Course Title: Processor Architectures and Program Mapping
Given by: Faculteit: Elektrotechniek, INFORMATIE- EN COMMUNICATIESYSTEMEN

Prior knowledge: Masters degree in EE.

Connecting courses: <namen + codes van de 2 vervolgvakken>

Teachers: Prof.dr.ir. J. van Meerbergen, Dr. Bart Mesman, Prof.dr.H. Corporaal

Study information: http://www.ics.ele.tue.nl/~heco/courses/pam
Style: hoorcollege (27 hours), practicum (in own hours)
Exam: Oral exam.

Course material: Hand-outs, slides will be supplied on the website.
Context:
When looking at future embedded systems and their design, especially (but

not exclusively) in the multi-media domain, we observe several problems:

1) high performace (10 GOPS and beyond) has to be combined with low power

 (many systems are mobile);

2) time-to-market (to get your design done) constantly reduces;

3) most embedded processing systems have to be extremely low cost;

4) the applications show more dynamic behavior (resulting in greatly varying

 quality and performance requirements);

5) more and more the implementer requires flexible and programmable solutions;

6) huge latencie gap between processors and memories; and

7) design productivity does not cope with the increasing design complexity.

In order to solve these problems we foresee the use of programmable

multi-processor platforms, having an advanced memory hierarchy, this

together with an advanced design trajectory. These platforms may contain different processors, ranging from general purpose processors, to processors which are highly tuned for a specific application or application domain. This course treats several processor architectures, shows how to program and generate (compile) code for them, and compares their efficiency in terms of cost, power and performance. Furthermore the tuning of processor architectures is treated.

Purpose:
This course aims at getting an understanding of the processor architectures which will be used in future multi-processor platforms, including their memory hierarchy. Treated processors range from general purpose to highly optimized ones. Tradeoffs will be made between performance, flexibility, programmability, energy consumption and cost. It will be shown how to tune processors in various ways.

Furthermore this course looks into the required design trajectory, concentrating on code generation, scheduling, and on efficient data management (exploiting the advanced memory hierarchy) for high performance and low power. The student will learn how to apply a methodology for a step-wise (source code) transformation and mapping trajectory, going from an initial specification to an efficient and highly

tuned implementation on a particular platform. The final implementation

can be an order of magnitude more efficient in terms of cost, power,

and performance.
Contents:

In this course we treat different processor architectures: DSP (digital signal processors), VLIWs (very long instruction word, including Transport Triggered Architectures), ASIPs (application specific processors), and highly tuned, weakly programmable processors. In all cases it is shown how to program these architectures. Code generation techniques, especially for VLIWs, are treated, including methods to optimize code at source or assembly level.

Furthermore the design of advanced data and instruction memory hierarchies will be detailed. A methodology is discussed for the efficient use of the data memory hierarchy.

Most of the topics will be supplemented by hands-on exercises.

Detailed Contents:

1. Programmable CPU cores

1.1. short review of the RISC architecture, layout, cost

1.2. application examples: FIR, Galois, cryptography, video conferencing (H263)

1.3. software issues, simulation (native code), compiler

1.4. comparison between different CPU cores and trends (area, power, computational efficiency

1.5. towards application specific accelerators (Tensilica)

1.6. Hands-on: FIR simulation on SPIM

2. VLIW (Very Long Instruction Word)
2.1. Principles of VLIWs

2.2. Examples, layout, cost: C6, TM. TTA

2.3. ILP compilers

2.3.1. Basic block scheduling

2.3.2. Inter basic block scheduling

2.3.3. Software pipelining

2.4. Data parallelism, vector operations and subword parallelism

2.5. Clustering

2.6. Limits on ILP

2.7. BDTi benchmarks

2.8. Hands-on: programming and code generation for VLIW architectures

3. Programmable DSP cores
3.1. Parallel Architecture Classification

3.2. Architectures for programmable DSPs

3.2.1. multiplier-accumulator

3.2.2. modified Harvard architecture

3.2.3. extension with an ALU (decision making)

3.2.4. controller architectures

3.3. Examples (TI, Motorola, Philips), cost, BDTi benchmarks

3.4. Software issues, code generation

3.5. Hands-on: programming DSP architectures

4. Application specific instruction set processors

4.1. Tuning architectures

4.2. Tuning examples: register files, connectivity, operation set (tensillica)

4.3. Retargetable code generation (problem statement, constraint analysis)

4.4. ADSP/VLIW architectures (A|RT designer)

4.5. Application examples: adaptive FIR

4.6. Low power aspects

4.7. Hands-on: IDCT in A|RT designer and Magma, 4 weeks time

5. Function specific weakly-programmable processors (video)

5.1. Domain analysis

5.2. Model of periodic operations

5.3. Overview of Phideo (once over lightly)

5.4. Basic steps

5.4.1. PU generation

5.4.2. scheduling

5.4.3. memory synthesis

5.4.4. address synthesis

5.4.5. controller synthesis

5.5. Example: progressive scan, Melzonic

6. Memories

6.1. SRAM, SDRAM, DDR-RAM, non-volatile, MRAM, Rambus

6.2. Memory hierarchies (ins and data), embedded compression, EcoHD case

6.3. Caches

6.4. Loop buffers, filter cache

7. Data mgt (DTSE)

7.1. Design flow

7.2. Pruning

7.3. Data flow transformations

7.4. Global loop transformations

7.5. Reuse exploitation and MLA (memory layer assignment)

7.6. Cycle budget distribution

7.7. Memory allocation and assignment

7.8. Data layout

7.8.1. Scratchpad RAM

7.8.2. Caches

7.9. Hands-on

3 Lab exercises will be part of the course.

