorColor
• Problems:

Not robust for identifying human 
attributes, such as skin and hair
• Variation between people

Color-based segmentation:
How many shades of color?

p p
• Variations in one person’s attributes 

due to environmental factors:
– Illumination changes
– Shadowing

• Variability with camera parameters

Similar color to background hard to segment

Distributed Vision Networks

Background subtraction:
Simple thresholding won’t work

Similar color to background hard to segment

63WSNL

ColorColor
Face and eye features for face orientation estimation

Camera 1Background 
Image

Background 
and object

Luminance 
Compensation

Skin color 
detection

Eye / mouth 
detection

- Face Candidate  
Eye Candidate

Distributed Vision Networks

and object detection

Ref: C. Chang, H. Aghajan, “Collaborative Face Orientation Detection in Wireless Image Sensor Networks”, SenSys - Distributed Smart Cameras, Oct. 2006
64WSNL
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ColorColor
Eye Detection by Cb/Cr ratio

Color Space 
Transform

Cb./ Cr

Distributed Vision Networks

65.481 128.553 24.966 16
1 -37.797 -74.203 112 128

255
112 -93.786 -18.214 128

b

r

Y R
C G

BC

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
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EdgeEdge
Why we use edges

Less susceptible to illumination changes than color or intensity level
Can provide shape information

Problems

Distributed Vision Networks

Sensitivity to texture (e.g. in clothes), usually undesirable
Not detected when foreground / background have low contrast
Edge fragments require effort to be connected (hard without shape 
information)

66WSNL
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Edge DetectionEdge Detection
• Different edge detector kernels can be used:
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0 1
⎡ ⎤
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1 2 1
0 0 0
1 2 1
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2 0 2
1 0 1
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1 1 1
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1 1 1

⎡ ⎤
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⎢ ⎥
⎢ ⎥− − −⎣ ⎦

1 0 1
1 0 1

⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

Zero crossing of Laplacian of Gaussian

Gaussian Laplacian 
(d i ti )

Distributed Vision Networks

2 2

2
2 2

2
4 2

1( , ) 1
2

x yx yLoG x y e σ

πσ σ

+
−⎡ ⎤+

= − −⎢ ⎥
⎣ ⎦

canny(smoothing) (derivative)
Linear operation
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Canny Edge DetectorCanny Edge Detector

• Widely used as standard edge detection scheme

• Goals:
– Find true edges: maximize signal-to-noise ratio + true positive 

detects
– Good localization: minimize distance between marked edge and 

real edge
• Position edge at maximum derivative level

Distributed Vision Networks

– Clear response: limit number of detects for a single edge to 1

• i.e. one response for every real edge

Achieved through smoothing and enhancement 
of local maxima

68WSNL
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• Procedure: 2

1 x

Smoothing Differencing Non-maximum
suppression

Thresholding /
Linking 

Canny Edge DetectorCanny Edge Detector

Procedure:
1.Smoothing

2D Gaussian smoothing via two 1D Gaussian smoothing filters (separable filter)

2.Differencing
Sobel operators (horizontal & vertical)

3.Non-maximum suppression (only keep local max)

221( )
2

Gauss x e σ

πσ

−
=

1 2 1
0 0 0
1 2 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

1 0 1
2 0 2
1 0 1

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

Distributed Vision Networks

3.Non maximum suppression (only keep local max)
Suppress non-maximum points perpendicular to edge direction
Maintain edge strength at local maxima

4.Thresholding and connection
• upper threshold t1, lower threshold t2
• Immediate accept if gradient > t1, immediately reject if gradient < t2
• If t2 < gradient < t1, accept if it can be connected to a strong edge pixel

69WSNL

Fusion of Color and Edge InformationFusion of Color and Edge Information
• Complementary attributes:

– Color – region attributes
– Edge – contour attributes

• Usage issues (example in face/head detection):
– Color: Difficulty in detection may be caused by shadows or bad illumination
– Edge: Active contours detect shape from edges, but may fit to outliers

Distributed Vision Networks 70WSNL
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Fusion of Color and Edge InformationFusion of Color and Edge Information

Edge detection 
(small edge pieces)

Look at color 
both sides

Define inside /
outside regions

Classify edges to 
on border / inside(small edge pieces) both sides outside regions on border / inside

Distributed Vision Networks

Different hues Similar hues
71WSNL

Fusion of Color and Edge InformationFusion of Color and Edge Information
• Pixel-based methods

– Information from immediate neighbors used
• One way to incorporate fusion on pixel level:

– Define vector of features for a pixel with edge 
strength, color, etc. 

• Use feature vector to make correspondence between 
multiple camera images

• Can also use to generate energy field for active contours

• How to bring in other context information?

Distributed Vision Networks

g
– Shape geometry (positional constraints)

72WSNL
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* *

Fusion of Color and Shape GeometryFusion of Color and Shape Geometry
• Eye detection application

– Adding position constraints for eyes:

Compensated 
Image Eye-map

Mean and 
Covariance

Skin mask

Skin color 
ellipse model

Eye
Candidate

Cb/Cr

Eye-Gaussian 
Distribution x

Gaussian-
Chrominance 
Distribution

x

Distributed Vision Networks

The eye on 
the boundary 
is detected

73WSNL

Joint Refinement of Color and MotionJoint Refinement of Color and Motion

Description Layer 3 : 
Gesture Elements

Description Layer 4 : 
Gestures

Decision Layer 3 : 
collaboration between 

cameras

E1 E2 E3

G

Description Layers Decision Layers
images

coarse estimation of 
color segmentation 

coarse estimation 
of motion flows

Description Layer 1 :
Images

Description Layer 2 :
Features

Decision Layer 1 : 
within a single camera

Decision Layer 2 : 
collaboration between 

cameras

R1 R2 R3

F1 F2 F3
f12f11 f21

f22
f31

f32

better color segmentation better motion flows

refine refine

. . . . . . . . . . . .

Optical flow assisting color segmentation Color segmentation assisting optical flow

Distributed Vision Networks

( )

without using angles of ellipses after using angles of ellipses

Search for fitted ellipse in motion flow allows for effective 
detection of arm’s motion vector

Clustering close-by points with similar motion 
vector allows for better segmentation of the leg

74WSNL
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RegionRegion--based Fusionbased Fusion
• Problems with pixel-based features:

– Localized attributes need local thresholds – hard to set
• Comparing color of foreground / background pixelsp g g g p

– No information from extended neighborhood considered
• Knowledge about extent of neighborhood not available

– That is the objective in many cases – segmentation

• Objects often contain correlated attributes in a region
– Idea: Grow regions based on correlated attributes

Distributed Vision Networks

g

75WSNL

SegmentationSegmentation
• Motivation:

– Foreground-background
– Body parts
– Face/hair

• Approaches:
– Watershed
– K-Means

Expectation Maximization (EM)

Use of complementary features
• Edge and color
• Color and motion

Combine pixel-based and region-based 
methods

Distributed Vision Networks

– Expectation Maximization (EM)

76WSNL

Summary of feature fusion
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SegmentationSegmentation
• Segment the image into meaningful groups
• What’s meaningful?

– Type of similarity that defines groups (attributes, neighborhood size)

• What to use?
– Usually one feature is chosen (color, edge, motion, texture)
– Interaction of different features
– How to incorporate knowledge of object model

• Balance between image observations and target attributes

Distributed Vision Networks 77WSNL

SegmentationSegmentation

color motion

texture edge

Distributed Vision Networks

Some heuristics on features
– Helpful to use both region and edge information
– Color is a useful cue, texture is better
– Possible to detect texture boundaries instead of texture regions
– Shadows and gradients (shades) are usually misleading
– Different features may be complementary

78WSNL
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SegmentationSegmentation
• Method: thresholding

– Typical procedure:
• Choose an image criterion

Bi i i• Binarize image
• Do clean-up operations

– Methods for adaptive thresholds
• Usually based on uniformity within region, not 

relationship between regions
• Susceptible to local noise

– Often used in background removal

Distributed Vision Networks 79WSNL

SegmentationSegmentation

• Method: region growing
– Take each point as a cluster

• Method: region splitting
– Take the whole image as a 

l t– At each step:
• Merge two clusters 

according to some metrics:
– E.g. similar color 

cluster
– At each step:

• Split a cluster into two smaller 
ones according to some metrics:

– E.g. average motion vector

Distributed Vision Networks

These may yield different results! 

80WSNL
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SegmentationSegmentation
• Method: K-means

–Divide all colors into K groups of color
–Each color defines a region, may not be connected

C l hi t
0

H
ue

 H

0

H
ue

 H

0 180 359

–Color histogram
–Mode search is done iteratively, minimizing the ratio: 

• Intra-group variance / Inter-group variance K=2 or 3?

Relation in image across 
time may provide clues

Distributed Vision Networks

K=2

81WSNL

Watershed Segmentation Watershed Segmentation –– Topology AnalogyTopology Analogy
• Image data interpreted as a topographic surface with gray 

levels as heights
• The idea is to move from single-pixel background removal to 

region-based background removal and segmentationregion-based background removal and segmentation

Distributed Vision Networks

• Region edges correspond to 
watersheds

• Low-gradient region interiors 
correspond to catchment basins

82WSNL
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MarkerMarker--based Watershed Segmentationbased Watershed Segmentation

Markers:  a set of pixels specified to be in the basins

marker 1
marker 2

marker 3

• Imagine there are holes in marker pixels and water comes out

Distributed Vision Networks

• Imagine there are holes in marker pixels, and water comes out 
at the same velocity to immerse the topology

• Water first starts to fill the basins

• When two sources of water meet (from different markers), the 
two regions merge

• Highest walls maintain the boundary of regions

83WSNL

Feature Fusion for SegmentationFeature Fusion for Segmentation

Original image

Background 
subtraction

Watershed

Watershed segmentation 
using K-means

Seeds for 
watershed

K-means clustering

Another 
foreground 

discriminator

watershed

Distributed Vision Networks

Segments

84WSNL
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Fusion of Optical Flow and ColorFusion of Optical Flow and Color

background subtraction optical flow estimation

images

markers markers
markers for the person

watershed segmentation

foreground background

K-means clustering (color)

Distributed Vision Networks

separate clusters spatially

ellipse fitting and attributes extraction

body part segments

85WSNL

Feature Fusion: Optical Flow and ColorFeature Fusion: Optical Flow and Color
Original image

Background 
subtraction

Seeds for watershed
Erosion applied 
to prevent 
watershed from 
going outside

Watershed results K-means clustering

Optical flow

Ellipses and attributes

Distributed Vision Networks 86WSNL
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Feature Fusion: Optical Flow and ColorFeature Fusion: Optical Flow and Color

Distributed Vision Networks 87WSNL

Feature Fusion: Optical Flow and ColorFeature Fusion: Optical Flow and Color

Distributed Vision Networks 88WSNL
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Watershed Background RemovalWatershed Background Removal

Distributed Vision Networks 89WSNL

SegmentationSegmentation
• Approaches:

– Watershed
– K-Means
– Expectation Maximization (EM)

Number of segments unknown or 
varying in time

Distributed Vision Networks 90WSNL

Summary of feature fusion
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Human Pose ReconstructionHuman Pose Reconstruction
From model, 
or via k-means

Refine color models 
(Perceptually 
Organized)

Or other morphological 
method with constraints

Concise description of 
segments

Segmentation function: Single camera
Feedback

Distributed Vision Networks

Model fitting function: Collaborative

91WSNL

SegmentationSegmentation
• In-node function based on:

– Feature fusion
– Feedback from model 

• Feedback allows for incorporation of spatiotemporal fusion outcome into 
local analysis

• Rough estimate of segments provided by:
– Local initialization

Adoption of spatiotemporal model

Segmentation function: Single camera

Distributed Vision Networks

– Adoption of spatiotemporal model

• Expectation Maximization (EM) methods use new observation to refine 
local color distributions
– EM produces markers (collection of high-confidence segment islands) for 

watershed
– Also helps with varying color distributions between cameras

• Watershed enforces spatial proximity information to link the segment 
92WSNL
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EM SegmentationEM Segmentation
• Mixture model: 

– Each pixel is produced by a density associated with one of the N 
image segments
Segmentation is to find the generating segment for every pixel– Segmentation is to find the generating segment for every pixel

• “Missing data         Hidden parameters” problem: 
– Missing data:

• Need label       (to segment the image) : Which segment the pixel 
comes from ( | )i ip y l x=

y

Distributed Vision Networks

– Hidden parameters: 
• Parameters of each segment 
• Mixing weights                          (the likelihood of each segment)

1{ , , }Nθ θΘ = K

1{ , , }Nα αΑ = K

93WSNL

EM SegmentationEM Segmentation
• The challenge:

– Missing data >> hidden parameters
• If we know the segment from which the pixel comes                
• Then it will be easy to determine its parameters and

( | )i ip y l x=

{ }θ θΘ = { }α αΑ =• Then it will be easy to determine its parameters and
– Missing data << hidden parameters

• If we know the segments
• We can determine and 

– BUT, we know neither missing data nor hidden parameters

• Strategy:

1{ , , }Nθ θΘ = K 1{ , , }Nα αΑ = K

( | )i ip y l x=
1{ , , }Nθ θΘ = K

1{ , , }Nα αΑ = K

Distributed Vision Networks

Strategy: 
– Estimate missing data                    from an estimate of hidden 

parameters 
– Update                using current estimate of missing data
– Iterate

Employ initialization to get close to a reasonable solution

 and Θ Α
( | )i ip y l x=

 and Θ Α ( | )i ip y l x=

94WSNL
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EM SegmentationEM Segmentation
• Initialization:

– Not a good idea to arbitrarily specify an initial estimate
• EM may be trapped to local optima 

– Ways to obtain initial estimates:
• K-means

– Centers of clusters are taken as the initial estimations for EM

• Segment parameters from the 3D body model
– Assumes appearance doesn’t change very quickly

Distributed Vision Networks

Segmentation function: Single camera

95WSNL

EM for Gaussian Mixture ModelsEM for Gaussian Mixture Models
• Gaussian mixture model (GMM)

– Enforce a model on the data structure
– Gaussian hidden parameters: { , }l l lθ μ= Σ

– Need to “label”      , i.e. determine ix
11 ( ) ( )

2
1

2 2

1( ) Pr( | )
(2 )

T
i l l i l

l

x x

i i l dP x x e
μ μ

θ θ
π

−− − Σ −
= =

Σ

( | )i ip y l x=

• E step: compute “expected segment” for every data point

Distributed Vision Networks

( )
( 1) ( )

( 1)

( 1)

1

( | ) ( ),  1,
( | )  

( | ) 1

k
l

k k
i i l i

k
N i ik

i i
l

p y l x P x l N
p y l x

p y l x

θ
α+

+

+

=

⎫= ∝ =
⎪
⇒ =⎬

= = ⎪
⎭

∑

K

1 1
( ; ) ( | ) log ( | )

M N

i i i l
i l

L x p y l x p x θ
= =

⎛ ⎞
Θ = =⎜ ⎟

⎝ ⎠
∑ ∑• M step: maximize the log-likelihood
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EM for Gaussian Mixture ModelsEM for Gaussian Mixture Models
• E step: compute “expected segment” for every data point

• M step: maximize the log-likelihood

( 1)

1
( | ) 1

N
k

i i
l

p y l x+

=

= =∑

arg max ( | ) log ( | )
l i

l i i i l
x

p y l x p x
θ

θ θ= =∑

initialization 1st iteration 2nd iteration 

Distributed Vision Networks

3rd iteration 4th iteration 20th iteration 
97WSNL

Perceptually Organized EM (POEM)Perceptually Organized EM (POEM)
• Regular EM method:

– A pixel-based method
• Doesn’t use spatial relationship between pixels / segment islands 

May also leave some pixels unclassified– May also leave some pixels unclassified

• POEM:
– Segments are continuous, so consider a pixel’s neighborhood

– Use a measure of expected grouping: 2 2
1 2

( ) ( )

( , )
i j i jx x coord x coord x

i jw x x e σ σ

− −
− −

=

Distributed Vision Networks

– The neighborhood votes for (xi in segment l):

j

( ) ( ) ( , ),   where ( ) ( | )
j

l i l j i j l j j j
x

V x x w x x x p y l xα α= = =∑

98WSNL
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Perceptually Organized EM (POEM)Perceptually Organized EM (POEM)
• Key difference with EM:

– In EM mixing weights       are the same for every pixel
– In POEM mixing weights differ from pixel to pixel, and are 

lα ix
g g p p

influenced by pixel’s neighbors
• E step: compute “expected segment” for every data point

( )
( 1) ( )( | ) ( ), 1,k
k k

i i l ip y l x P x l Nα+ ⎫= ∝ =
⎪

K

( ) ( )k
l ixα

Distributed Vision Networks

( )

( 1)

( 1)

1

( | ) ( ),  1,
( | )  

( | ) 1

k
l

i i l i
k

N i ik
i i

l

p y l x P x l N
p y l x

p y l x

θ
α

+

+

=

⎫
⎪
⇒ =⎬

= = ⎪
⎭
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⋅

⋅
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∑
controls “softness” of 

the voting combination 
η
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Distributed Vision Networks

You want proof? I’ll give you proof!

100WSNL
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Watershed SegmentationWatershed Segmentation
• Removing “vague” pixels is important before watershed, 

since wrong seeds/markers would compete with correct 
ones and cause false segments

Segmentation function: Single camera
Red: undecided pixels

Distributed Vision Networks

Assigns labels to undecided (dark blue) pixels

101WSNL

Ellipse FittingEllipse Fitting
• Motivation:

– Concise descriptions of segments
– Each ellipse should represent a segment with similar shape

N t il d t b d t– Not necessarily correspond to body parts

• Goodness of fit measures control ellipse fitting:
1.Occupancy of the ellipse
2.Coverage of the segment

Distributed Vision Networks 102WSNL
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InIn--Node Segmentation for Pose Node Segmentation for Pose EstimationEstimation

Distributed Vision Networks 103WSNL

Feature FusionFeature Fusion

• Generic features:
– Color

Edges and contours– Edges and contours
– Shape geometry
– Motion
– Regions

• Other features:
Optical flo

Distributed Vision Networks

– Optical flow
– Invariant features
– Active contours

104WSNL

Summary of feature fusion
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Optical flowOptical flow
• Optical flow -- motion of brightness patterns

Distributed Vision Networks 105WSNL

Optical flowOptical flow
• Applications:

– Global motion detection
• Detection of a moving objectDetection of a moving object

– Segmentation based on motion
• Segmentation of foreground from background
• Segmentation of parts of object with different motion 

vectors

Distributed Vision Networks

• Approaches:
– Pixel-based
– Feature-based

• Edge points, corner points, other features
106WSNL
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Optical flowOptical flow
Brightness ),,(),,( ttyyxxItyxI δδδ +++=

t t+δt

(x,y)
(x+δx,y+ δy)

0~t
t
Iy

y
Ix

x
I δδδ

∂
∂

+
∂
∂

+
∂
∂

0x y tI u I v I+ + =Optical flow constraint equation

v position of (u,v)

tyx ∂∂∂

• (u,v):  x and y components of optical flow
• (Ix, Iy, It): intensity derivatives

2D Motion Constraint Equation:

Distributed Vision Networks

, where ,xT
t

y

I u
I u I I u

I v
⎛ ⎞ ⎛ ⎞

∇ = − ∇ = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

r r

u

tI I
I

− ∇
∇

(u,v) is on the line orthogonal to image gradient, but 
we do not know its exact location (aperture problem) gradient vector scaled by It

q

1 equation in 2 unknowns
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Optical flowOptical flow
Aperture problem:
• Can only measure the component of optical flow along the 

direction of intensity gradient (normal to edge)
– Motion component along the edge cannot be detectedp g g

• The reason is we look at small window to the moving object

Barber-pole illusion

Distributed Vision Networks 108WSNL
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Optical flowOptical flow
• How to avoid the aperture problem?

– Use more constraints for a pixel
– Consider a 3x3 window

1 1 1

2 2 2

9 9 9

x y t

x y t

x y t

I I I
I I I

u

I I I

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

M M M

9 9 9

    minimize 
x y t

Au b Au b
⎝ ⎠⎝ ⎠

= −

Least-Squares Problem• Lucas-Kanade equation
T TA Au A b=

1

1( ) xi xi xi yi xi tiT T

xi yi yi yi yi ti

I I I I I I
u A A A b

I I I I I I

−

− ⎛ ⎞ ⎛ ⎞−
= = ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

∑ ∑ ∑
∑ ∑ ∑

Solvable when ATA invertible no aperture problem

Distributed Vision Networks

Solvable when A A invertible      no aperture problem

Increasing window size an option, but large window may include multiple motions

Two approaches: Pyramid searches, feature-based methods

If an edge exists, motion component along edge won’t show up         ATA not full rank

109WSNL

Optical flowOptical flow
• Another source of problem: Large motion vector 

– Increases size of search window

• Multi-scale pyramid
– Allows small fixed search range– Allows small, fixed search range

Lucas-Kanade

Warp & upsample

Downsample

Distributed Vision Networks
Gaussian pyramid of image 1 Gaussian pyramid of image 2

image 2image 1

110WSNL
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Optical flowOptical flow

• Pyramid example

Distributed Vision Networks 111WSNL

Optical flowOptical flow

• Pyramid example

Distributed Vision Networks 112WSNL



57

Optical flowOptical flow
• Issues with pyramids:

– Brightness constancy may not hold 
when down-sampling the 2 frames

• E.g. with shadowing

– Fails when neighboring pixels do not 
move in the same way

• E.g. non-rigid motion of body parts

– When motion is large, error in coarse 
scales will propagate to fine scales

• E g fast motion in human gestures

Distributed Vision Networks

• E.g. fast motion in human gestures

• How to make the method selective to quality?
– Pixels with no good matches can be excluded form motion field

113WSNL

Optical flowOptical flow
• Feature-based approaches

– Find features in each image
– Match between features
– Find motion vectors

Advantage
– Reduce information to be processed

• Only compute optical flow for feature points
– Robust estimation for global relation between images

• Called structure from motion
– Higher level interpretation of contents in the images

• Since they work with object features

Distributed Vision Networks

y j

Requirements:
– Features present and prominent in both images
– Define descriptors of features for matching
– Features have to be distinctive in descriptors (so the match can be 

found)
– Need to assume certain motion model (affine, perspective) in matching

114WSNL
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Optical flowOptical flow

• Feature-based: corners

Distributed Vision Networks

Detected features

115WSNL

Optical flowOptical flow

• Cross-correlation matching

Distributed Vision Networks

Initial matches After global constraints

• Use behavior of majority to delete outliers

116WSNL



59

Feature FusionFeature Fusion

• Generic features:
– Color

Edges and contours– Edges and contours
– Shape geometry
– Motion
– Regions

• Other features:
Optical flo

Distributed Vision Networks

– Optical flow
– Invariant features
– Active contours

117WSNL

Summary of feature fusion

Local Invariant FeaturesLocal Invariant Features

Interest points
Invariant region detectors

R i d i t

• Based on location and description of certain small region types

• Harris corner detector
– Corner: Significant derivative in both directions
– A descriptor defined for the interest points

• Descriptors can be vectors containing pixel values, gradients, etc.

( )

Region descriptors

Distributed Vision Networks

( )
local descriptor

This is beyond vector of features for a single 
pixel, and uses region information (e.g. SIFT)

118WSNL
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Local Invariant Features Local Invariant Features -- DetectorDetector
• Harris corner detector

–Auto-correlation matrix of intensity derivatives
2( ( , )) ( , ) ( , )x k k x k k y k kI x y I x y I x y⎡ ⎤

⎢ ⎥
∑ ∑

Captures the structure of the local neighborhood
• Measure defined based on eigenvalues of this matrix

– 2 strong eigenvalues         interest point (corner)
1 strong eigenvalue contour (edge)

( , ) ( , )

2

( , ) ( , )
( , ) ( , ) ( ( , ))

k k k k

k k k k

y
x y W x y W

x k k y k k y k k
x y W x y W

I x y I x y I x y
∈ ∈

∈ ∈

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑ ∑

∑ ∑

1 strong eigenvalue: edge

Distributed Vision Networks

– 1 strong eigenvalue           contour (edge)
– 0 eigenvalue                       uniform region

2 strong eigenvalues: ratio ~1 (strong corner)

2 strong eigenvalues: ratio >>1 (weak corner)

119WSNL

Local Invariant Features Local Invariant Features -- DetectorDetector

• Harris corner detector
– correspondence

( ) ( )?

Distributed Vision Networks

( ) ( )=
Vector comparison using some distance:
• The Mahalanobis distance

)()(),( 1 qpqpqp −Λ−= −T
Mdist
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Local Invariant Features Local Invariant Features -- DetectorDetector
• Harris corner detector

Distributed Vision Networks 121WSNL

Local Invariant Features Local Invariant Features -- DetectorDetector
• Harris corner detector

– Strength:
• Good detection in the presence of occlusion

– Uses many corners of the object of interestUses many corners of the object of interest
– Based on localized information
– Invariant to rotation and illumination change

– Weakness:
• Not invariant to scale and affine changes

– Approach:
E t d f t i t t i t i

Distributed Vision Networks

• Extend from corners to interest points or regions
– Multi-scale to provide scale invariance
– For affine invariance: 

Use direction of max. gradient as reference
Normalize the principal axes according to their characteristic 
scale

• Develop good descriptors 122WSNL



62

Local Invariant Features Local Invariant Features -- DetectorDetector
• Extension: Multi-scale extraction of Harris interest points

– Selection of points occurs at characteristic scale
• E.g. the scale with max. gradient levels, or corner strengths

Distributed Vision Networks

Best scale for each axis is 
used to size the ellipse

123WSNL

Local Invariant Features Local Invariant Features –– DescriptorsDescriptors

• Descriptors – SIFTSIFT (Scale Invariant Feature Transform)
– Image content is transformed into local features invariant to 

translation, rotation, scale

Distributed Vision Networks 124WSNL
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Local Invariant Features Local Invariant Features –– DescriptorsDescriptors
• SIFT

– In image at original scale:
• Canonical orientation chosen 

f h f tfor each feature
– Computed at selected scale

• Divide feature region into 4x4 
blocks

– Create histogram of local 
gradient directions: 
• For 4x4 windows within each 

block 0 2π

Distributed Vision Networks

block
• 8 bins in histogram

– Compose descriptor vector 
for feature:
• Descriptor vector of 128 

elements (8 x 16)

0 2π

125WSNL

Local Invariant Features Local Invariant Features –– DescriptorsDescriptors

Distributed Vision Networks

Arrows indicate “canonical orientation” 
of the features

126WSNL
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Local Invariant FeaturesLocal Invariant Features
Recognition under occlusion

View interpolation

Distributed Vision Networks 127WSNL

Local Invariant FeaturesLocal Invariant Features

Distributed Vision Networks

The photo tourism example
http://phototour.cs.washington.edu/

128WSNL
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Feature FusionFeature Fusion

• Generic features:
– Color

Edges and contours– Edges and contours
– Shape geometry
– Motion
– Regions

• Other features:
Optical flo

Distributed Vision Networks

– Optical flow
– Invariant features
– Active contours

129WSNL

Summary of feature fusion

Active ContoursActive Contours
• Model-based segmentation:

– Active contours
• Use of prior object knowledge / model
• Represents an object boundary or shape 

feature as a parametric curve
• An energy functional E is associated with 

the curve
• Finding the boundary is cast as an energy 

minimization problem

(Di t “S k h di t

Distributed Vision Networks

(Diagram courtesy “Snakes, shapes, gradient 
vector flow”, Xu, Prince)

Examples of object models

Energy minimization

130WSNL
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Active ContoursActive Contours

Initialize 
template size

Sample 
the image

Initialize 
template position

Iterate: 
match image

Generate 
energy field

High-score matchesCompatible size

Distributed Vision Networks

Edge map • Use other information (other 
frames, other object model info)
• Very challenging part

131WSNL

Active ContoursActive Contours
• The contour is defined in the (x, y) plane of an image as 

a parametric curve
v(s)=(x(s), y(s)) 

• Contour is said to possess an energy (E) which is 
defined as the sum of three energy terms:

int internal external constraE E E E= + +

Constraints of the contour:
• E g relation of control points w r t each other

The measured field from the image:
• E g the gradient field

Distributed Vision Networks

• The terms are defined to make final position of the 
contour have minimum energy 
– Energy minimization problem

• E.g. relation of control points w.r.t. each other • E.g. the gradient field

132WSNL
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Active ContoursActive Contours
• Deformable shapes – control 

points
– The contour is represented by a set of control 

i tpoints
– The curve is interpolated piecewise with the 

control points
• Linear, B-splines, etc.

– Control points are moved by the energy force

Yellow: Control points p
Green: Curve fitted to control points

’ A b

Distributed Vision Networks

Blue lines: Search line for every sample on the curve
Red: Optimal positions on a blue line, determine next position of control points

p’ = A p + b
A and b are 
determined by 
position of Red 
points

133WSNL

Active ContoursActive Contours

• Issues:
– Initialization of the shape:

• A bad initialization may lead to the shape trapped in local minimabad t a at o ay ead to t e s ape t apped oca a

– Convergence:
• Hard to predict whether the shape will converge to the desired image 

features

– Energy field:
• How to define a global field and handle local features? 

– Edge fragments
Wh t th i f t t l k f ?

Distributed Vision Networks

• What are the image features to look for? 

– Image noise may deform the shape in an undesired way
• Solution: 

– Dynamic models to predict and consider shape deformations

134WSNL
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Summary of Feature FusionSummary of Feature Fusion

• Use any one or multiple features based on:
Gl b l k l d bj t d l– Global knowledge, object model

– Image properties
– Adaptive learning of the effectiveness of the 

selected features

Distributed Vision Networks 135WSNL

Summary of Feature Summary of Feature FusionFusion

• Extract multiple helpful features in each camera

• Opportunistic approach
– Various features may be available at different times

• Joint feature refinement

• Objective:
T hi b t i d ’ d i ti f t / bj t

Distributed Vision Networks

– To achieve robustness in node’s description of event / object

– Allows for low-complexity implementation

136WSNL
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Fusion of Features in SegmentationFusion of Features in Segmentation
• Summary

– Segmentation based on different image features and the object 
model
Utili fl ibilit i h i f f t d i t ti b t– Utilize flexibility in choice of features and interactions between 
them

• Example: color & motion segmentation for human body

images

coarse estimation of 
color segmentation 

coarse estimation 
of motion flows

Distributed Vision Networks

better color segmentation better motion flows

refine refine

. . . . . . . . . . . .
( )
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Summary of Feature FusionSummary of Feature Fusion

• Pixel-based feature analysis methods:
– Information from immediate neighbors used

Th h ldi t ti

Pixels, Regions, Attributes

• Thresholding, segmentation
– Localized attributes need local thresholds – hard to set

• Comparing color of foreground / background pixels
– No information from extended neighborhood considered

• Knowledge about extent of neighborhood not available
– Which is the objective in many cases – segmentation

Two ways to extend:

Distributed Vision Networks

Two ways to extend:
• Attribute-based methods:

– Define vector of features for a pixel:
• Edge strength, color, etc.

• Region-based methods:
– Objects often contain correlated attributes in a region

Both try to utilize 
similarity in one or 
more attributes 

138WSNL
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Summary of Feature FusionSummary of Feature Fusion

These can be combined:

Pixels, Regions, Attributes

These can be combined:
• Methods based on attributes of small regions

– Define invariant features that can be used for:
• Object detection
• Matching between images

Distributed Vision Networks

• Measuring motion of objects across frames
• Object recognition in presence of occlusion

– Small number of invariant features used instead of 
pixel-level density

139WSNL

Face Orientation AnalysisFace Orientation Analysis
• Methods:

Color and geometry-based method
Spatial / temporal validation method
Spatiotemporal fusion method

XY

Z

X

Z

Y

X

Distributed Vision Networks

-100
-50

0

X

Y

Z
Y
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HairHair--Face RatioFace Ratio

K-means watershed Likelihood  
evaluation

Clustering

Camera1

Collaborative 
model estimation

Camera color 
settings

Skin/hair 
color model

Other cameras in 
vision Sensor networks

evaluation model estimation

Distributed Vision Networks

50 100 150 200 250 300
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200
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40

Harmonic fitting smoothes data 
and finds center of profile

? ? ? ? ?
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• Introduction

OutlineOutline

• Application potentials
• Data fusion mechanisms
– Features and feature fusion
– Spatial / spatiotemporal fusion

Model based f sion

Human face angle 
estimation

Human pose

Distributed Vision Networks

– Model-based fusion
– Decision fusion

• Outlook

142WSNL

Human pose 
estimation

Human event 
detection
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Spatial FusionSpatial FusionSpatial FusionSpatial Fusion

Distributed Vision Networks 143WSNL

Spatial FusionSpatial Fusion
• Geometric fusion

• Mutual reasoning
J i t ti ti

– Making correspondences
– Tracking
– Reconstruction of 3D models
– Camera network calibration– Joint estimation

– Joint refinement
– Decision fusion

• Assisted reasoning
– Estimate validation
– Key frame exchange

Camera network calibration 
– Use of epipolar geometry to:

•Feature matching
•Outlier removal
•ROI mapping between camera views

X

Distributed Vision Networks 144

– Key frame exchange

-100
-50

0

X

Y

Z

Y

ZZ

Y

X

Mapped to an ellipsoid
Camera 1

(Training set)
Camera 3
(Test set)

Face Orientation Estimation
• Color and geometry-based method
• Spatial / temporal validation method

144WSNL
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Color and Geometry FusionColor and Geometry Fusion

• Use geometry of cameras to:
Match features

Face orientation analysis
Feature matching with epipolar geometry

x1 x2

X

b li

l’x1 x2

X

b li

l’

100 200 300 100 200 300 100 200 300

Fa
ls

e 
fa

ce
 

ca
nd

id
at

e

– Match features
– Remove false feature candidates

baseline

Epipolar
line for x1

baseline

Epipolar
line for x1
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Epipolar lines for 
false candidates

An Example of 
Mutual Reasoning
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Spatial / Temporal Fusion MethodSpatial / Temporal Fusion Method
• An assisted reasoning method:

Key frame exchange
• Value observations of frontal view

In-node feature fusion
• Local angle estimates

Temporal fusion
• Local interpolation of angle between key frames

Distributed Vision Networks

p g y

Spatial / temporal validation
• Face orientation estimates exchanged and 

validated
– Spatial: outlier removal
– Temporal: smoothing

146WSNL
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Data ExchangeData Exchange

Unknown camera 
locationslocations

Assisted 
reasoning

Distributed Vision Networks

Spatial / temporal 
fusion / validation

147WSNL

RegionRegion--based Fusion: Optical Flow and Colorbased Fusion: Optical Flow and Color

Distributed Vision Networks 148WSNL
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HairHair--Face RatioFace Ratio

1 1 1

0 50
-1

0

0 50
-1

0

0 50
-1

0

Distributed Vision Networks

0 50
-1

0

1

0 50
-1

0

1

0 50
-1

0

1

Frontal face view detected as key 
frame info

149WSNL

Feature FusionFeature Fusion
• Level of features for fusion between cameras?

– Features are typically dense fields
• Edge points, motion vectors

– They are locally fused to derive descriptions (sparse)They are locally fused to derive descriptions (sparse)
• Descriptions are exchanged

– Valuable features may be exchanged as dense descriptors
• Communication cost issues need to be considered

L l l d i ti

High-level descriptionsCollaboration 
between cameras

Sparse

Distributed Vision Networks 150

• Key features and key frames allow selective sharing of dense features

Low-level features

High-level features

Low-level descriptions

Processing within 
a single camera

Features (single camera) 
or descriptions (shared)

Dense

150WSNL
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Key FramesKey Frames
• Frames with high confidence estimates

– Node with key frame observation broadcasts derived 
information

– Other nodes use them to refine their local estimates

Distributed Vision Networks 151151WSNL

Key Frame NotificationKey Frame Notification

fa
ce

 
de

gr
ee

)

Key frame detected, 
Key frame 
notification 
h h h

Calculate the face 
orientation by adding 0o

with the relative angular 
diff θ

1
2

3

• Key frames are frames with high confidence estimates

t-1 t

H
ai

r-
fa

es
tim

at
es

 ( indicating that the 
camera has the frontal 

view (0o)

through the 
network

difference θ
Calculate the face 

orientation by adding 0o

with the relative angular 
difference θ+φ

4

*

*

Time of a frontal 
face detected (tff)

a

b time

( 1)ff
b at t t
b b

−
= + −

θ

φ

Distributed Vision Networks

( )ff a b a b− −

• If cameras calibrated:
Other nodes can use received key frame information to:

Re-initialize their face angle tracking method
Calculate a weighted average for the face angle using received estimates

152WSNL
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Temporal FusionTemporal Fusion
• Use key frames to re-initialize local face angle estimate

– Use angle estimates close to zero (frontal view)

• Aims to limit error propagation in time
– Use optical flow to locally track angle changes between frames
– Interpolate between two key frames to limit optical flow error propagation

Cameras initialize 
face angles

Cameras initialize 
face angles

Local optical flow is used 
to track face angle 
between key frames

Distributed Vision Networks 153

Cameras interpolate 
face angles between 
key frames using 
local optical flow

Key frames

153WSNL

Spatial / Temporal ValidationSpatial / Temporal Validation
• Estimates between key frames are 

corrected by:
• Temporal smoothing (one camera)

O tli l ( lti l )
Temporal 
smoothing

Spatial 
smoothing

• Outlier removal (multiple cameras)

• Can this be done more effectively?
Spatiotemporal filtering

Key frames

Distributed Vision Networks 154154WSNL



78

Spatiotemporal FusionSpatiotemporal Fusion

Distributed Vision Networks 155WSNL

In-node feature 
extraction

Optical flow Hair-face

Image(x,y,t)

A Single Camera Node

Coarse 

{
2 2 2

1 2y(t) ( ) ( ) ( )dx t x t u tμ μ+ − +∑ 1442443 14243
spatial 

constraint
temporal 
constraint

penalizing the 
error in coarse Est.

Spatiotemporal FusionSpatiotemporal Fusion

Optical flow 
estimation

Hair face 
estimation

Xd(t)

estimation

Joint 
estimation

Other Network
 Nodes

x(t+1)=Ax(t)+Bu(t)
y(t)=Cx(t)+Du(t)

(t) K (t)+L

u(t)x(t)

Minimize
2 2 2

1 2y(t) ( ) ( ) ( )dx t x t u tμ μ+ − +∑

Xd(t)

Xd(t)

Xd(t)

• Joint estimation by LQR:
– Spatiotemporal filtering by 

minimizing a cost function

200

ee

Distributed Vision Networks

Face orientation 
estimates

Fine
estimation

u(t)=Ktx(t)+Ltqt

0 5 10 15 20 25 30 35 40
-200

0

de
gr

e
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Spatiotemporal FusionSpatiotemporal Fusion

O t i ti ti f f fil

0 5 10 15 20 25 30 35 40
-200

0

200
de

gr
ee

Backward Pass

Forward Pass

0

50

100

150
True orientation

de
gr

ee

Right 
Profile

Opportunistic creation of face profile

Distributed Vision Networks 157
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-50

frame

Left 
Profile

Query result examples: 
side profiles

Mapped to 
ellipsoid
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Spatiotemporal FusionSpatiotemporal Fusion

Distributed Vision Networks 158158WSNL
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• Introduction

OutlineOutline

• Application potentials
• Data fusion mechanisms
– Features and feature fusion
– Spatial / spatiotemporal fusion

Model based f sion

Human face angle 
estimation

Human pose

Distributed Vision Networks

– Model-based fusion
– Decision fusion

• Outlook

159WSNL

Human pose 
estimation

Human event 
detection

ModelModel--based Fusionbased FusionModelModel based Fusionbased Fusion

Distributed Vision Networks 160WSNL
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ModelModel--based Fusionbased Fusion
• Motivation to build a human model:

A concise reference for merging information from cameras
Universal interface for different gesture interpretation applications
Allows new viewing angles in virtual domainAllows new viewing angles in virtual domain
Facilitates active vision methods:

• Focus on what is important
• Exchange descriptions only relevant to the model
• Develop more detail in time
• Initialize next operations (segmentation, motion tracking, etc)

Helps address privacy concerns in various applications

Distributed Vision Networks 161WSNL

ModelModel--based Fusionbased Fusion
•Approach:

Exchange segments and attributes, 
combine to reconstruct a 3D model

1θ

2θ

3θ

4θ1ϕ

2ϕ

3ϕ

4ϕ
y

z

Ocombine to reconstruct a 3D model
Subject’s information mapped and 
maintained in the model:
•Geometric configuration: dimensions, 
lengths, angles

•Color / texture / motion of different 

x

ellipses ellipses ellipses

CAM1 CAM2 CAM3

Distributed Vision Networks

segments

162WSNL
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Spatiotemporal FusionSpatiotemporal Fusion

Distributed Vision Networks

Active vision
(temporal fusion)

163WSNL

Feature FusionFeature Fusion
• Edge

– Templates
– Chamfer distance 

(distance orientation)

• Motion
– Structure
– Object boundaries / edges

i i !(distance, orientation)
• Color

– skin color
– adaptively learned color

• No single method is robust !
– Point / line features vs region 

features 

Distributed Vision Networks 164WSNL
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Discriminative -> template-based

Generative -> model-based
◦ Bottom up

Posture Estimation Posture Estimation –– ReviewReview

◦ Bottom-up
◦ Top-down

Combined
◦ Discriminative for body parts
◦ Generative for whole-body configuration

Multi-view Challenges

Distributed Vision Networks

g
• redundancy 
• misleading info in some images
• correspondence
• communication ( images? )

165WSNL

– 3D model ‐> 2D projections of edges and silhouettes

– Validate 2D projections with image observations
+ Easy to handle occlusions
- Difficult to optimize: non-convex

Posture Estimation Posture Estimation –– TopTop--Down ApproachDown Approach

Difficult to optimize:  non convex
- Time consuming in calculating projections and evaluating them

Distributed Vision Networks 166WSNL
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− Looking for body part candidates in images
− Assemble 2D/3D models from body part candidates
+  Distribute more computation in images (i.e. body part candidates, local assemblage)
- Difficult to handle occlusions without knowing relative configurations of body parts

Posture Estimation Posture Estimation –– BottomBottom--Up ApproachUp Approach

- Difficult to handle occlusions without knowing relative configurations of body parts
- Not direct to map from 2D assemblage to the 3D model

Distributed Vision Networks 167WSNL

MultiMulti--View Camera NetworkView Camera Network

• Basic Assumption and Constraint
-- Powerful local image processor, limited communication

R d l l i f ti– Reduce local information
– Maximally utilize multi-views: 

• to compensate for partial observations and reduced descriptions

• Ideas
– Combine bottom-up and top-down approaches

• Concise and informative local deduction
– Choose best view for different purposes

Distributed Vision Networks

• Optimally combine
• Reduce redundancy

– Challenge: Can we learn adaptively? 
• Model (size, appearance)
• Behaviors -> prediction & validation

168WSNL
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• Combine bottom-up and top-down approaches to 
– Locally : Image -> descriptions
– Hierarchical search for full body geometric configuration

Posture Estimation Posture Estimation –– Strategies Strategies 

Distributed Vision Networks 169WSNL

Network
Feedback
(robustness, efficiency)
• Low-level vision: appearance
• High-level: activity interpretation

Distributed Vision Networks

High level: activity interpretation

170WSNL
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Distributed Vision Networks

“ I think you should be more explicit here in step two.”
171WSNL

Adapt to changing 
appearance

Enforce spatial connectivity 
for ambiguous pixel colors

Posture EstimationPosture Estimation

Segmentation: Single camera

Distributed Vision Networks

Model fitting: Collaborative

172WSNL
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Collaborative Model FittingCollaborative Model Fitting

1θ 3θ

θ
1ϕ 3ϕ

• Ellipse parameters are exchanged between 
cameras

– Reduced data communication load for 
collaboration

A server node or each of cameras collect the 2θ 4θ

2ϕ 4ϕ
• A server node or each of cameras collect the 

data and create a “virtual skeleton”

Distributed Vision NetworksACIVS 2007 Tutorial 173

Goodness of ellipse 
fits to segments

Projection on image 
planes

E.g. parameters for the 
upper body (arms)

173WSNL

• Key problem
– Explore possible local optima as candidates for the global optimal
– Determine the global optimal

• Techniques

Posture Estimation Posture Estimation –– OptimizationOptimization

Techniques
– Particle filtering: multiple hypothesis
– Graphical models: exponential -> linear

• Particle Swarm Optimization (social /inertia coefficient)

Distributed Vision Networks

Particle Swarm Optimization
Projection on image planes E.g. parameters for the upper 

body (arms)

174WSNL
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Skeleton FittingSkeleton Fitting
• A simple example: fitting for the two arms

–8 parameters:
• Elevation angles: θ 1θ 3θg
• Azimuth angles: φ

1

2θ 4θ
1ϕ

2ϕ

3ϕ

4ϕ

– Assumptions: 
• Known projection from 3D to 2D image 

planes (localization information)

Distributed Vision Networks

p ( )
• Normalize the 2D projection to size and 

position of ellipses in the image
– Use subject’s orientation and geometric 

shape

175WSNL

Skeleton FittingSkeleton Fitting

Solve for θ’s and φ’s based on geometry
• Need to first establish correspondence 

between camera observations

• Options to find parameters for the skeleton:

1θ 3θ

– A hard problem especially under occlusion
• Ambiguity on 3D positions exists even if we 

have 2D projections of several cameras

Cast as an optimization problem and find 
θ’s and φ’s to minimize an objective function
• Non-linear and non-convex

1

2θ 4θ
1ϕ

2ϕ

3ϕ

4ϕ

Distributed Vision Networks

– Difficult to solve

Sample the solution space and find the best sample (particle filtering)
• Not so intelligent if involves exhaustive search
• Can model constraints be used to determine the search space?

– A feasible solution

176WSNL
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Skeleton FittingSkeleton Fitting
Generate the search space for 

geometric configurations (different 
combinations of θ’s and Φ’s)

Take out a test configuration

Generate the 3D skeleton based on 
the test configuration, then project it on 
to image planes of different cameras

In each camera, score the similarity 
between the projected 3D skeleton and 
the ellipses (how much do they overlap)

Add up scores from all the cameras

• Red: projection of skeleton on image plane
• Green: region of arms grown from red lines
• Blue: ellipses from segmentation

Distributed Vision Networks

The score for this test 
configuration

After all the test 
configurations

Pick out the geometric 
configuration with the highest score

3D skeleton

Score = Area (ellipses falling within green polygons) / Area (green polygons)

177WSNL

Collaborative Model FittingCollaborative Model Fitting

Frame 1

Frame 28

Frame 70

Frame 81

Distributed Vision NetworksACIVS 2007 Tutorial 178

Frame 105

Frame 148

178WSNL
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Collaborative Model FittingCollaborative Model Fitting
Frame 105

Distributed Vision Networks 179WSNL

Collaborative Model FittingCollaborative Model Fitting

Distributed Vision Networks 180WSNL
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Virtual PlacementVirtual Placement

Distributed Vision Networks 181WSNL

Virtual PlacementVirtual Placement
Collaborative
Face Analysis

Feature Fusion Ellipse Fitting
Model based

Distributed Vision Networks

In-node processing Model-based 
Spatiotemporal 

Fusion

182WSNL
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Challenges
Wireless (ZigBee) + Real-time vision
◦ ~100Kbit / 30 fps ~ 400B/frame
Computation capacity

How fast is the whole system given

Strategy

Hardware 
Al ith

Balance!

Distributed Computation!

Towards Towards realreal--time + wireless time + wireless communicationcommunication

◦ How fast is the whole system given 
enough comm bandwidth?

support Algorithm

SIMD(Single Instruction Multiple Data)
• high performance
• low power

Xetal-II SIMD : 
320PE@150MHz

Pentium4
2.4GHz

Peak 
Performance

100
GOPS

6
GOPS

Distributed Vision Networks

Joint work with NXP Semiconductors, the Netherlands

Peak Power 
Consumption

1.0
Watt

59
Watt

183WSNL

ZigBee Channel 1
WiCa 1.1

WiCa 1.1

IC3D CPLD

Sensor

The SystemThe System

ZigBee Channel 2

ZigBee

AquisGrain 2.0

DPRAM

SD Slot

Distributed Vision Networks

ZigBee Channel 3

Joint work with NXP Semiconductors, the Netherlands
184WSNL
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Data FlowData Flow

Distributed Vision Networks 185WSNL

ModelModel

Distributed Vision Networks 186WSNL
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DemoDemo

Distributed Vision Networks 187WSNL

DemoDemo

Distributed Vision Networks 188WSNL
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BallGameBallGame ApplicationApplication

Distributed Vision Networks 189WSNL

BallGameBallGame ApplicationApplication

Distributed Vision Networks

ICDSC (International Conference on Distributed Smart Cameras)
Sept 2007, Vienna, Austria

190WSNL
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Spatiotemporal SmoothingSpatiotemporal Smoothing

Distributed Vision Networks 191WSNL

Spatiotemporal SmoothingSpatiotemporal Smoothing

Distributed Vision Networks

No smoothing Two-camera feature fusion 
and temporal smoothing
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• Introduction

OutlineOutline

• Application potentials
• Data fusion mechanisms
– Features and feature fusion
– Spatial / spatiotemporal fusion

Model based f sion

Human face angle 
estimation

Human pose

Distributed Vision Networks

– Model-based fusion
– Decision fusion

• Outlook

193WSNL

Human pose 
estimation

Human event 
detection

Decision FusionDecision FusionDecision FusionDecision Fusion
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Decision FusionDecision Fusion
• Cameras may independently do multiple feature level 

processing due to:
– Adequate features in own observations
– Cost, latency of communication
– Lack of event observation in some cameras due to spatial distribution

• Processing models based on:
– Opportunistic feature fusion in each camera

• Use of all available information to make decision

S ft d i i h

Distributed Vision Networks

– Soft decision exchange
• Through the use of detected states and event priority levels

– Event subscription data exchange model
• Allows participation by all interested nodes

– Certainty assignment module
• Provides basis for comparing node decisions

195WSNL

Smart Home Care Network Smart Home Care Network 

Objectives:
Home care monitoring system
Allowing independent livingAllowing independent living
Access to help when needed
Event analysis and reporting
Low false alarm via multi-modal analysis

Detection Analysis Action

Distributed Vision Networks

Detection Analysis Action

• Accidents, falls
• Periods of no movement
• Abnormal events
• Sensors on person

• Dial call center
• Upload event report
• Voice communication
• Do more measurements

• Opportunistic feature 
fusion

• Collaborative decision 
fusion
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Camera Node

Smart Home Care NetworkSmart Home Care Network
Range Estimates

from Signal 
Strength

i

j

Posture Analysis

Camera 
Node

Estimated Event

Accelerometer Signal

User Badge

Posture Analysis

Distributed Vision Networks

Phone Interface Node

User Location Voice 
Channel

Phone 
Network

Event

Camera Node

Call Center

References: 

• A. Maleki-Tabar, A. Keshavarz, H. Aghajan, “Smart Home Care Network using Sensor 
Fusion and Distributed Vision-Based Reasoning”, ACM Multimedia Workshop On Video 
Surveillance and Sensor Networks, Oct. 2006

• A. Keshavarz, A. Maleki-Tabar, H. Aghajan, “Distributed Vision-Based Reasoning for 
Smart Home Care”, ACM SenSys Workshop on Distributed Smart Cameras, Oct. 2006

i

j

Posture Analysis
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Decision Fusion ModelDecision Fusion Model
Accelerometer 
Signal Classifier State0

Trigger Image Analysis
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Distributed Vision Networks
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• Accelerometer signal:
– Hard to reliably classify into fall / no-fall

• Large variation from person to person
• May have similar signature with sitting down, bending down

– Can be used to detect sudden movements
– Triggers vision analysis
– Severity of signal can be used at decision fusion logic
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Opportunistic Feature FusionOpportunistic Feature Fusion
Frame Subtraction 
& Blob Extraction

Identify Human/Non-human Blobs

Posture Detection

Human

Log the Event

Non-human

Distributed Vision Networks

Certainty Assignment Module

Head Detection Exchange State with Other Nodes

Report Event Based on State
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Opportunistic Feature FusionOpportunistic Feature Fusion
Frame Subtraction 
& Blob Extraction

Identify Human/Non-human Blobs

Human/ non-human blobs

Identify Human/Non-human Blobs
• % of skin color in blob
• % of straight edges in blob

Posture Detection

Human

Log the Event

Non-human

Distributed Vision Networks

Certainty Assignment Module

Head Detection Exchange State with Other Nodes

Report Event Based on State
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Opportunistic Feature FusionOpportunistic Feature Fusion
Frame Subtraction 
& Blob Extraction

Identify Human/Non-human BlobsIdentify Human/Non-human Blobs
• % of skin color in blob
• % of straight edges in blob

Posture Detection
• Body orientation
• Aspect ratio

Human

Log the Event

Non-human

Posture Detection:

Distributed Vision Networks

Certainty Assignment Module

Head Detection Exchange State with Other Nodes

Report Event Based on State
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Opportunistic Feature FusionOpportunistic Feature Fusion
Frame Subtraction 
& Blob Extraction

Identify Human/Non-human Blobs

Head Detection:
Using Skin Color:

Identify Human/Non-human Blobs
• % of skin color in blob
• % of straight edges in blob

Posture Detection
• Body orientation
• Aspect ratio

Human

Log the Event

Non-human 0
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Using Head/Neck Profile:

Distributed Vision Networks

Certainty Assignment Module

Exchange State with Other Nodes

Report Event Based on State

Head Detection
• Skin color
• Shoulder/neck profile
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Opportunistic Feature FusionOpportunistic Feature Fusion
Image Body Mask Posture

Standing

Head Mask

Standing

Distributed Vision Networks

Lying Down

Lying Down

203WSNL

Certainty Assignment ModuleCertainty Assignment Module
Frame Subtraction 
& Blob Extraction

Identify Human/Non-human Blobs U:U:

Each camera produces a state based on:
Detected posture

Detected head position

Identify Human/Non-human Blobs
• % of skin color in blob
• % of straight edges in blob

Posture Detection
• Body orientation
• Aspect ratio

Human

Log the Event

Non-human
Head
Position

Posture
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TB

U:
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State=1

C3:
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C2:
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F
Posture
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F: Feedback
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F
Posture
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Head Position
T: Top
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U: Undecided

F: Feedback

Distributed Vision Networks

Certainty Assignment Module

Exchange State with Other Nodes

Report Event Based on State

Head Detection
• Skin color
• Shoulder/neck profile

F: FeedbackF: Feedback
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Decision FusionDecision Fusion
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Distributed Vision Networks

Head
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Other ReportsOther Reports
• Each camera produces trajectory of body mask and head 

during a fall

Distributed Vision Networks 206WSNL
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Event AnalysisEvent Analysis
State0

Trigger Image Analysis

Camera  1 Camera  2 Camera  3

Analysis Analysis Analysis

Coarse
Event Detector

State1 State2 State3

Decision Making Process

Distributed Vision Networks 207WSNL

Event AnalysisEvent Analysis
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Event AnalysisEvent Analysis

Distributed Vision Networks 209WSNL

Event AnalysisEvent Analysis

Alert level 
= 0.6598

Confidence 
= 0

Alert level 
= 0.8370

Confidence 
= 0.7389

Alert level 
= 0.8080

Confidence 
= 0.7695

combine

Distributed Vision Networks

Lying down, danger
( 0.6201 )
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Hierarchical ReconstructionHierarchical Reconstruction

Vertical Horizontal ??Posture 
Orientation

Head 

W
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Top Side Left Right?? ??

Multi-Camera Model Fitting

Distributed Vision NetworksACIVS 2007 Tutorial 211

Position

re O
bservations

Top Side Left Right?? ??

Arms 
Positions

??

Legs 
PositionsEvent Interpretation

Bottom-upTop-down
211WSNL

Distributed Vision Networks 212WSNL



107

• Introduction

OutlineOutline

• Application potentials
• Data fusion mechanisms
– Features and feature fusion
– Spatial / spatiotemporal fusion

Model based f sion

Human face angle 
estimation

Human pose

Distributed Vision Networks

– Model-based fusion
– Decision fusion

• Outlook

213WSNL

Human pose 
estimation

Human event 
detection

SummarySummary
Smart camera networks:

Towards novel user-centric applications: 
Interpretive 
Context aware
Generalized HCI

Processing at source allows:
Image transfer avoidance
Scalable networks
Descriptive reports

Distributed Vision Networks

p p

Privacy issues:
Awareness of user choices
In-node processing and image transfer avoidance
Model-based or silhouetted images to reconstruct event

214WSNL
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SummarySummary
Opportunistic data fusion:

• Within one camera
• Between cameras
• Use of all available information
• Lower complexity methods• Lower complexity methods

Key features and key frames:
• Information assisting other nodes

Spatial fusion:
• Locations, angles, movements, matching features
• Validation of estimates by checking consistency, outlier removal
• Occlusion handling ambiguity resolution

Distributed Vision Networks

Occlusion handling, ambiguity resolution
• Handling short events, time limits in estimation
• 3D reconstruction, model-based, feedback

Temporal fusion:
• Local interpolation of estimates
• Collaborative estimate smoothing
• Iteration towards better estimates with new observations

215WSNL

SummarySummary
Distributed vision networks:

Algorithm design is key in efficient use of computing resources
In-node feature extraction and opportunistic fusionIn node feature extraction and opportunistic fusion
Use of key features in the data exchange mechanism
Model-based approach provides feedback / initial points for in-node 
processing

Balance issues between in-node and collaborative processing
Communication cost
Latency
Processing complexities
L l f d t f i

Distributed Vision Networks

Levels of data fusion

216WSNL
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Towards Active VisionTowards Active Vision
Active vision in feature extraction:

Detection of prominent color / texture attributes
Use of features that matter instead of generic features
Use of spatiotemporal fusion results to learn key features

Active vision in modules with processing load:
Instead of avoiding methods with high processing cost / latency:

• Define what the methods should look for
• Perform initialization to restrict searches

Distributed Vision Networks

Active vision in gesture analysis:
Use prior knowledge to guide vision network:

History of subject
Semantic meanings of gestures
Context of the observed event

217WSNL

Open QuestionsOpen Questions

• How much advantageous over monocular? In g
what ways? How to use them in the correct 
way?

• Capability limit of the camera network (how well 
can it understand the scene, how many views 
are needed)? 

• Balance and trade off : In node v s collaborative

Distributed Vision Networks

• Balance and trade-off : In-node v.s. collaborative 
processing

• Networking: Data exchange v.s. latency

218WSNL
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OutlookOutlook

Robotics
Agents
Response systems
Smart environments

Feedback
( features, parameters, 

decisions etc )

Distributed
 Vision Networks

( DVN )

Enabling technologies:
o Vision processing
o Wireless sensor network
o Embedded computing
o Signal processing

Artificial 
Intelligence

Context
Event interpretation
Behavior modeling

Smart 
Environments

Assisted living
Occupancy sensing
Augmented reality

decisions, etc. )

Distributed Vision Networks

Multimedia Human Computer 
Interaction

Scene construction
Virtual reality
Gaming

Immersive virtual reality 
Non-restrictive interface
Robotics

219WSNL

Interfacing Vision

Distributed Vision Networks

Quantitative knowledge provides specific distinctive information for the AI module 
Qualitative representation offers clues to the features of interest to be extracted
This can lead to active vision approaches

Generalized HCI

220WSNL
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Interfacing Vision
Vision Reasoning /

Interpretations

 Human Model

Kinematics
Attributes
States 

Interpretation 
levels

Behavior 
analysis

Instantaneous 
action

Low-level

AI reasoning

Posture / attributes

M d l t

AI

Vision 
Processing

Distributed Vision Networks

features Model parameters

Queries
Context
Persistence
Behavior attributes 

Feedback

221WSNL

Behavior Behavior ModelModel

Distributed Vision Networks 222WSNL
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