
4th European
SystemC Users Group Meeting
http://www-ti.informatik.uni-tuebingen.de/systemc

Copenhagen
October 5th, 2001, 1100-1600

SystemC 2.0 Tutorial

Thorsten Grötker
R & D Manager
Synopsys, Inc.

3

Motivation

§SystemC 1.0
HW modeling (RTL and behavioral)

§SystemC 2.0
extend scope to System-Level Modeling

§System-Level Modeling
– functional models
– transaction-level platform models
– high-level architecture models

4

How do we achieve this?

§We use a flexible and powerful Model of
Computation (MoC).

§A MoC is characterized by
– the model of time employed,
– the rules for process activation, and
– the supported means of communication.

5

MoC: Model of Time

§SystemC 1.0
Relative floating-point model of time (double)

§SystemC 2.0
Absolute (64 bit) unsigned integer model of time

§Why?
– Avoid finite precision effects, e.g. underflow
– Use absolute model of time: define time units

(IP exchange)

6

MoC: Rules for Process Activation

§SystemC 1.0
– Static sensitivity
wProcesses are made sensitive to a fixed set of signals during

elaboration

§SystemC 2.0
– Static sensitivity
– Dynamic sensitivity
wThe sensitivity (activiation condition) of a process can be

altered during simulation (after elaboration)
wMain features: events and extended wait() method

7

Waiting

wait(); // as in SystemC 1.0

wait(event); // wait for event

wait(e1 | e2 | e3); // wait for first event

wait(e1 & e2 & e3); // wait for all events

wait(200, SC_NS); // wait for 200ns

// wait with timeout

wait(200, SC_NS, e1 | e2);

wait(200, SC_NS, e1 & e2);

8

MoC: Communication

§SystemC 1.0
– Fixed set of communication channels (sc_signal, …)

and ports (sc_in, sc_out, …).
§SystemC 2.0

– richer set of predefined channels
(HW signals, FIFO, semaphore, mutex, …)

– user-defined
winterfaces
wchannels
wports

Define your own bus,
message queue, … etc.

9

Interface Methods Calls

module

channelprocess
port

module::process() {
 ...
 port->some_method(42);
 ...
}

10

Hierarchical channels

§Channels can be hierarchical, i.e. they can
contain modules, processes, and channels.
§A module that implements an interface is a

hierarchical channel.

module

channelprocess
port

module

process
port

hierarchical
channel

i/f

11

SystemC 2.0 Language Architecture

Core Language
Modules
Ports
Processes
Interfaces
Channels
Events

Data Types
Logic Type (01XZ)
Logic Vectors
Bits and Bit Vectors
Arbitrary Precision Integers
Fixed Point Numbers
C++ Built-In Types (int, char, double, etc.)
C++ User-Defined Types

Elementary Channels
Signal, Timer, Mutex, Semaphore, Fifo, etc.

Standard Channels for
Various MOCs

Kahn Process Networks
Static Dataflow, etc.

Methodology-Specific Channels
Master/Slave Library

etc.

C++ Language Standard

Upper layers
are built cleanly
on lower layers.

Lower layers
can be used
without upper
layers.

12

Model of Computation

§Very powerful and flexible
§Supports well known MoCs such as

– discrete-event models
wRTL / behavioral HW models
wnetwork modeling
wtransaction-level SoC platform modeling

– Kahn process networks
wstatic multi-rate data flow
wdynamic data flow

– Communicating Sequential Processes

13

SystemC 2.0: A single language
spanning multiple levels of abstraction

§ (untimed) functional level
→ executable specification

§ transaction level
→ platform design,

 HW/SW co-verification

§pin level
→ RTL/behavioral HW design

 and verification

UTF UTF UTF

UTF UTF

TLM TLM TLM

TLM TLM

RTL RTL RTL

RTL RTL

14

Gradual refinement, early verification

§No need to refine executable
specification in one giant step
into RTL model
§Bus-cycle accurate transaction

level models for fast platform
simulation (>> 100 k cycles/sec)
early in the development process
§No need to glue together different

simulators for co-simulation

TLM UTF UTF

RTL UTF

TLM TLM TLM

UTF RTL

RTL RTL TLM

UTF RTL

15

Efficient platform modeling

§Get to executable platform model ASAP
§Simulation speed >> 100k cycles/sec

DSP µC

MEM ASIC

ARBBUS

Moving from pin-level to transaction-level
models (TLM) is mandatory!

16

Example: Simple bus model

§Cycle-accurate transaction-level model.
§ “Simple” =

– No pipelining
– No split transactions
– No master wait states
– No request/acknowledge scheme
– …
NB: Of course, these features can be modeled at the

transaction level

17

SystemC 2.0 transaction-level model

DSP µC

MEM ASIC

 ARBBUS

clock

18

SystemC 2.0 transaction-level model

DSP µC

MEM ASIC

 ARBBUS

clock

19

SystemC 2.0 transaction-level model

DSP µC

MEM ASIC

 ARBBUS

clock

The bus is
implemented as
a hierarchical
channel!

The bus is
implemented as
a hierarchical
channel!

20

SystemC 2.0 transaction-level model

DSP µC

MEM ASIC

 ARBBUS

clock

Arbiter and slaves
are implemented
as channels too!

Arbiter and slaves
are implemented
as channels too!

21

SystemC 2.0 transaction-level model

DSP µC

MEM ASIC

 ARBBUS

clock

Arbiter has been
made a separate
module to allow
for customization!

Arbiter has been
made a separate
module to allow
for customization!

22

SystemC 2.0 transaction-level model

DSP µC

MEM ASIC

 ARBBUS

clock

Optionally, ports
can be connected
to multiple
channels!

Optionally, ports
can be connected
to multiple
channels!

23

SystemC 2.0 transaction-level model

DSP µC

MEM ASIC

 ARBBUS

clock

Optionally, ports
can be connected
to multiple
channels!

Optionally, ports
can be connected
to multiple
channels!

sc_port<class IF, unsigned n_channels = 1>sc_port<class IF, unsigned n_channels = 1>

24

Initialization

DSP µC

MEM ASIC

 ARBBUS

clock

Masters and slaves
are registered. Bus
builds up address
map for the slaves.

Masters and slaves
are registered. Bus
builds up address
map for the slaves.

25

Rising clock edge

DSP µC

MEM ASIC

 ARBBUS

clock
Masters request
bus access.
Masters request
bus access.

26

Falling clock edge

DSP µC

MEM ASIC

 ARBBUS

clock

The bus has a
process that is
sensitive to the
falling edge.

The bus has a
process that is
sensitive to the
falling edge.

27

Falling clock edge

DSP µC

MEM ASIC

 ARBBUS

clock

In case of
multiple requests
the arbiter is
called.

In case of
multiple requests
the arbiter is
called.

28

Falling clock edge

DSP µC

MEM ASIC

 ARBBUS

clock

Then, slaves are
accessed after
consulting the
memory map.

Then, slaves are
accessed after
consulting the
memory map.

29

Master interfaces

DSP µC

MEM ASIC

 ARBBUS

clock

30

Master interfaces of the bus

§Blocking:
– Complete bursts
– Used by high-level models
§Non-blocking:

– Cycle-based
– Used by processor models
§Direct:

– Immediate slave access
– Put SW debugger to work

31

Blocking master interface

§ status burst_read(data*, start_address,
 length = 1, priority = 1,
 lock = false);

§ status burst_write(data*, start_address,
 length = 1, priority = 1,
 lock = false);

§ “Blocking” because call returns only after complete
transmission is finished.

32

Dynamic sensitivity

MASTER

BUS

clock

status bus::burst_write(...) {
 ...
 wait(transmission_done);
 ...
}

Statically sensitive to clock
⇒ activated every cycle

Master won’t be
activated until
transmission is
completed!

Master won’t be
activated until
transmission is
completed!

33

Dynamic sensitivity

MASTER

BUS

clock

status bus::burst_write(...) {
 ...
 wait(transmission_done);
 ...
}

Statically sensitive to clock
⇒ activated every cycle

Master won’t be
activated until
transmission is
completed!

Master won’t be
activated until
transmission is
completed!

Advantages:
§Easy-to-use interface (blocking interface)
§Simulation speed

34

Non-blocking master interface

§ status get_status();
§ status read(data*, address, priority = 1,
 lock = false);

§ status write(data*, address, priority = 1,
 lock = false);

§ “Non-blocking” because calls return immediately.
§Less convenient than blocking API but caller remains

in control (needed e.g. for most processor models).

35

Direct interface

§ status direct_read(data*, address);
§ status direct_write(data*, address);
§Provides direct access to slaves (using the bus’

address map).
– Immediate access ⇒ simulated time does not advance
– No arbitration

§Use for SW debuggers or decoupling of HW and SW.
§Use with care!

36

Slave interface

DSP µC

MEM ASIC

 ARBBUS

clock

37

Slave interfaces

§ status read(data*, address);
§ status write(data*, address);
§ void address_range(start_address*,
 end_address*);
// used to build up address map

§ status direct_read(data*, address);
§ status direct_write(data*, address);

38

What’s so cool about transaction-level
bus models?

They are …
§ relatively easy to develop and extend
§easy to use
§ fast

– use of IMC ⇒ function calls instead of HW signals
and control FSMs

– use of dynamic sensitivity ⇒ reduce unnecessary
process activations

39

Key language elements used in the
example

§ Interface method calls (IMC)
§Hierarchical channels
§Connecting ports to multiple channels
§Dynamic sensitivity / waiting

40

Benefits of SystemC v2.0

§ Enables, fast smooth system design
– Communication can modeled and refined independent of function

§ Supports virtually all system modeling needs
– Flexible semantic foundation additions support most models of

computation within one environment
– Leverages all existing v1.0 and v1.1beta capabilities

§ Broadly applicable solution
– Designed by 12 experts from six different EDA and System IC

companies
– Tuned for both EDA tool and IP use

41

Summary

§SystemC is moving forward:
– New Version 2.0 especially supports System-Level

Modeling:
wfunctional models
wtransaction-level platform models
whigh-level architecture models

§More and more real life applications done with
SystemC
§Join ESCUG for up-to-date information

