
STORAGE TECHNOLOGY TAKES center stage

in increasingly more systems because of the eter-

nal push for more complex applications, espe-

cially those with larger and more complicated

data types.1 In addition, the access speed, size,

and power consumption associated with storage

form a severe bottleneck in these systems, espe-

cially in the embedded context. In this article,

we will investigate several building blocks and

overall organizations for memory storage, with a

focus on customized memory architectures. The

main emphasis will be on the generic storage

components that are used in modern multime-

dia- and telecom-oriented processors, of both the

digital-signal-processor (DSP) and application-

specific types. We will not address the specific

memory organizations (using instantiations of

these components) that are part of complete sys-

tem designs.

The content of this article is at the tutorial

level; we intend it mainly as an introduction to

other articles that explore customized memory

organizations. For more details, see the refer-

ences cited. An article by Kozyrakis et al.,2 for

example, discusses the impact of embedded

DRAM technology on the global memory orga-

nization of more general-purpose programma-

ble multiprocessors.

General principles and
storage classification

The goal of a storage device is to store a

number of n-bit data words for a short or long

term. Under control of the address unit(s),

these data words are transferred to the custom

processing units (which we’ll call processors,

for simplicity) at the appropriate point in time

(cycle), and the results of the operations are

then written back in the storage device for

future use. Because of the different character-

istics of storage and access, different styles of

devices have been developed.

Among memories for frequent and repetitive

use, we can see a very important difference

between short- and long-term storage. Short-

term memories are normally located very close

to the operators and require a very short access

time so that they can be accessed in the same

cycle as the arithmetic or logic operation

applied to the resulting data. Consequently,

they should be limited to a relatively small

capacity (typically less than 128 words), and

are usually taken up in feedback loops over the

operators (for example, the loop RegfA-BufA-

Random-Access Data
Storage Components in
Customized Architectures

Large Embedded Memories

40

This tutorial covers the basic design choices

involved in customized data storage, including

those for register files, local memory, caches, and

main memory.

Lode Nachtergaele

Francky Catthoor

Chidamber Kulkarni
IMEC

0740-7475/01/$10.00 © 2001 IEEE IEEE Design & Test of Computers

BusA-EXU-RegfA in Figure 1) or at the input of

execution units. This kind of short-term memo-

ry is typically called foreground memory.

Devices for longer-term storage generally

cater to far larger capacities (from 256 to 32 mil-

lion 32-bit words) and take a separate cycle for

read or write access. They are connected

through a data bus (which can be partly off-

chip) with the execution units.

We can make six other important distinc-

tions using the tree-like “genealogy” of storage

devices presented in Figure 2. The tree on the

left focuses on the external usage behavior of

the storage approach. It contains three layers.

The first layer addresses read-only versus

read/write (R/W) access. Some memories

(ROMs, for example) are used only to store

constant data. When the addresses are sparse-

ly spread or there are multilevel logic circuits,

especially when the amount of data is relative-

ly small, good storage choices are devices such

as programmable logic arrays (PLAs). In most

cases, however, data must be overwritable at

high speed, meaning read and write are treat-

ed with the same priority (R/W access), such as

in random-access memories (RAMs). In some

cases, ROMs can be made electrically alterable

(EAROM) or erasable—“write-few”—or pro-

grammable (PROM) using means such as fuses.

This article covers only R/W memories.

The next layer of Figure 2a concerns

whether or not the memory is volatile. For R/W

memories, the data is usually removed once

the power goes down. In some cases, this prob-

lem can be avoided, but these nonvolatile

options are expensive and slow. Examples are

magnetic media and tapes, which are intend-

ed for slow access of mass data, or flash RAMs,

which also allow higher speeds. We will restrict

ourselves to what is common on most chips,

namely volatile memory.

The last layer of Figure 2a concerns the

address mechanism. Some devices require only

sequential addressing, such as first-in, first-out

(FIFO) queues or first-in, last-out (FILO) stack

structures. Sequential addressing puts a tight

restriction on the order in which the data are

read out. However, for many applications, this

restriction is acceptable. A more general, but still

sequential access order is available in pointer-

addressed memory (PAM). The main limitation

41May–June 2001

Mux

RegfB
BusC

BusB BusA

12

RegfB

RegfA BufA+
12

12

8

Data-path
execution unit

(EXU)

Figure1. Register file illustration in a feedback loop of a simple

customized data path.

Storage usage
classification tree

Write-few
(EAROM,
PROM)

Read-only
(ROM,
PLA)

Read/write

NonvolatileVolatile

Direct addressing

Sequential
addressing

LIFOFIFO PAM

Random access

Cache

Memory realization
classification tree

Single
port

Dual
port

Multi-
port

Register file

DynamicStatic

RAM circuit

SDRAM

(a) (b)

Figure 2. Storage classification trees: usage (a) and memory realization (b).

of PAM is that each data value is written and

read once in any statically predefined order.

However, in most cases the address

sequence should be allowed to be random

(including repetition). Usually these devices

are implemented with a direct-addressing

scheme, typically called a RAM. An important

requirement is that the access time be inde-

pendent of the selected address. Many pro-

grammable processors use a special case of

random-access-based buffering, exploiting

comparisons of tags and usually also including

associativity (in what is called a cache buffer).

The tree on the right in Figure 2 focuses on the

way the memory is realized as a circuit or archi-

tecture component. It also contains three layers:

1. Number of independent addresses and cor-

responding gateways (buses) for access.

This parameter can be one (single-port

device), two (dual-port device), or even

more (multiport device). Any of these ports

can be for reading only, writing only, or

R/W. Of course, the area occupied increas-

es considerably with the number of ports.

2. Internal organization. The memory can be

meant for capacities that remain small or that

can become large. Here, designers usually

must trade off between speed and area effi-

ciency. The register files we describe in the

next section constitute an example of fast,

small-capacity organizations, which are usual-

ly also dual- or even multiported. The queues

and stacks are meant for medium-sized capac-

ities. The RAMs can become extremely large

(up to 1 Gbit in the state-of-the-art devices), but

they are also far slower in random access.

3. Static or dynamic. For R/W memories, the data

can remain valid as long as VDD is on (static cell

in SRAM), or the data should be regularly

refreshed (dynamic cell in DRAM). Within the

dynamic class, high-throughput synchronous

DRAMs (SDRAMs) have recently become

available. For circuit-level issues, see overview

articles such as Evans and Franzon3 (for

SRAMs), Itoh4 and Prince5 (for DRAMs).

Custom processors for data-dominated appli-

cations are driven from a customized memory

organization. In programmable instruction set

processors, this organization is usually con-

structed on a rigorous hierarchy almost like a

bidirectional pipeline, from the disk (possibly

with a disk cache to hide the long latency) over

the main memory and the L2/L1 cache to the

multiport register file (see Figure 3). Still, the

pipeline becomes increasingly saturated and

blocked because of the large latencies intro-

duced compared to the CPU clock cycles in cur-

rent process technologies.

Register files and
local memory organization

Figure 4 shows an illustrative organization

for a dual-port register file with two address

buses, where the separate read and write

addresses are generated from an address cal-

culation unit (ACU). This organization uses two

data buses (A and B), but only in one direction,

so the write and read addresses directly control

the port access. In general, the number of dif-

ferent address words can be smaller than the

number of port(s) when they are shared (for

example, for either read or write), and the

buses can be bidirectional. Additional control

signals decide whether to write or read and for

which port the address applies. The number of

address bits per word is log2 (N).

The register file of Figure 4 can be used very

efficiently in the feedback loop of a data path, as

already illustrated in Figure 1. In general, it is used

only for the storage of temporary variables in the

Large Embedded Memories

42 IEEE Design & Test of Computers

Data
paths

Regf

16K-64K

2-port
SRAM

Processor

L1 cache Main memoryL2 cacheForeground Disk level

32M-512M

1-port
(S)DRAM

2G-16G

1-port
DRAM bank/

hard disk

512K-4M

1-port
S(D)RAM

Figure 3. Hierarchical memory pipeline.

application running on the data path (sometimes

also referred to as the execution unit). Such reg-

ister files are also used heavily in most modern

general-purpose RISC chips and especially for

modern multimedia-oriented signal processors,

which have register files at up to 128 locations.

(In this case, it becomes doubtful whether a reg-

ister file is really a good option, because of the

very high area and power penalty.)

Multimedia-oriented VLIW processors or

recent superscalar processors give register files

very large access bandwidth and many ports—

for example, the 17-port iWarp register file and

the 15-port TriMedia register file.6 Application-spe-

cific instruction set processors (ASIPs) and cus-

tom processors make heavy use of register files

for the same purpose. Although these register files

have the clear advantage of very fast access, the

number of data words to be stored should be

minimized as much as possible because of their

power- and area-intensive structure, because of

both the decoder and the cell overhead.7

Cache memory organization
Nearly every modern programmable proces-

sor, especially those intended as general-

purpose devices, uses caches.

Basic cache architecture
Caches are mainly intended to exploit the tem-

poral and spatial locality of memory accesses.8

Here, we summarize the different steps involved

in cache operation. For our explanation, we’ll

use a direct-mapped cache as shown in Figure 5

(see also the “Cache architecture design choic-

es” sidebar), but the basic principles remain the

same for other types of cache memories.8 The

following steps occur whenever there is a

read/write from or to a cache:

1. address decoding;

2. selection based on index, block offset, or both;

3. tag comparison; and

4. data transfer.

In Figure 5 and Figure 6 (page 45), these steps

are highlighted in gray circles.

43May–June 2001

BusB

1 N
DataOut

Address
decoders

Address
calculation

unit
(ACU)

Read

Write

BusA

DataIn

log2(N)

Figure 4. Two-port register file with a capacity of N words, with

both read and write address supplied in parallel from an address

calculation unit.

4:1
multiplexer

Write buffer

Lower-level memory
Tag comparison

256 blocks

2

3

4

=?

Block Block offset
<21> <8> <5>

Tag Index Block offset
1 CPU address

Data
in

Data
out

Valid
<1>

Tag
<21>

Data
<256>

Address

Figure 5. Eight-Kbyte, direct-mapped cache with 32-byte blocks.

Large Embedded Memories

44 IEEE Design & Test of Computers

Several important decisions are involved in the archi-
tecture design of a cache. Here, we discuss the choice
of line size, degree of associativity, updating policy, and
replacement policy.

Line size
The line size is the unit of data transfer between the

cache and the main memory. In many publications, line
size is also called block size. As the line size increases
from very small to very large, the miss ratio initially
decreases, because a miss fetches more data at a time.
Further increases then cause the miss ratio to increase,
as the probability of using the newly fetched (addition-
al) information becomes less than the probability of
reusing the data that is replaced, and also as fewer lines
fit into the cache.

The optimal line size is completely algorithm depen-
dent. In general, very large line sizes are not desirable,
because they contribute to larger load latencies and
increased cache pollution. This is true for both general-
purpose and embedded applications.

Mapping and associativity
The process of transferring data elements from main

memory to the cache is called mapping. Associativity
refers to the process of retrieving several cache lines
and then determining if any of them is the target. The
degree of associativity and the type of mapping signifi-
cantly affect cache performance. Most caches are set
associative; an address maps to a set, and then an
associative search is made of that set (see Figures 5 and
6 in the main text).

Empirically, and as one would expect, increasing
the degree of associativity decreases the miss ratio.
The highest miss ratios are observed for direct-
mapped caches; two-way associativity is significantly
better, and four-way is slightly better still.

Further increases in associativity only slowly
decrease the misses. Nevertheless, a cache with a
greater associativity requires more tag comparisons,
and these comparators constitute a significant
amount of total power consumption in the memories.
Thus, for embedded applications, where power con-
sumption is an important consideration, associativi-
ties greater than four or eight are not commonly
observed.

Articles by Su and Despain1 and Ko, Balsara, and

Nanda2 include some architectural techniques for
low-power caches.

Updating policy
The process of maintaining coherency between two

consecutive memory levels is termed the updating pol-
icy. There are two basic approaches to updating the
main memory: write through and write back. With write
through, all the writes are immediately transmitted to the
main memory (apart from writing to the cache); with
write back, most writes are written to the cache and are
then copied back to the main memory as those lines are
replaced.

Initially, write through was the preferred updating poli-
cy, because it is very easy to implement and solves the
problems of data coherence. But it also generates lot of
traffic between various levels of memories. Hence, most
current state-of-the art media and DSP processors use a
write-back policy. Lately, we have seen a trend toward giv-
ing control of the updating policy to the user (or compiler).
This can be effectively exploited to reduce power, because
of reduced write backs, by compile-time analysis.

Replacement policy
A cache’s replacement policy refers to the type of

protocol used to replace a partial or complete line in the
cache on a cache miss. Typically, a least recently used
(LRU) policy is preferable, because it has acceptable
results.

Current state-of-the-art general-purpose and DSP
processors have hardware-controlled replacement
policies; hardware counters monitor the least recently
used data in the cache. In general, we have observed
that a policy based on compile-time analysis always
has significantly better results than fixed statistical
decisions.

References
1. C. Su and A. Despain, “Cache Design Trade-Offs for Power

and Performance Optimization: A Case Study,” Proc. IEEE

Int’l Symp. Low-Power Design, IEEE CS Press, Los Alamitos,

Calif., 1995, pp. 63-68.

2. U. Ko, P. Balsara, and A. Nanda, “Energy Optimization of

Multi-Level Processor Cache Architectures,” Proc. IEEE Int’l

Workshop on Low Power Design, IEEE CS Press, Los

Alamitos, Calif., 1995, pp. 45-50.

Cache architecture design choices

The first step performs the task of decoding

the address, supplied by the CPU, into the

block address and the block offset. The block

address is further divided into the cache’s tag

and index addresses. Once the address decod-

ing is complete, the index part of the block

address obtains the particular cache line

demanded by the CPU. This line is chosen only

if the valid bit is set and the tag portion of the

data cache and the block address match each

other. This involves comparing all the individ-

ual bits. For a direct-mapped cache, we have

only one tag comparison. After this process, the

block offset obtains the particular data element

in the chosen cache line. This data element is

now transferred to or from the CPU.

Figure 5 shows a direct-mapped cache; an n-

way set-associative cache would result in the

following differences:

■ Rather than just one, n tag comparisons are

used.

■ Fewer index bits and more tag bits are pre-

sent. Figure 6, which shows a two-way set-asso-

ciative cache, illustrates this circumstance.

In the sidebar, we briefly discuss some of the

issues that must be considered during cache

memory design.

Caches are prime candidates for a real-

ization with embedded-memory technology.

The L1 cache, which supplies data directly

to the processor data paths, requires an

access speed that is still too high to realize

with DRAM components, so SRAM is pre-

ferred for that level. For the much larger L2

cache, where the access requirements are

less stringent, eDRAM is a very good candi-

date technology, especially when based on

the synchronous DRAM principles. (For a

discussion of these issues in the context of

programmable processors, see also

Kozyrakis et al.2)

Designers use three main types of architec-

tural enhancement techniques to reduce com-

pulsory misses, conflict misses, and write backs.

45May–June 2001

2:1
multiplexer

Write buffer

Lower-level
memory

2

3

4

=?

=?

Block Block offset
<22> <7> <5>

Tag Index 1 CPU address

Data
in

Data
out

Valid <1> Tag <22>

Data
<64>

Address

Figure 6. Eight-Kbyte, two-way associative cache with 32-byte blocks.

They are victim buffers (or similar buffers that

store a limited number of words evicted from

the cache at its different ports),9 hardware or

software prefetching,10 and cache locking.6

Cache locking used for reduced write backs

and software prefetching need extensive com-

piler support (see “Data Memory Organization

and Optimizations in Application-Specific

Systems,” by P. Panda et al., in this issue). Other

researchers have written about interesting tech-

niques related to cache and memory hierar-

chies in the context of low power and reduced

memory bandwidth.11

Classification of cache misses
Whenever data requested by the CPU is not

found in the cache, a cache miss has

occurred. Essentially, three types of cache

misses exist:

■ Compulsory cache misses. The first access to

the block is not in the cache, so the block

must be brought into the cache.

■ Capacity cache misses. If the cache cannot

contain all the blocks needed during exe-

cution of a program (even when it is fully

associative), capacity misses will occur

Large Embedded Memories

46 IEEE Design & Test of Computers

i=3 i=4 i=5 i=6

i=8

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

a[0]

a[3]

a[0]

b[2]

b[0]

a[3]

b[0]

a[1]

a[4]

b[1]

b[3]

0

1

2

3

4

5

6

7

i=9 i=10

i=7

b[2]

0

1

2

3

4

5

6

7

a[0]

a[3]

b[0]

a[1]

a[4]

b[1]

b[3]

b[2]

a[2]

a[5]

b[4]

0

1

2

3

4

5

6

7

a[0]

a[3]

b[0]

a[1]

a[4]

b[1]

b[3]

b[2]

a[2]

a[5]

b[4]

a[3]

a[6]

0

1

2

3

4

5

6

7

a[0]

a[3]

b[0]

a[1]

a[4]

b[1]

b[3]

b[2]

a[2]

a[5]

b[4]

b[6]

a[3]

a[6]

b[5]

a[4]

a[0]

a[3]

b[0]

a[1]

a[4]

b[1]

b[3]

b[2]

a[2]

a[5]

b[4]

b[6]

a[3]

a[6]

b[5]

b[7]

a[4] 0

1

2

3

4

5

6

7

a[0]

a[3]

b[0]

a[1]

a[4]

b[1]

b[3]

b[2]

a[2]

a[5]

b[4]

b[6]

a[3]

a[6]

b[5]

b[7]

a[4]

b[8]

0

1

2

3

4

5

6

7

a[0]

a[3]

b[0]

a[1]

a[4]

b[1]

b[3]

b[2]

a[2]

a[5]

b[4]

b[6]

a[3]

a[6]

b[5]

b[7]

a[4]

b[8]

b[9]

a[7]

a[8]

for (i=3 ; i<11 ; i++)
 b[i−1] = b[i−3] + a[i] + a[i−3] ;

b[5]

a[7]

a[7]

a[5]

a[8]

a[7]

a[5]

a[8]

a[5] a[7]

a[10]

a[6]

a[9]a[9]

a[6]

Figure 7. Initial algorithm and cache states corresponding to different iterations i of that algorithm for a fully

associative cache. Diagonal bars represent cache misses. This example has 26 cache misses: 26/32, an 81%

miss rate.

because of blocks being discarded and later

retrieved. (An alternative definition for

capacity misses is the total number of misses

in a fully associative cache.)

■ Conflict misses. If the block placement strat-

egy is set-associative or direct-mapped, con-

flict misses occur (in addition to compulsory

and capacity misses), because a block can

be discarded and later retrieved if too many

blocks map to its set. Lower associativity

results in more conflicts. The difference

between the total number of cache misses

in a direct-mapped or set-associative cache

and that of a fully associative cache is

defined as the number of conflict misses.

In most real-life applications, capacity and con-

flict misses are dominant. Hence, reducing

these misses is vital to achieving better perfor-

mance and reducing power consumption.

Now let’s look at an example that illustrates

these three types of cache misses. Figure 7 and

Figure 8 show the detailed cache states for a

fully associative cache and a direct-mapped

cache. A diagonal bar on an element indicates

that the particular element is replaced by the

next element—in the next column of the same

row without a bar—because of the (hardware)

47May–June 2001

i=3 i=4 i=5 i=6

i=8

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

a[0]

a[3]

a[0]

b[2]

b[0] a[3] b[0]

b[2]

a[1]

a[4] b[1]

b[3]

0

1

2

3

4

5

6

7

a[0]

a[3] b[0]

b[2]

a[1]

a[4] b[1]

b[3]

a[2]

a[5] b[2]

0

1

2

3

4

5

6

7

a[0]

a[3] b[0]

b[2]

a[1]

a[4] b[1]

b[4]

a[2]

a[5] b[2]

a[3]

a[6]b[3]

b[5]

0

1

2

3

4

5

6

7

a[0]

a[3] b[0]

b[2]

a[1]

a[4] b[1]

b[4]

a[2]

a[5] b[2]

a[3]

a[6]b[3]

b[5]

a[4]

a[7] b[4]

b[6]

a[8]

a[5]

b[5]

b[7]

0

1

2

3

4

5

6

7

a[0]

a[3] b[0]

b[2]

a[1]

a[4] b[1]

b[4]

a[2]

a[5] b[2]

a[3]

a[6]b[3]

b[5]

a[4]

a[7] b[4]

b[6]

a[8]

a[5]

b[5]

b[7]

i=9

a[6]

a[9] b[6]

b[8]

0

1

2

3

4

5

6

7

a[0]

a[3] b[0]

b[2]

a[1]

a[4] b[1]

b[4]

a[2]

a[5] b[2]

a[3]

a[6] b[3]

b[5]

a[4]

a[7] b[4]

b[6]

a[8]

a[5]

b[5]

b[7]

a[9] b[6]

b[8]

i=10

a[7]

a[10] b[7]

b[9]

b[4]

b[3]

b[3] b[3] a[6]b[3]

i=7

0

1

2

3

4

5

6

7

a[0]

a[3] b[0]

b[2]

a[1]

a[4] b[1]

b[4]

a[2]

a[5] b[2]

a[3]

a[6]b[3]

b[5]

a[4]

a[7] b[4]

b[6]

b[3]

for (i=3 ; i<11 ; i++)
 b[i−1] = b[i−3] + a[i] + a[i−3] ;

Figure 8. Initial algorithm and cache states corresponding to different iterations i of that algorithm for a direct-

mapped cache. Diagonal bars represent cache misses. This example has a 100% miss rate: 32/32.

cache-mapping policy. Hence, every diagonal

bar represents a cache miss. The main memo-

ry layout is assumed to be single and contigu-

ous. That is, array a[] resides in locations 0 to

10, and array b[] in locations 11 to 21. For this

illustration, we use a cache of size 8 bytes and a

line size of 1 byte.

We observe from Figure 7 that the algorithm

needs 32 data accesses. To complete these 32

data accesses, the fully associative cache

requires 26 cache misses. Out of these 26 miss-

es, 21 are compulsory and the remaining five

are capacity misses. The direct-mapped cache

requires 32 misses, as seen in Figure 8. This

means that out of 32 data accesses, all of them

result in misses, and the on-chip direct-mapped

cache is not exploiting the available data reuse

at all (for the given access order). Thus, for the

algorithm in our example, we have 21 com-

pulsory misses, five capacity misses, and six

conflict misses.

Hardware- and software-controlled caches
Until recently, the embedded hardware

cache controller steered most cache behav-

ior—a reasonable setup if little can be analyzed

about the behavior of the application at com-

pile time. This is the case for programs that are

heavily dependent on user interaction, such as

office automation tools, databases, or debug-

gers. Over the years, however, the cache con-

troller became more and more costly in terms

of both area and power.

For many modern applications such as mul-

timedia and telecommunications, cache

behavior can be analyzed at compile time far

more easily, even when irregular but manifest

access patterns are present. Still, the code that

is initially written by designers usually lacks

locality (temporal, spatial, or both); in that

case, the hardware controller no longer does a

good job. However, recently developed,

advanced compiler technology is simplifying

analysis of such applications (see “Code

Transformations for Data Transfer and Storage

Exploration Preprocessing in Multimedia

Processors,” by F. Catthoor et al., and “Data

Memory Organization and Optimizations in

Application-Specific Systems,” by P. Panda et

al., both in this issue). Therefore, the newer

cache architectures make more software con-

trol available. An example is the software-lock-

able cache in the Philips TriMedia.6

Table 1 lists the major differences between

hardware- and software-controlled caches for

state-of-the-art multimedia and DSP processors.

First, the hardware-controlled caches rely on

the hardware to do the data cache manage-

ment. Hence, to perform this task, the hardware

uses basic concepts of cache lines and sets. On

the other hand, for software-controlled caches,

the compiler (or the user) performs cache man-

agement. The complexity of designing a soft-

ware cache is far lower and requires only a

basic concept of unit data transfer equivalent

to a cache line.

Second, the hardware performs the data

transfer based on the execution order of the

algorithm at runtime, using fixed statistical mea-

sures. In contrast, for the software-controlled

cache, either the compiler or the user performs

this task. This is currently possible using high-

level compile-time directives such as ALLO-

CATE() and link-time options such as LOCK to

lock certain data in part of the cache, through

the compiler or linker.6

Third, the most important difference between

hardware- and software-controlled caches is in

the way the next higher level of memory is

updated—namely, the way the caches maintain

coherence of data. For a hardware-controlled

cache, the hardware writes data to the next high-

er level of memory either every time a write

occurs or when the particular cache line is evict-

ed. In contrast, for the software-controlled cache,

the compiler decides when and whether to write

back a particular data element.6 This results in a

large reduction in the amount of data transfers

between different levels of memory hierarchy,

contributing to lower power and reduced band-

Large Embedded Memories

48 IEEE Design & Test of Computers

Table 1. Differences between hardware and software caches for current state-

of-the-art multimedia and DSP processors.

Characteristic Hardware control Software control

Basic concepts Lines and sets Lines

Data transfer Hardware Partly software

Updating policy Hardware Software

Replacement policy Hardware Software

width usage by the algorithm.

Finally, the hardware-controlled cache

needs an extra bit for every cache line to deter-

mine the least recently used data, which will be

replaced on a cache miss. For the software-

controlled cache, the compiler manages the

data transfer, so no need exists for additional

bits or a particular replacement policy.

Main and global-hierarchical
memory organization

As mentioned earlier, the access bottleneck

is especially severe for main memories in the

hierarchical pipeline (see Figure 3). This bot-

tleneck is due to the large sizes of these main

memories, and partly to their location (until

now) off chip, which causes a highly capacitive

on/off chip bus. Because of the use of embed-

ded (S)DRAM technology, the latter problem

can be solved for several new applications.

However, in many cases, this new solution

will work at the L2 cache level but, because of

the large size requirements, not yet for the main

memory. Kozyrakis et al.2 discuss this issue, indi-

cating that modern multiprocessors still rely on a

(large) central shared main memory (at least in

terms of the address space). Even with eDRAM-

based main memory solutions, the central shared

memory would still impose heavy restrictions on

the bandwidth; nor would eDRAM sufficiently

solve the large energy consumption issues. So the

customization benefits available with an on-chip

eDRAM solution are not really suited for the main

memory stage in the hierarchy. Hence, the bot-

tlenecks still largely remain.

SRAMs are excluded for the large sizes

required for main memories, because of their

significantly lower density—more than an

order of magnitude lower than (S)DRAMs.

The literature on storage includes proposals

for a large variety of possible types of RAMs for

use as main memories, and research on RAM

technology is still very active, as demonstrated

by interest in meetings such as the International

Solid-State Circuits (ISSCC) and Custom

Integrated Circuit (CICC) conferences. Several

summary articles on this research are avail-

able.1,5,12 The general organization depends on

the number of ports, but usually single-port

structures are present in high-density memories.

This is also the restriction here.

Most other distinguishing characteristics

relate to the circuit design (and the technologi-

cal issues) of the RAM cell, the decoder, and the

auxiliary R/W devices. One main conclusion of

a literature study on the recent evolution of

main memory is that the main emphasis—in

almost all avenues of research—is on the access

structure and not on the way the actual storage

takes place in the “cell.” This access structure,

which includes the selection part and the

input/output part, starts to dominate the overall

cost in terms of power, speed, and throughput

(assuming, of course, that leakage power in the

memory matrix is kept under control). When

power-sensitive memories are constructed, the

area contribution also becomes more balanced

between the heavily distributed memory matri-

ces and the access structures.

The external data access bottleneck
In most cases, a processor requires one or

more large external memories to store the long-

term data (mostly of the DRAM type). For data-

dominated applications in the past, total system

power cost was for a large part due to the pres-

ence of these external memories on the board.

Until recently, most DRAMs were of the pipelined

page-mode type. Pipelined memory implemen-

tations improve a memory’s throughput, but they

don’t improve the latency. For instance, in an

extended data-out (EDO) RAM, the address

decoding and the actual access to the storage

matrix (of the previous memory access) occur in

parallel. In that case, the access sequence to the

DRAM is also important.

Figure 9 (next page) shows a DRAM’s prin-

cipal blocks. The address bus is divided into a

column address and a row address, and these

two parts are latched. This allows the device to

pipeline the transfer of the address in two

stages. To make this work, two control pins are

necessary: The row address strobe (RAS) pin

controls the row address latch, and the column

address strobe (CAS) pin controls the column

address latch.

To read data from DRAM, the following steps

must take place (see also Figure 9):

1. The row address is placed on the address

49May–June 2001

pins via the address bus.

2. The RAS pin is activated, placing the row

address onto the row address latch.

3. The row address decoder selects the prop-

er row to be sent to the sense amplifiers.

4. The write-enable is deactivated so that the

DRAM knows that it’s not being written to.

5. The column address is placed on the

address pins via the address bus.

6. The CAS pin is activated, placing the col-

umn address on the column address latch.

7. The CAS pin also serves as the output-

enable, so once the CAS signal is stable, the

sense amplifiers place the data from the

addressed row and column on the data-

output pins, and the data can be transferred

to the processor.

8. The RAS and CAS are both deactivated so

that the cycle can begin again.

Fast page-mode DRAMs. FPM DRAMs are

currently the most used category of DRAMs;

they are faster than previous-generation DRAMs

because of their ability to work within a page

(the section of memory available within a row

address). Within one specific row are several

columns of memory bits. With FPM DRAMs,

you need only specify the row address once for

accesses within the same page addresses.

Successive accesses to the same page of mem-

ory require selecting only a column address,

thus saving time in

accessing the mem-

ory. The electronic

standards agency,

JEDEC, has specified

standards for FPM

DRAM.

Extended data-out
DRAMs. EDO DRAMs

work very similarly to

FPM DRAMs, also hav-

ing the ability to work

within a page. The pri-

mary advantage of

EDO over FPM is that

EDO DRAMs hold the

data valid even after

the signal that strobes

the column address goes inactive. Faster micro-

processors can thus manage time more effi-

ciently, performing many tasks without having

to attend to slower memory. That is, while the

EDO DRAM is retrieving an instruction for the

microprocessor, the microprocessor can per-

form other tasks without worrying that the data

will become invalid. JEDEC has also specified

standards for the EDO DRAM.

Example. Consider the following C program:

const int N=100;

int A[N][N];

int r,c;

for (c=0; c < N; c++) {

for (r=0; r < N; r++) {

... = foo(A[r][c]);

}

}

The physical address of array A, assuming a

row-wise organization, is baseaddress(A) +

100 × r + c. Hence, every time the inner itera-

tor r increments, the DRAM address is

increased by 100. This means the row address

must be reapplied to the DRAM and latched

into its suited latch; hence several cycles are

lost.

This problem can easily be alleviated by a

loop interchange:

Large Embedded Memories

50 IEEE Design & Test of Computers

Write
enable

Column
address

latch

Sense
and

refresh
amplifiers

Column
address
decoder

Address
bus

4

1

5

2

7

3

6

Row address latch

Row address decoder

Row
access
strobe

Column
access
strobe

Data
bus

Figure 9. Illustration of DRAM operation.

const int N=100;

int A[N][N];

int r,c;

for (r=0; r < N; r++) {

for (c=0; c < N; c++) {

... = foo(A[r][c]);

}

}

This is very obvious in the preceding example,

but in general it takes a systematic global

approach to trade off all possibilities. “Data

Memory Organization and Optimizations in

Application-Specific Systems,” by P. Panda et

al. addresses this topic. The “EDO DRAM

access” sidebar provides a more elaborate

example.

Synchronous DRAMs. SDRAMs pipeline fur-

ther and can provide a huge theoretical band-

width. Basically, the internal state machine

enables the enlargement of the pipeline. An

SDRAM can sustain this high throughput rate by

data-access interleaving over several banks.

However, the address must be known several

cycles before the data is actually needed.

Otherwise the data path will stall, canceling the

advantage of the pipelined memory.

Rambus DRAM. RDRAMs exploit a high-speed

interface technology to provide transfer speeds

of 1 Gbyte/s or more. RDRAMs are connected

via a single 16-bit-wide data bus. Hence, each

RDRAM chip can drive the 16-bit data bus by

itself. This data bus is part of a larger shared

Rambus channel, to which every RDRAM chip

in the system is attached. This interconnectivity

allows multiple memory controllers, theoreti-

cally providing multiple times the Rambus chan-

nel bandwidth. For example, Sony’s PlayStation

2 uses two RDRAM channels, each with a single

RDRAM, to achieve a total of 3.2 Gbytes/s mem-

ory bandwidth.

The negative side of this single-bus system is

that the system latency can be as great as the

latency to the RDRAM farthest away from the

memory controller. An advantage that RDRAM

has over SDRAM is that it has separate row and

column control, allowing pipelining of the

addressing with the data transfers. This reduces

latency when data is needed from the same

bank but in another row.

As with SDRAMs, bank conflicts are still pos-

sible. However the high bank count, typical for

RDRAMs, reduces the probability of conflicts.

For example, a RIMM of eight devices, 16 banks

each, has 128 banks.

The cost to pay for RDRAM’s high bandwidth

is the high power consumption. Power manage-

ment techniques keep RDRAM chip dissipation

under control. Six states of activity are defined,

ranging from a power-down mode to the highest

attention state. The higher the activity state, the

51May–June 2001

EDO DRAM access example
Let’s work out a brief example, directly based on the material in

Coelho and Hawash.1 The data sheet of an enhanced data-out (EDO)
memory chip specifies a sequence such as {10-2-2-2}{3-2-2-2},
where the numbers represent clock cycles. Each curly bracket indi-
cates four bus cycles of 64 bits each—that is, one cache line. The
first sequence, {10-2-2-2}, specifies the timing if the page is first
opened and accessed four times. The second sequence, {3-2-2-2},
specifies the timing if the page was already open and accessed four
additional times—that means you did not already open and access
any other memory page in the meantime. The last sequence repeats
as long as you access memory within the same page.

The used data sheet relates to a memory bus running at 66 MHz.
For another processing speed, such as a 233-MHz bus, the timing
becomes {35-7-7-7}{11-7-7-7} in processor clocks. Table A provides
the timing in the different parts of the overall memory organization.

Reference
1. R. Coelho and M. Hawash, DirectX, RDX, RSX, and MMX Technology: A

Jumpstart Guide to High Performance APIs, Addison-Wesley, Reading,

Mass., 1997.

Table A. Memory architecture and timing for a system using the Pentium

II processor (at 233 MHz) and EDO memory.

Bus CPU Total

clock clock clock Bandwidth

Bus cycles cycles cycles (Mbytes/s)

L1 cache {1-1-1-1} {1-1-1-1} 4 1,864

L2 cache {5-1-1-1} {10-2-2-2} 16 466

EDO {10-2-2-2} {3-2-2-2} 56 133

memory {35-7-7-7} {11-7-7-7} 32 233

SDRAM {11-1-1-1} {2-1-1-1} 51 146

{39-4-4-4} {7-4-4-4} 19 392

smaller the latency for access but the greater the

power consumption. For power consumption con-

trol, usually only a few chips can be active at the

same time. Hence, when data is distributed across

several RDRAMs, high latencies can be observed

when accessing the data sequentially. This is

because each chip has to alternate between a low-

power mode and a high active state.

Data-memory power bottleneck
Because of the heavy push toward lower-

power solutions to keep package costs low, and

recently also for mobile applications or to

address reliability issues, the power consump-

tion of such external DRAMs has been reduced

significantly. Apart from circuit and internal

organization techniques for achieving this,4,13

technology modifications such as switching to

a SOI (silicon-on-insulator) approach have

been considered. With all these techniques for

distributing the power consumption from a few

hot spots to all parts of the architecture, the end

result is indeed a very optimized design for

power, where every part of the memory orga-

nization consumes a similar amount.4,14

However, little more can be gained in this

area, because the bag of tricks now contains

only the more complex solutions with a smaller

return on investment. Nevertheless, the combi-

nation of all these approaches indicates a very

advanced circuit technology that still outper-

forms the current state of the art in data path and

logic circuits for low-power design (at least in

industry). Hence, the relative power in the non-

storage parts can be reduced still more drasti-

cally, if this goal receives similar investments.

Combined with the advance in process tech-

nology, all this has led to a remarkable reduction

of DRAM-related power—from several watts for

the 16- to 32-Mbit generation to about 100 mW

for 100-MHz operation in a 256-Mbit DRAM.

Hence, modern stand-alone DRAM chips,

which are often of this SDRAM type, also offer

low-power solutions, but at a price: Internally,

they contain banks and a small cache with a

very wide width connected to the external high-

speed bus (see Figure 10).15 So the low-power

operation per bit is only feasible when they oper-

ate in burst mode with entire, or parts of, mem-

ory columns transferred over the external bus.

This is not directly compatible with the actual

use of the data in the processor data paths; so

without a buffer to the processors, most of the

data words exchanged would be useless and dis-

carded. Obviously, in this case the effective ener-

gy consumption per useful bit becomes very

high, so the effective bandwidth is low.

Therefore, a hierarchical and typically far more

power-hungry intermediate memory organization

is needed to match the central DRAM to the data-

ordering and bandwidth requirements of the

processor data paths. The reduction of power con-

sumption in fast random-access memories is not

as advanced yet as in DRAMs, but this is also an

area that is becoming saturated; many circuit- and

technology-level tricks have already been applied

in SRAMs. As a result, fast SRAMs continue to con-

sume on the order of watts for high-speed opera-

tion around 500 MHz. Thus, the memory-related

system power bottleneck remains a very critical

issue for data-dominated applications.

FROM THE PROCESS technology perspective,

the importance of the memory-related system

power bottleneck is not surprising, especially

for submicron technologies. The relative power

cost of interconnections is increasing rapidly

Large Embedded Memories

52 IEEE Design & Test of Computers

SDRAM

Global
bank

select/
control

128- to
1,024-bit bus

Address/
control

Data

Client

On-chip
cache

hierarchy

Cache
and
bank

combine

Local
latch

Local
latch

Local
select

Local
select

Bank 1

Bank N

Figure 10. External data access bottleneck illustration with SDRAM.

compared with the transistor-related (active cir-

cuit) components. Clearly, local data paths and

controllers themselves contribute little to this

overall interconnect compared to the major

data/instruction buses and the internal con-

nections in the large memories. Hence, if all

other parameters remain constant, the energy

consumption, as well as the delay or area, in

the storage and transfer organization will

become even more dominant, especially for

deep-submicron technologies. The remaining

basic limitations lie in transporting the data and

the control (such as addresses and internal sig-

nals) over large on-chip distances, and in stor-

ing them.

One last technological recourse for alleviat-

ing the energy-delay bottleneck is to embed the

memories as much as possible on chip. This

has been the focus of several recent activities,

such as the Mitsubishi announcement of an

SIMD processor with a large distributed DRAM

in 199616 (followed by the offering of embed-

ded DRAM technology by several other ven-

dors) and the Intelligent RAM (IRAM) initiative

of Dave Patterson’s group at UC Berkeley.17 The

results show that the option of embedding logic

on a DRAM process leads to a reduced power

cost and an increased bandwidth between the

central DRAM and the rest of the system. This is

indeed true for applications where the

increased processing cost is acceptable.18

However, it is a one-time drop, after which the

widening energy-delay gap between the storage

and the logic will continue to progress, because

of the unavoidable evolution of the relative

interconnect contributions.

Thus, it is clear that for midterm (and even

short-term) projects, the access and power bot-

tlenecks should be broken by other, nontech-

nological means. This is feasible with quite

spectacular effects through a more optimal

design of the memory organization and system-

level code transformations applied to the initial

application specification. (See “Code

Transformations for Data Transfer and Storage

Exploration Preprocessing in Multimedia

Processors,” by F. Catthoor et al., and “Data

Memory Organization and Optimizations in

Application-Specific Systems,” by P. Panda et al.)

The price paid for these solutions will be

increased system design complexity, which can

be offset with appropriate design methodology

support tools. This requires looking at platform

architecture design and mapping methodolo-

gies from a new perspective. In addition, archi-

tectures will have to become more compiler

friendly.19 ■

References
1. G. Lawton, “Storage Technology Takes the Cen-

ter Stage,” Computer, vol. 32, no.11, Nov. 1999,

pp.10-13.

2. C. Kozyrakis et al., “Scalable Processors in the

Billion-Transistor Era: IRAM,” Computer, vol. 30,

no. 9, Sept. 1997, pp. 75-78.

3. R. Evans and P. Franzon, “Energy Consumption

Modeling and Optimization for SRAMs,” IEEE J.

Solid-State Circuits, vol. SC-30, no. 5, May 1995,

pp. 571-579.

4. K. Itoh, “Low Voltage Memory Design,” in tutorial

on “Low Voltage Technologies and Circuits,” Proc.

IEEE Int’l Symp. Low-Power Design, IEEE CS

Press, Los Alamitos, Calif., 1997.

5. B. Prince, “Memory in the Fast Lane,” IEEE Spec-

trum, Feb. 1994, pp. 38-41.

6. G. Slavenburg, S. Rathnam, and H. Dijkstra, “The

Trimedia TM1 PCI VLIW Media Processor,” 8th

Hot Chips Symp., 1996.

7. N. Weste and K. Eshraghian, Principles of CMOS

VLSI Design, Addison-Wesley, Reading, Mass.,

1993.

8. D. Patterson and J. Hennessey, Computer Archi-

tecture: A Quantitative Approach, Morgan

Kaufmann, San Francisco, 1996.

9. N. Jouppi, “Improving Direct-Mapped Cache Per-

formance by the Addition of a Small Fully-

Associative Cache and Prefetch Buffers,” Proc.

Int’l Symp. Computer Architecture, ACM Press,

New York, 1990, pp. 364-373.

10. T.F. Chen and J.L. Baer, “Effective Hardware-

Based Prefetching for High Performance

Microprocessors,” IEEE Trans. Computers, May

1995, pp. 609-623.

11. T. Johnson and W. Hwu, “Run-Time Adaptive

Cache Hierarchy Management via Reference

Analysis,” Proc. Int’l Symp. Computer Architecture,

ACM Press, New York, 1997, pp. 315-326.

12. R. Comerford and G. Watson, eds., “Memory

Catches Up,” IEEE Spectrum, Oct. 1992, pp. 34-57.

53May–June 2001

13. T. Yamagata et al., “Circuit Design Techniques for

Low-Voltage Operating and/or Giga-Scale

DRAMs,” Proc. IEEE Int’l Solid-State Circuits

Conf., IEEE CS Press, Los Alamitos, Calif., 1995,

pp. 248-249.

14. T. Seki et al., “A 6-ns 1-Mb CMOS SRAM with

Latched Sense Amplifier,” IEEE J. Solid-State Cir-

cuits, vol. SC-28, no. 4, Apr. 1993, pp. 478-483.

15. T. Kirihata et al., “A 220 mm2, Four- and Eight-

Bank, 256 Mb SDRAM with Single-Sided Stitched

WL Architecture,” IEEE J. Solid-State Circuits, vol.

SC-33, Nov. 1998, pp. 1711-1719.

16. T. Tsuruda et al., “High-Speed, High Bandwidth

Design Methodologies for On-Chip DRAM Core

Multi-Media System LSIs,” Proc. IEEE Custom

Integrated Circuits Conf., IEEE CS Press, Los

Alamitos, Calif., 1996, pp. 265-268.

17. D.A. Patterson et al., “Intelligent RAM (IRAM):

Chips that Remember and Compute,” Proc. IEEE

Int’l Solid-State Circuits Conf., IEEE CS Press,

Los Alamitos, Calif., 1997, pp. 224-225.

18. N. When and S. Hein, “Embedded DRAM Archi-

tectural Trade-Offs,” Proc. First Design and Test

in Europe Conf., IEEE Press, Piscataway, N.J.,

1998, pp. 704-708.

19. N. Mitchell, L. Carter, and J. Ferrante, “A Compiler

Perspective on Architectural Evolutions,” IEEE TC

on Computer Architecture Newsletter, June 1997,

pp. 7-9.

Lode Nachtergaele is a
senior research engineer at
IMEC, responsible for the
technical coordination of
IMEC’s Multimedia Image
Compression Systems (MICS)

group. His research interests include distilling an
operational system design methodology that
improves design times of embedded multimedia
systems, using the resulting design flow as a step-
ping stone to future application challenges.
Nachtergaele has a BS in industrial engineering
from the Katholieke Industriele Hogeschool,
Oostende, Belgium.

Chidamber Kulkarni is a
PhD student in DESICS at
IMEC. His research interests
include design methods and
tools for cost-efficient embed-
ded implementation of multi-

media applications and architectural support for
software systems. Kulkarni has a BE in electron-
ics and communication engineering from
Karnataka University, India, and an ME and PhD
in electrical engineering from the Katholieke
Universiteit, Leuven.

The biography of Francky Catthoor appears
on page 4 in this issue.

Direct questions and comments about this
article to Francky Catthoor, IMEC, Kapeldreef 75,
B3001 Leuven, Belgium; catthoor@imec.be.

Large Embedded Memories

54 IEEE Design & Test of Computers

you@computer.org
FREE!

All IEEE Computer Society
members can obtain a free,

portable email
alias@computer.org. Select your
own user name and initiate your
account. The address you choose
is yours for as long as you are a
member. If you change jobs or
Internet service providers, just

update your information with us,
and the society automatically

forwards all your mail.

Sign up today at
http://computer.org

